搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类自突触作用下神经元电路的设计和模拟

任国栋 武刚 马军 陈旸

引用本文:
Citation:

一类自突触作用下神经元电路的设计和模拟

任国栋, 武刚, 马军, 陈旸

Simulation of electric activity of neuron by setting up a reliable neuronal circuit driven by electric autapse

Ren Guo-Dong, Wu Gang, Ma Jun, Chen Yang
PDF
导出引用
  • 神经元在自突触作用下可以诱发各类放电活动的迁移, 神经元动作电位对电自突触的响应比较敏感. 通常用包含延迟因子和增益的反馈回路电流来刻画自突触对神经元动作电位的影响. 基于Pspice软件, 设计了包含自突触效应的神经元电路, 用以延迟反馈电路来模拟电自突触对电位的调制作用. 研究结果发现: 1)在外界刺激和电自突触回路协同作用下, 神经元电路输出信号可以呈现静息态, 尖峰放电, 簇放电状态. 2)在时变增大的外界刺激下和自突触回路驱动下, 神经元电路的输出电位序列在多种电活动模式之间(静息, 尖峰放电, 簇放电)交替出现, 其机理在于自突触回路具有记忆特性, 神经元对于不同的外界刺激可以做出不同模式的响应. 3)在给定比较大外界刺激下, 改变反馈回路的增益, 发现电路输出的序列也可以呈现不同模式交替, 即神经元对于相同的刺激可以通过自我调节自突触增益来产生不同模式的响应, 其机理可能在于回路的有效反馈, 这有助于理解突触的可塑性.
    Transition of electric activity of neuron can be induced by electric autapse, and its action potential is much sensitive to the stimuli from the electric autapse. Generally, the effect of electric autapse on membrane potential of neuron is often described by using time-delayed feedback in closed loop. Based on Pspice software, a class of electric circuit is designed with the electric autapse being taken into consideration, and a time-delayed circuit is used to detect the adjusting action of electric autapse on the action potential. Results are found as follows: (1) The neuronal electric circuit can produce quiescent state, spiking, bursting state under an external force besides the electric autapse circuit. (2) The transition of electric activity occurs between four different atates (quiescent, spiking, bursting state) by imposing a time-varying forcing current; its potential mechanism is that the electric circuit is associated with the memory, and the neuron can give different types of response to the same external forcing current. (3)When a strong external force is imposed, the outputs can show different type of electric activities due to an electric autapse, that is to say, self-adaption of gain in the autapse is useful for the neuron and thus different type of electric activities occurs, whose potential mechanism may be due to the effective feedback in the loop; so it is helpful to understand the synaptic plasticity.
    • 基金项目: 国家自然科学基金(批准号: 11265008, 11372122)资助的课题.
    • Funds: Project supported by the National Nautral Science of Foundation of China (Grant Nos. 11265008, 11372122).
    [1]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 117 500

    [2]

    Rinzel J, Ermentrout G B 1989 Analysis of neuronal excitability and oscillations, C Koch and I. Segev (Eds.), Methods in neuronal Modeling: from synapses to Networks (MIT press, London)

    [3]

    Cronin J 1987 Mathematical Aspects of Hodgkin-Huxley Neural Theory (Cambridage University Press, Cambridge, UK)

    [4]

    Morris C, Lecar H 1981 Biophys. J. 35 193

    [5]

    Smith G D 2002 Comput. Cell Biol. 20 285

    [6]

    Sanjuán M A F, Ibarz B, Casado J M 2011 Phys. Rep. 501 1

    [7]

    Hindmarsh J L, Rose R M 1982 Nature 296 162

    [8]

    Hindmarsh J L, Rose R M 1984 Proc. R. Soc. Lond. B 221 87

    [9]

    Gu H G 2013 Chaos 23 023126

    [10]

    Kunichika T, Hiroyuki K, Tetsuya Y, Aiharad K, Kawakamif H 2006 Neurocomput. 69 293

    [11]

    Shilnikov A 2012 Nonlinear Dyn. 68 305

    [12]

    Yang Z Q, Lu Q S 2008 Sci. China Ser. Phys. Mech. Astron. 51 687

    [13]

    Crotti P 2011 Analysis of coherence resonance near bifurcation points in the stochastic Class II Morris-Lecar model. Master thesis (University of Fribourg Switzerland)

