搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二维材料MXene的仿神经突触忆阻器的制备和长/短时程突触可塑性的实现

陈义豪 徐威 王钰琪 万相 李岳峰 梁定康 陆立群 刘鑫伟 连晓娟 胡二涛 郭宇锋 许剑光 童祎 肖建

引用本文:
Citation:

基于二维材料MXene的仿神经突触忆阻器的制备和长/短时程突触可塑性的实现

陈义豪, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇锋, 许剑光, 童祎, 肖建

Fabrication of synaptic memristor based on two-dimensional material MXene and realization of both long-term and short-term plasticity

Chen Yi-Hao, Xu Wei, Wang Yu-Qi, Wan Xiang, Li Yue-Feng, Liang Ding-Kang, Lu Li-Qun, Liu Xin-Wei, Lian Xiao-Juan, Hu Er-Tao, Guo Yu-Feng, Xu Jian-Guang, Tong Yi, Xiao Jian
PDF
HTML
导出引用
  • 兼具长时程可塑性与短时程可塑性的电子突触被认为是类脑计算系统的重要基础. 将一种新型二维材料MXene应用到忆阻器中, 制备了基于Cu/MXene/SiO2/W的仿神经突触忆阻器. 结果表明, Cu/MXene/SiO2/W忆阻器成功实现了稳定的双极性模拟阻态切换, 同时成功模拟了生物突触短时程可塑性的双脉冲易化功能和长时程可塑性的长期增强/抑制行为, 其中双脉冲易化的易化指数与脉冲间隔时间相关. Cu/MXene/SiO2/W忆阻器的突触仿生特性, 归功于MXene辅助的Cu离子电导丝形成与破灭的类突触响应机理. 由于Cu/MXene/SiO2/W忆阻器兼具长时程可塑性与短时程可塑性, 其在突触仿生电子学和类脑智能领域将会具有巨大的应用前景.
    Compared with conventional computation relying on the von Neumann architecture, brain-inspired computing has shown superior strength in various cognitive tasks. It has been generally accepted that information in the brain is represented and formed by vastly interconnected synapses. So the physical implementation of electronic synaptic devices is crucial to the development of brain-based computing systems. Among a large number of electronic synaptic devices, the memristors have attracted significant attention due to its simple structure and similarities to biological synapses. In this work, we first use two-dimensional material MXene as a resistive material and fabricate an electronic synapse based on a Cu/MXene/SiO2/W memristor. By using the unique properties of MXene, the conductance of the memristor can be modulated by the accumulation or reflux of Cu2+ at the physical switching layer, which can vividly simulate the mechanism of bio-synapses. Experimental results show that the Cu/MXene/SiO2/W memristor not only achieves stable bipolar analog resistance switching but also shows excellent long-term and short-term synaptic behaviors, including paired-pulse facilitation (PPF) and long-term potential/depression. By adjusting the pulse interval, the PPF index will change accordingly. In a biological system, the short-term plasticity is considered to be the key point for performing computational functions while the long-term plasticity is believed to underpin learning and memory functions. This work indicates that Cu/MXene/SiO2/W memristor with both long-term and short-term plasticity will have great application prospects for brain-inspired intelligence in the future.
      通信作者: 童祎, tongyi@njupt.edu.cn ; 肖建, xiaoj@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61704088, 61874059)、中国博士后科学基金(批准号: 2018M642290)、射频集成和微组装技术国家地方联合工程实验室开放课题(批准号: KFJJ20170101)、江苏省教育厅省级重点人才项目(批准号: SZDG2018007, TJ218001)和南京邮电大学基金(批准号: NY217116)资助的课题.
      Corresponding author: Tong Yi, tongyi@njupt.edu.cn ; Xiao Jian, xiaoj@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61704088, 61874059), the China Postdoctoral Science Foundation (Grant No. 2018M642290), the Open Fund of National and Local Joint Engineering Laboratory of RF Integration and Micro-Assembly Technology, China (Grant No. KFJJ20170101), the Provincial Key Talent Project of Education Department of Jiangsu Province, China (Grant Nos. SZDG2018007, TJ218001), and the Nanjing University of Posts and Telecommunications Foundation, China (Grant No. NY217116).
    [1]

    Chen Y H, Yu H Y, Gong J D, Ma M X, Han H, Wei H H, Xu W T 2019 Nanotechnology 30 012001Google Scholar

    [2]

    Mead C 1990 Proc. IEEE 78 1629

    [3]

    Zhao Y H, Jie J 2018 J. Nanosci. Nanotechnol. 18 8003Google Scholar

    [4]