    [14]

    Selverston A I, Rabinovich M I, Abarbanel H D I Elson R, Szcs A, Pinto R D, Huerta R, Varona P 2000 J. Physiol. (Paris) 94 357

    [15]

    Wang W, Chen G, Wang Z D 1997 Phys. Rev. E 56 3728

    [16]

    Wei D Q, Luo X S 2007 Commun. Theor. Phys. 48 759

    [17]

    Perc M 2007 Phys. Rev. E 76 066203

    [18]

    Perc M, Gosak M 2008 New J. Phys. 10 053008

    [19]

    Gosak M, Marhl M, Perc M 2009 Physica D 238 506

    [20]

    Kwon O, Jo H H, Moon H T 2005 Phys. Rev. E 72 066121

    [21]

    Yuan W J, Luo X S, Yang R H 2007 Chin. Phys. Lett. 24 835

    [22]

    Perc M 2009 Eur. Phys. J. B 69 147

    [23]

    Chik D T W, Wang Y Q, Wang Z D 2001 Phys. Rev. E 64 021913

    [24]

    Yu Y G, Wang W, Wang J F, Liu F 2001 Phys. Rev. E 63 021907

    [25]

    Zhang J Q, Wang C D, Wang M S, Huang S F 2011 Nerocomput. 74 2961

    [26]

    Gu H G, Jia B, Li Y Y, Chen G R 2013 Physica A 392 1361

    [27]

    Wang Q Y, Zheng Y H, Ma J 2013 Chaos Solitons & Fractals 56 19

    [28]

    Ma J, Wu Y, Wu N J, Guo H Y 2013 Sci. China Phys. .Mech. Astro. 56 952

    [29]

    H B L, Ma J, Tang J 2013 Plos One 8 69251

    [30]

    Li Y Y, Jia B, Gu H G 2012 Acta Phys. Sin. 61 070504 (in Chinese) [李玉叶, 贾冰, 古华光 2012 61 070504]

    [31]

    Tang Z, Li Y Y, Xi L, Jia B, Gu H G 2012 Commun. Theor. Phys. 57 61

    [32]

    Liu S B, Wu Y, Li J J, Xie Y, Tan N 2013 Nonlinear. Dyn. 73 1055

    [33]

    Wu Y, Li J J, Liu S B, Pan J Z, Du M M, Lin P 2013 Cogn. Neurodyn. 7 431

    [34]

    Gu H G 2013 Plos One 8 81759

    [35]

    Gu H G, Pan B B, Xu J 2014 EPL 106 50003

    [36]

    Gu H G, Jia B, Chen G R 2013 Phys. Lett. A 377 718

    [37]

    Jia B, Gu H G 2012 Acta Phys. Sin. 61 240505 (in Chinese) [贾冰, 古华光 2012 61 240505]

    [38]

    Knudsen Daniel P 2006 Creating functional neural control circuits incorporating both discrete-time, map based neuron and Hindmarsh-Rose electronic neurons (Honors Junior/Senior Projects) Paper 11

    [39]

    Wu X Y, Ma J, Yuan L H, Liu Y 2014 Nonlinear Dyn. 75 113

    [40]

    Wagemakers A, Sanjuán A F, Casado J M 2006 Int. J. Bifurcat. Chaos 16 3617

    [41]

    Dahasert N, Ozturk I, Kilic R 2012 Nonlinear Dyn. 70 2343

    [42]

    Rabinovich M, Huerta R, Bazhenov M, Kozlov A K, Abarbanel H D I 1998 Phys. Rev. E 58 6418

    [43]

    Mayer J, Schuster H G, Claussen J C 2006 Phys. Rev E. 73 031908

    [44]

    Li F, Liu Q R, Guo H Y et al. 2012 Nonlinear Dyn. 69 2169

    [45]

    Nowotny T, Rabinovich M I 2007 Phys. Rev. Lett. 98 128106

    [46]

    Sitt J D, Aliaga J 2007 Phys. Rev. E 76 051919

    [47]

    Kwon O, Kim K, Park S, Moon H T 2011 Phys. Rev. E 84 021911

    [48]

    Ayers J, Rulkov N, Knudsen D, Kim Y B, Volkovskii A, Selverston A 2010 Appl. Bionics. Biom. 7 57

    [49]

    Lee Y J, Lee J, Kim K K, Kim Y B, Ayers J 2007 Neurocomput . 71 284

    [50]

    Bekkers J M 2003 Curr. Biol. 13 R433

    [51]

    Bekkers J M 2002 Curr. Biol. 12 R648

    [52]

    Bekkers J M 2009 Curr. Biol. 19 R296

    [53]

    Herrmann C S, Klaus A 2004 Int. J. Bifurcat. Chaos 14 623

    [54]

    Wang H T, Ma J, Chen Y L, Chen Y 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 3242

    [55]

    Qin H X, Ma J, Jin W Y, Wang C N 2014 Sci. China Tech. Sci. 57 936

    [56]

    Chen J, Li C G 2011 Acta Phys. Sin. 60 050503 (in Chinese) [陈军, 李春光 2011 60 050503]

    [57]

    L Y Y, Schmid G, Hänggi P, Schimansky-Geier L 2010 Phys. Rev. E 82 061907

    [58]

    Ma J, Ying H P, Liu Y, Li S R 2009 Chin. Phys. B 18 98

  • [1]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 117 500

    [2]

    Rinzel J, Ermentrout G B 1989 Analysis of neuronal excitability and oscillations, C Koch and I. Segev (Eds.), Methods in neuronal Modeling: from synapses to Networks (MIT press, London)

    [3]

    Cronin J 1987 Mathematical Aspects of Hodgkin-Huxley Neural Theory (Cambridage University Press, Cambridge, UK)

    [4]

    Morris C, Lecar H 1981 Biophys. J. 35 193

    [5]

    Smith G D 2002 Comput. Cell Biol. 20 285

    [6]

    Sanjuán M A F, Ibarz B, Casado J M 2011 Phys. Rep. 501 1

    [7]

    Hindmarsh J L, Rose R M 1982 Nature 296 162

    [8]

    Hindmarsh J L, Rose R M 1984 Proc. R. Soc. Lond. B 221 87

    [9]

    Gu H G 2013 Chaos 23 023126

    [10]

    Kunichika T, Hiroyuki K, Tetsuya Y, Aiharad K, Kawakamif H 2006 Neurocomput. 69 293

    [11]

    Shilnikov A 2012 Nonlinear Dyn. 68 305

    [12]

    Yang Z Q, Lu Q S 2008 Sci. China Ser. Phys. Mech. Astron. 51 687

    [13]

    Crotti P 2011 Analysis of coherence resonance near bifurcation points in the stochastic Class II Morris-Lecar model. Master thesis (University of Fribourg Switzerland)

    [14]

    Selverston A I, Rabinovich M I, Abarbanel H D I Elson R, Szcs A, Pinto R D, Huerta R, Varona P 2000 J. Physiol. (Paris) 94 357

    [15]

    Wang W, Chen G, Wang Z D 1997 Phys. Rev. E 56 3728

    [16]

    Wei D Q, Luo X S 2007 Commun. Theor. Phys. 48 759

    [17]

    Perc M 2007 Phys. Rev. E 76 066203

    [18]

    Perc M, Gosak M 2008 New J. Phys. 10 053008

    [19]

    Gosak M, Marhl M, Perc M 2009 Physica D 238 506

    [20]

    Kwon O, Jo H H, Moon H T 2005 Phys. Rev. E 72 066121

    [21]

    Yuan W J, Luo X S, Yang R H 2007 Chin. Phys. Lett. 24 835

    [22]

    Perc M 2009 Eur. Phys. J. B 69 147

    [23]

    Chik D T W, Wang Y Q, Wang Z D 2001 Phys. Rev. E 64 021913

    [24]

    Yu Y G, Wang W, Wang J F, Liu F 2001 Phys. Rev. E 63 021907

    [25]

    Zhang J Q, Wang C D, Wang M S, Huang S F 2011 Nerocomput. 74 2961

    [26]

    Gu H G, Jia B, Li Y Y, Chen G R 2013 Physica A 392 1361

    [27]

    Wang Q Y, Zheng Y H, Ma J 2013 Chaos Solitons & Fractals 56 19

    [28]