    梁定康, 陈义豪, 徐威, 吉新村, 童祎, 吴国栋 2018 67 237302Google Scholar

    Liang D K, Chen Y H, Xu W, Ji X C, Tong Y, Wu G D 2018 Acta Phys. Sin. 67 237302Google Scholar

    [5]

    Dmitri B S, Gregory S S, Duncan R S, Williams R S 2008 Nature 453 80Google Scholar

    [6]

    Jeong H, Shi L P 2019 J. Phys. D: Appl. Phys. 52 023003

    [7]

    Waser R, Dittmann R, Staikov G, Kristof S 2009 Adv. Mater. 21 2632Google Scholar

    [8]

    余志强, 刘敏丽, 郎建勋, 钱楷, 张昌华 2018 67 157302Google Scholar

    Yu Z Q, Liu M L, Lang J X, Qian K, Zhang C H 2018 Acta Phys. Sin. 67 157302Google Scholar

    [9]

    Chang T, Jo S H, Lu W 2011 ACS Nano 5 7669Google Scholar

    [10]

    Kim M K, Lee J S 2018 ACS Nano 12 1680

    [11]

    Hirano T 2018 Cerebellum 17 756Google Scholar

    [12]

    Wang C H, He W, Tong Y, Zhao R 2016 Sci. Rep. 6 22970Google Scholar

    [13]

    Wang Z Q, Xu H Y, Li X H, Yu H, Liu Y C, Zhu X J 2012 Adv. Funct. Mater. 22 2759

    [14]

    Zhang X M, Liu S, Zhao X L, Wu F C, Wu Q T, Wang W, Cao R R, Fang Y L, Lv H B, Long S B, Liu Q, Liu M 2017 IEEE Electron Dev. Lett. 38 1208Google Scholar

    [15]

    Wang F, Ke S l, Qin C Z, Wang B, Long H, Wang K, Lu P X 2018 Opt. Laser Technol. 103 272Google Scholar

    [16]

    Sun D, Ye D L, Liu P, Tang Y G, Guo J, Wang L Z, Wang H Y 2018 Adv. Energy Mater. 8 1702383Google Scholar

    [17]

    Cai Z Y, Liu B L, Zou X L, Cheng H M 2018 Chem. Rev. 118 6091Google Scholar

    [18]

    吴全潭, 时拓, 赵晓龙, 张续猛, 伍法才, 曹荣荣, 龙世兵, 吕杭炳, 刘琦, 刘明 2017 66 217304Google Scholar

    Wu Q T, Shi T, Zhao X L, Zhang X M, Wu F C, Cao R R, Long S B, Lv H B, Liu Q, Liu M 2017 Acta Phys. Sin. 66 217304Google Scholar

    [19]

    Liu C Y, Zhang Y X, Yang C P 2017 Sensors Mater. 30 463Google Scholar

    [20]

    Wang M, Cai S H, Pan C, Wang C Y, Lian X J, Zhuo Y, Xu K, Cao T J, Pan X Q, Wang B G, Liang S J, Yang J J, Wang P, Miao F 2018 Nat. Electron. 1 130

    [21]

    Voigt C A, Ghidiu M, Natu V, Barsoum M W 2018 J. Phys. Chem. C 122 23172

    [22]

    Shahzad F, Alhabeb M, Hatter C B, Anasori B, Hong S M, Koo C M, Gogotsi Y 2016 Science 353 1137Google Scholar

    [23]

    Wu Y T, Nie P, Wu L Y, Dou H, Zhang X G 2018 Chem. Eng. J. 334 932

    [24]

    Jiang X T, Liu S X, Liang W Y, Luo S J, He Z L, Ge Y Q, Wang H D, Cao R, Zhang F, Wen Q, Li J Q, Bao Q L, Fan D Y, Zhang H 2018 Laser Photon. Rev. 12 1700229

    [25]

    Zhao X L, Liu S, Niu J B, Liao L, Liu Q, Xiao X H, Lv H B, Long S B, Banerjee W, Li W Q, Si S Y, Liu M 2017 Small 13 1603948Google Scholar

    [26]

    Zhao X L, Ma J, Xiao X H, Liu Q, Shao L, Chen D, Liu S, Niu J B, Zhang X M, Wang Y, Cao R R, Wang W, Di Z F, Lv H B, Long S B, Liu M 2018 Adv. Mater. 30 1705193

    [27]

    Scott T, Salvatore A, Woo P, Lee Y Y, Salvati E A, Della Valle A G 2018 J. Arthroplast. 33 1120Google Scholar

    [28]