    Ma J, Wu Y, Wu N J, Guo H Y 2013 Sci. China Phys. .Mech. Astro. 56 952

    [29]

    H B L, Ma J, Tang J 2013 Plos One 8 69251

    [30]

    Li Y Y, Jia B, Gu H G 2012 Acta Phys. Sin. 61 070504 (in Chinese) [李玉叶, 贾冰, 古华光 2012 61 070504]

    [31]

    Tang Z, Li Y Y, Xi L, Jia B, Gu H G 2012 Commun. Theor. Phys. 57 61

    [32]

    Liu S B, Wu Y, Li J J, Xie Y, Tan N 2013 Nonlinear. Dyn. 73 1055

    [33]

    Wu Y, Li J J, Liu S B, Pan J Z, Du M M, Lin P 2013 Cogn. Neurodyn. 7 431

    [34]

    Gu H G 2013 Plos One 8 81759

    [35]

    Gu H G, Pan B B, Xu J 2014 EPL 106 50003

    [36]

    Gu H G, Jia B, Chen G R 2013 Phys. Lett. A 377 718

    [37]

    Jia B, Gu H G 2012 Acta Phys. Sin. 61 240505 (in Chinese) [贾冰, 古华光 2012 61 240505]

    [38]

    Knudsen Daniel P 2006 Creating functional neural control circuits incorporating both discrete-time, map based neuron and Hindmarsh-Rose electronic neurons (Honors Junior/Senior Projects) Paper 11

    [39]

    Wu X Y, Ma J, Yuan L H, Liu Y 2014 Nonlinear Dyn. 75 113

    [40]

    Wagemakers A, Sanjuán A F, Casado J M 2006 Int. J. Bifurcat. Chaos 16 3617

    [41]

    Dahasert N, Ozturk I, Kilic R 2012 Nonlinear Dyn. 70 2343

    [42]

    Rabinovich M, Huerta R, Bazhenov M, Kozlov A K, Abarbanel H D I 1998 Phys. Rev. E 58 6418

    [43]

    Mayer J, Schuster H G, Claussen J C 2006 Phys. Rev E. 73 031908

    [44]

    Li F, Liu Q R, Guo H Y et al. 2012 Nonlinear Dyn. 69 2169

    [45]

    Nowotny T, Rabinovich M I 2007 Phys. Rev. Lett. 98 128106

    [46]

    Sitt J D, Aliaga J 2007 Phys. Rev. E 76 051919

    [47]

    Kwon O, Kim K, Park S, Moon H T 2011 Phys. Rev. E 84 021911

    [48]

    Ayers J, Rulkov N, Knudsen D, Kim Y B, Volkovskii A, Selverston A 2010 Appl. Bionics. Biom. 7 57

    [49]

    Lee Y J, Lee J, Kim K K, Kim Y B, Ayers J 2007 Neurocomput . 71 284

    [50]

    Bekkers J M 2003 Curr. Biol. 13 R433

    [51]

    Bekkers J M 2002 Curr. Biol. 12 R648

    [52]

    Bekkers J M 2009 Curr. Biol. 19 R296

    [53]

    Herrmann C S, Klaus A 2004 Int. J. Bifurcat. Chaos 14 623

    [54]

    Wang H T, Ma J, Chen Y L, Chen Y 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 3242

    [55]

    Qin H X, Ma J, Jin W Y, Wang C N 2014 Sci. China Tech. Sci. 57 936

    [56]

    Chen J, Li C G 2011 Acta Phys. Sin. 60 050503 (in Chinese) [陈军, 李春光 2011 60 050503]

    [57]

    L Y Y, Schmid G, Hänggi P, Schimansky-Geier L 2010 Phys. Rev. E 82 061907

    [58]