    Tempia F, Hoxha E, Negro G, Alshammari M A, Alshammari T K, Panova-Elektronova N, Laezza F 2015 Front. Cell. Neurosci. 9 205

    [29]

    Liu S L, Friel D D 2008 J. Physiol.-London 586 4501

    [30]

    Yang J J, Miao F, Pickett M D, Ohlberg D A A, Stewart D R, Lau C N, Williams R S 2009 Nanotechnology 20 215201

    [31]

    Liu D Q, Cheng H F, Zhu X, Wang G, Wang N N 2013 ACS Appl. Mater. Interfaces 5 11258

    [32]

    Liu Q, Zhang X M, Luo Q, Zhao X L, Lv H B, Long S B, Liu M 2018 Sci. China: Phys. Mech. Astron. 61 088711

    [33]

    Suk J W, Kitt A, Magnuson C W, Hao Y, Ahmed S, An J, Swan A K, Boldberg B B, Ruoff R S 2011 ACS Nano 5 6916Google Scholar

  • 图 1  (a) Cu/MXene/SiO2/W忆阻器结构示意图; (b) MXene的SEM照片; (c) 器件电铸I-V 曲线; (d) 器件Set/Reset的I-V曲线

    Fig. 1.  (a) Device structures of the Cu/MXene/SiO2/W memristor; (b) SEM images of the MXene; (c) I-V curve of electroforming process; (d) I-V curve of Set/Reset process

    图 2  (a) 连续正向电压扫描下模拟特性I-V曲线; (b) 正向扫描电导与扫描次数的关系; (c) 连续负向电压扫描下模拟特性I-V曲线; (d) 负向扫描电导与扫描次数的关系

    Fig. 2.  (a) Analog I-V curves under consecutive positive sweep voltage; (b) relationship between conductivity and scanning number under consecutive positive sweep voltage; (c) analog I-V curves under consecutive negative sweep voltage; (d) relationship between conductivity and scanning number under consecutive negative sweep voltage.

    图 3  在连续正向和负向三角尖峰脉冲下, 器件电导的变化趋势

    Fig. 3.  Variation trend of conductance of the device with the continuous positive and negative voltage spike.

    图 4  (a) 两个连续脉冲刺激作用下的PPF特性曲线; (b) PPF 指数与脉冲时间间隔的关系

    Fig. 4.  (a) PPF characteristic curve under two continuous pulse stimuli; (b) relationship between the PPF index and pulse interval.

    图 5  Cu/MXene/SiO2/W忆阻器生物响应机理 (a)正偏压下Cu2+的扩散与迁移运动; (b)负偏压下Cu2+的扩散与迁移运动; (c)撤去偏压, 电导丝的自主破灭; (d)残余电导丝与新形成的电导丝

    Fig. 5.  Synapse-like mechanism of Cu/MXene/SiO2/W memristor: (a) Diffusion and migration of Cu2+ under positive voltage; (b) diffusion and migration of Cu2+ under negative voltage; (c) spontaneous rupture of conductive filament when the voltage is removed; (d) residual conductive filaments and newly formed conductive filaments.

    Baidu
  • [1]

    Chen Y H, Yu H Y, Gong J D, Ma M X, Han H, Wei H H, Xu W T 2019 Nanotechnology 30 012001Google Scholar

    [2]

    Mead C 1990 Proc. IEEE 78 1629

    [3]

    Zhao Y H, Jie J 2018 J. Nanosci. Nanotechnol. 18 8003Google Scholar

    [4]

    梁定康, 陈义豪, 徐威, 吉新村, 童祎, 吴国栋 2018 67 237302Google Scholar

    Liang D K, Chen Y H, Xu W, Ji X C, Tong Y, Wu G D 2018 Acta Phys. Sin. 67 237302Google Scholar

    [5]

    Dmitri B S, Gregory S S, Duncan R S, Williams R S 2008 Nature 453 80Google Scholar

    [6]

    Jeong H, Shi L P 2019 J. Phys. D: Appl. Phys. 52 023003

    [7]

    Waser R, Dittmann R, Staikov G, Kristof S 2009 Adv. Mater. 21 2632Google Scholar

    [8]

    余志强, 刘敏丽, 郎建勋, 钱楷, 张昌华 2018 67 157302Google Scholar

    Yu Z Q, Liu M L, Lang J X, Qian K, Zhang C H 2018 Acta Phys. Sin. 67 157302Google Scholar

    [9]

    Chang T, Jo S H, Lu W 2011 ACS Nano 5 7669Google Scholar

    [10]

    Kim M K, Lee J S 2018 ACS Nano 12 1680

    [11]