    Ma J, Ying H P, Liu Y, Li S R 2009 Chin. Phys. B 18 98

  • [1] 贾美美, 曹佳伟, 白明明. 新型忆阻耦合异质神经元的放电模式和预定义时间混沌同步.  , 2024, 73(17): 170502. doi: 10.7498/aps.73.20240872
    [2] 郭慧朦, 梁燕, 董玉姣, 王光义. 蔡氏结型忆阻器的简化及其神经元电路的硬件实现.  , 2023, 72(7): 070501. doi: 10.7498/aps.72.20222013
    [3] 徐子恒, 何玉珠, 康艳梅. 基于随机放电神经元网络的彩色图像感知研究.  , 2022, 71(7): 070501. doi: 10.7498/aps.71.20211982
    [4] 梁艳美, 陆博, 古华光. 利用双慢变量的快慢变量分离分析新脑皮层神经元Wilson模型的复杂电活动.  , 2022, 71(23): 230502. doi: 10.7498/aps.71.20221416
    [5] 黎丽, 赵志国, 古华光. 兴奋性和抑制性自反馈压制靠近Hopf分岔的神经电活动比较.  , 2022, 71(5): 050504. doi: 10.7498/aps.71.20211829
    [6] 丁学利, 古华光, 贾冰, 李玉叶. 抑制性自突触诱发耦合Morris-Lecar神经元电活动的超前同步.  , 2021, 70(21): 218701. doi: 10.7498/aps.70.20210912
    [7] 赵雅琪, 刘谋天, 赵勇, 段利霞. 耦合前包钦格复合体神经元中复杂混合簇放电的动力学.  , 2021, 70(12): 120501. doi: 10.7498/aps.70.20210093
    [8] 姜伊澜, 陆博, 张万芹, 古华光. 快自突触反馈诱发混合簇放电的反常变化及分岔机制.  , 2021, 70(17): 170501. doi: 10.7498/aps.70.20210208
    [9] 谢盈, 朱志刚, 张晓锋, 任国栋. 光电流驱动下非线性神经元电路的放电模式控制.  , 2021, 70(21): 210502. doi: 10.7498/aps.70.20210676
    [10] 华洪涛, 陆博, 古华光. 兴奋性自突触引起神经簇放电频率降低或增加的非线性机制.  , 2020, 69(9): 090502. doi: 10.7498/aps.69.20191709
    [11] 薛晓丹, 王美丽, 邵雨竹, 王俊松. 基于抑制性突触可塑性的神经元放电率自稳态机制.  , 2019, 68(7): 078701. doi: 10.7498/aps.68.20182234
    [12] 谢勇, 程建慧. 计算相位响应曲线的方波扰动直接算法.  , 2017, 66(9): 090501. doi: 10.7498/aps.66.090501
    [13] 丁学利, 李玉叶. 具有时滞的抑制性自突触诱发的神经放电的加周期分岔.  , 2016, 65(21): 210502. doi: 10.7498/aps.65.210502
    [14] 李佳佳, 吴莹, 独盟盟, 刘伟明. 电磁辐射诱发神经元放电节律转迁的动力学行为研究.  , 2015, 64(3): 030503. doi: 10.7498/aps.64.030503
    [15] 王付霞, 谢勇. "Hopf/homoclinic"簇放电和"SubHopf/homoclinic"簇放电之间的同步.  , 2013, 62(2): 020509. doi: 10.7498/aps.62.020509
    [16] 金淇涛, 王江, 伊国胜, 李会艳, 邓斌, 魏熙乐, 车艳秋. 经颅磁刺激感应外电场作用下最小神经元模型放电起始动态机理分析.  , 2012, 61(11): 118701. doi: 10.7498/aps.61.118701
    [17] 金淇涛, 王江, 魏熙乐, 邓斌, 车艳秋. 最小神经元模型放电起始动态控制与分析.  , 2011, 60(9): 098701. doi: 10.7498/aps.60.098701
    [18] 陈军, 李春光. 具有自适应反馈突触的神经元模型中的混沌:电路设计.  , 2011, 60(5): 050503. doi: 10.7498/aps.60.050503
    [19] 杨卓琴, 管亭亭, 甘春标, 张矫瑛. 双参数分岔平面内胰腺细胞的簇放电分析.  , 2011, 60(11): 110202. doi: 10.7498/aps.60.110202
    [20] 王宝燕, 徐伟, 邢真慈. 外界电场激励下的耦合FitzHugh-Nagumo神经元系统的放电节律研究.  , 2009, 58(9): 6590-6595. doi: 10.7498/aps.58.6590
计量
  • 文章访问数:  8482
  • PDF下载量:  1086
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-20
  • 修回日期:  2014-09-30
  • 刊出日期:  2015-03-05

/

返回文章
返回
Baidu
map