    Hirano T 2018 Cerebellum 17 756Google Scholar

    [12]

    Wang C H, He W, Tong Y, Zhao R 2016 Sci. Rep. 6 22970Google Scholar

    [13]

    Wang Z Q, Xu H Y, Li X H, Yu H, Liu Y C, Zhu X J 2012 Adv. Funct. Mater. 22 2759

    [14]

    Zhang X M, Liu S, Zhao X L, Wu F C, Wu Q T, Wang W, Cao R R, Fang Y L, Lv H B, Long S B, Liu Q, Liu M 2017 IEEE Electron Dev. Lett. 38 1208Google Scholar

    [15]

    Wang F, Ke S l, Qin C Z, Wang B, Long H, Wang K, Lu P X 2018 Opt. Laser Technol. 103 272Google Scholar

    [16]

    Sun D, Ye D L, Liu P, Tang Y G, Guo J, Wang L Z, Wang H Y 2018 Adv. Energy Mater. 8 1702383Google Scholar

    [17]

    Cai Z Y, Liu B L, Zou X L, Cheng H M 2018 Chem. Rev. 118 6091Google Scholar

    [18]

    吴全潭, 时拓, 赵晓龙, 张续猛, 伍法才, 曹荣荣, 龙世兵, 吕杭炳, 刘琦, 刘明 2017 66 217304Google Scholar

    Wu Q T, Shi T, Zhao X L, Zhang X M, Wu F C, Cao R R, Long S B, Lv H B, Liu Q, Liu M 2017 Acta Phys. Sin. 66 217304Google Scholar

    [19]

    Liu C Y, Zhang Y X, Yang C P 2017 Sensors Mater. 30 463Google Scholar

    [20]

    Wang M, Cai S H, Pan C, Wang C Y, Lian X J, Zhuo Y, Xu K, Cao T J, Pan X Q, Wang B G, Liang S J, Yang J J, Wang P, Miao F 2018 Nat. Electron. 1 130

    [21]

    Voigt C A, Ghidiu M, Natu V, Barsoum M W 2018 J. Phys. Chem. C 122 23172

    [22]

    Shahzad F, Alhabeb M, Hatter C B, Anasori B, Hong S M, Koo C M, Gogotsi Y 2016 Science 353 1137Google Scholar

    [23]

    Wu Y T, Nie P, Wu L Y, Dou H, Zhang X G 2018 Chem. Eng. J. 334 932

    [24]

    Jiang X T, Liu S X, Liang W Y, Luo S J, He Z L, Ge Y Q, Wang H D, Cao R, Zhang F, Wen Q, Li J Q, Bao Q L, Fan D Y, Zhang H 2018 Laser Photon. Rev. 12 1700229

    [25]

    Zhao X L, Liu S, Niu J B, Liao L, Liu Q, Xiao X H, Lv H B, Long S B, Banerjee W, Li W Q, Si S Y, Liu M 2017 Small 13 1603948Google Scholar

    [26]

    Zhao X L, Ma J, Xiao X H, Liu Q, Shao L, Chen D, Liu S, Niu J B, Zhang X M, Wang Y, Cao R R, Wang W, Di Z F, Lv H B, Long S B, Liu M 2018 Adv. Mater. 30 1705193

    [27]

    Scott T, Salvatore A, Woo P, Lee Y Y, Salvati E A, Della Valle A G 2018 J. Arthroplast. 33 1120Google Scholar

    [28]

    Tempia F, Hoxha E, Negro G, Alshammari M A, Alshammari T K, Panova-Elektronova N, Laezza F 2015 Front. Cell. Neurosci. 9 205

    [29]

    Liu S L, Friel D D 2008 J. Physiol.-London 586 4501

    [30]

    Yang J J, Miao F, Pickett M D, Ohlberg D A A, Stewart D R, Lau C N, Williams R S 2009 Nanotechnology 20 215201

    [31]

    Liu D Q, Cheng H F, Zhu X, Wang G, Wang N N 2013 ACS Appl. Mater. Interfaces 5 11258

    [32]

    Liu Q, Zhang X M, Luo Q, Zhao X L, Lv H B, Long S B, Liu M 2018 Sci. China: Phys. Mech. Astron. 61 088711

    [33]

    Suk J W, Kitt A, Magnuson C W, Hao Y, Ahmed S, An J, Swan A K, Boldberg B B, Ruoff R S 2011 ACS Nano 5 6916Google Scholar

  • [1] 吴宇阳, 李卫, 任青颖, 李金泽, 许巍, 许杰. 金属Sc修饰Ti2CO2吸附气体分子的第一性原理研究.  , 2024, 73(7): 073101. doi: 10.7498/aps.73.20231432
    [2] 王璇, 杜健嵘, 李志军, 马铭磷, 李春来. 串扰忆阻突触异质离散神经网络的共存放电与同步行为.  , 2024, 73(11): 110503. doi: 10.7498/aps.73.20231972
    [3] 肖忆瑶, 何佳豪, 陈南锟, 王超, 宋宁宁. 基于负载Fe3O4纳米微球的大尺寸单层二维Ti3C2Tx微波吸收性能.  , 2023, 72(21): 217501. doi: 10.7498/aps.72.20231200
    [4] 李瑞, 徐邦林, 周建芳, 姜恩华, 汪秉宏, 袁五届. 一种突触可塑性导致的觉醒-睡眠周期中突触强度变化和神经动力学转变.  , 2023, 72(24): 248706. doi: 10.7498/aps.72.20231037
    [5] 杜立杰, 陈靖雯, 王荣明. 基于C14H31O3P-Ti3C2/Au肖特基结的自驱动近红外探测器.  , 2023, 72(13): 138502. doi: 10.7498/aps.72.20230480
    [6] 韩丹, 刘志华, 刘琭琭, 韩晓美, 刘东明, 禚凯, 桑胜波. 新型二维材料Ti3C2Tx MXene制备及其气敏性能研究.  , 2022, 71(1): 010701. doi: 10.7498/aps.71.20211048
    [7] 胡炜, 廖建彬, 杜永乾. 一种适用于大规模忆阻网络的忆阻器单元解析建模策略.  , 2021, 70(17): 178505. doi: 10.7498/aps.70.20210116
    [8] 韩丹, 刘志华, 刘琭琭, 韩晓美, 刘东明, 禚凯, 桑胜波. 新型二维材料Ti3C2Tx MXene制备及其气敏性能研究.  , 2021, (): . doi: 10.7498/aps.70.20211048
    [9] 史晨阳, 闵光宗, 刘向阳. 蛋白质基忆阻器研究进展.  , 2020, 69(17): 178702. doi: 10.7498/aps.69.20200617
    [10] 郭科鑫, 于海洋, 韩弘, 卫欢欢, 龚江东, 刘璐, 黄茜, 高清运, 徐文涛. 基于水热法制备三氧化钼纳米片的人工突触器件.  , 2020, 69(23): 238501. doi: 10.7498/aps.69.20200928
    [11] 邵楠, 张盛兵, 邵舒渊. 具有感觉记忆的忆阻器模型.  , 2019, 68(1): 018501. doi: 10.7498/aps.68.20181577
    [12] 邵楠, 张盛兵, 邵舒渊. 具有经验学习特性的忆阻器模型分析.  , 2019, 68(19): 198502. doi: 10.7498/aps.68.20190808
    [13] 刘益春, 林亚, 王中强, 徐海阳. 氧化物基忆阻型神经突触器件.  , 2019, 68(16): 168504. doi: 10.7498/aps.68.20191262
    [14] 邵楠, 张盛兵, 邵舒渊. 具有突触特性忆阻模型的改进与模型经验学习特性机理.  , 2016, 65(12): 128503. doi: 10.7498/aps.65.128503
    [15] 袁泽世, 李洪涛, 朱晓华. 基于忆阻器的数模混合随机数发生器.  , 2015, 64(24): 240503. doi: 10.7498/aps.64.240503
    [16] 孟凡一, 段书凯, 王丽丹, 胡小方, 董哲康. 一种改进的WOx忆阻器模型及其突触特性分析.  , 2015, 64(14): 148501. doi: 10.7498/aps.64.148501
    [17] 刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳. 忆阻器及其阻变机理研究进展.  , 2014, 63(18): 187301. doi: 10.7498/aps.63.187301
    [18] 夏小飞, 王俊松. 基于分岔理论的突触可塑性对神经群动力学特性调控规律研究.  , 2014, 63(14): 140503. doi: 10.7498/aps.63.140503
    [19] 贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫. 界面效应调制忆阻器研究进展.  , 2012, 61(21): 217306. doi: 10.7498/aps.61.217306
    [20] 宋庆功, 姜恩永. 快离子导体AgxTiS2中Ag+离子-空位的二维基态结构与能量性质研究.  , 2008, 57(3): 1823-1828. doi: 10.7498/aps.57.1823
计量
  • 文章访问数:  13151
  • PDF下载量:  310
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-29
  • 修回日期:  2019-02-04
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-05

/

返回文章
返回
Baidu
map