Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation of electric activity of neuron by setting up a reliable neuronal circuit driven by electric autapse

Ren Guo-Dong Wu Gang Ma Jun Chen Yang

Citation:

Simulation of electric activity of neuron by setting up a reliable neuronal circuit driven by electric autapse

Ren Guo-Dong, Wu Gang, Ma Jun, Chen Yang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Transition of electric activity of neuron can be induced by electric autapse, and its action potential is much sensitive to the stimuli from the electric autapse. Generally, the effect of electric autapse on membrane potential of neuron is often described by using time-delayed feedback in closed loop. Based on Pspice software, a class of electric circuit is designed with the electric autapse being taken into consideration, and a time-delayed circuit is used to detect the adjusting action of electric autapse on the action potential. Results are found as follows: (1) The neuronal electric circuit can produce quiescent state, spiking, bursting state under an external force besides the electric autapse circuit. (2) The transition of electric activity occurs between four different atates (quiescent, spiking, bursting state) by imposing a time-varying forcing current; its potential mechanism is that the electric circuit is associated with the memory, and the neuron can give different types of response to the same external forcing current. (3)When a strong external force is imposed, the outputs can show different type of electric activities due to an electric autapse, that is to say, self-adaption of gain in the autapse is useful for the neuron and thus different type of electric activities occurs, whose potential mechanism may be due to the effective feedback in the loop; so it is helpful to understand the synaptic plasticity.
    • Funds: Project supported by the National Nautral Science of Foundation of China (Grant Nos. 11265008, 11372122).
    [1]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 117 500

    [2]

    Rinzel J, Ermentrout G B 1989 Analysis of neuronal excitability and oscillations, C Koch and I. Segev (Eds.), Methods in neuronal Modeling: from synapses to Networks (MIT press, London)

    [3]

    Cronin J 1987 Mathematical Aspects of Hodgkin-Huxley Neural Theory (Cambridage University Press, Cambridge, UK)

    [4]

    Morris C, Lecar H 1981 Biophys. J. 35 193

    [5]

    Smith G D 2002 Comput. Cell Biol. 20 285

    [6]

    Sanjuán M A F, Ibarz B, Casado J M 2011 Phys. Rep. 501 1

    [7]

    Hindmarsh J L, Rose R M 1982 Nature 296 162

    [8]

    Hindmarsh J L, Rose R M 1984 Proc. R. Soc. Lond. B 221 87

    [9]

    Gu H G 2013 Chaos 23 023126

    [10]

    Kunichika T, Hiroyuki K, Tetsuya Y, Aiharad K, Kawakamif H 2006 Neurocomput. 69 293

    [11]

    Shilnikov A 2012 Nonlinear Dyn. 68 305

    [12]

    Yang Z Q, Lu Q S 2008 Sci. China Ser. Phys. Mech. Astron. 51 687

    [13]

    Crotti P 2011 Analysis of coherence resonance near bifurcation points in the stochastic Class II Morris-Lecar model. Master thesis (University of Fribourg Switzerland)

    [14]

    Selverston A I, Rabinovich M I, Abarbanel H D I Elson R, Szcs A, Pinto R D, Huerta R, Varona P 2000 J. Physiol. (Paris) 94 357

    [15]

    Wang W, Chen G, Wang Z D 1997 Phys. Rev. E 56 3728

    [16]

    Wei D Q, Luo X S 2007 Commun. Theor. Phys. 48 759

    [17]

    Perc M 2007 Phys. Rev. E 76 066203

    [18]

    Perc M, Gosak M 2008 New J. Phys. 10 053008

    [19]

    Gosak M, Marhl M, Perc M 2009 Physica D 238 506

    [20]

    Kwon O, Jo H H, Moon H T 2005 Phys. Rev. E 72 066121

    [21]

    Yuan W J, Luo X S, Yang R H 2007 Chin. Phys. Lett. 24 835

    [22]

    Perc M 2009 Eur. Phys. J. B 69 147

    [23]

    Chik D T W, Wang Y Q, Wang Z D 2001 Phys. Rev. E 64 021913

    [24]

    Yu Y G, Wang W, Wang J F, Liu F 2001 Phys. Rev. E 63 021907

    [25]

    Zhang J Q, Wang C D, Wang M S, Huang S F 2011 Nerocomput. 74 2961

    [26]

    Gu H G, Jia B, Li Y Y, Chen G R 2013 Physica A 392 1361

    [27]

    Wang Q Y, Zheng Y H, Ma J 2013 Chaos Solitons & Fractals 56 19

    [28]

    Ma J, Wu Y, Wu N J, Guo H Y 2013 Sci. China Phys. .Mech. Astro. 56 952

    [29]

    H B L, Ma J, Tang J 2013 Plos One 8 69251

    [30]

    Li Y Y, Jia B, Gu H G 2012 Acta Phys. Sin. 61 070504 (in Chinese) [李玉叶, 贾冰, 古华光 2012 61 070504]

    [31]

    Tang Z, Li Y Y, Xi L, Jia B, Gu H G 2012 Commun. Theor. Phys. 57 61

    [32]

    Liu S B, Wu Y, Li J J, Xie Y, Tan N 2013 Nonlinear. Dyn. 73 1055

    [33]

    Wu Y, Li J J, Liu S B, Pan J Z, Du M M, Lin P 2013 Cogn. Neurodyn. 7 431

    [34]

    Gu H G 2013 Plos One 8 81759

    [35]

    Gu H G, Pan B B, Xu J 2014 EPL 106 50003

    [36]

    Gu H G, Jia B, Chen G R 2013 Phys. Lett. A 377 718

    [37]

    Jia B, Gu H G 2012 Acta Phys. Sin. 61 240505 (in Chinese) [贾冰, 古华光 2012 61 240505]

    [38]

    Knudsen Daniel P 2006 Creating functional neural control circuits incorporating both discrete-time, map based neuron and Hindmarsh-Rose electronic neurons (Honors Junior/Senior Projects) Paper 11

    [39]

    Wu X Y, Ma J, Yuan L H, Liu Y 2014 Nonlinear Dyn. 75 113

    [40]

    Wagemakers A, Sanjuán A F, Casado J M 2006 Int. J. Bifurcat. Chaos 16 3617

    [41]

    Dahasert N, Ozturk I, Kilic R 2012 Nonlinear Dyn. 70 2343

    [42]

    Rabinovich M, Huerta R, Bazhenov M, Kozlov A K, Abarbanel H D I 1998 Phys. Rev. E 58 6418

    [43]

    Mayer J, Schuster H G, Claussen J C 2006 Phys. Rev E. 73 031908

    [44]

    Li F, Liu Q R, Guo H Y et al. 2012 Nonlinear Dyn. 69 2169

    [45]

    Nowotny T, Rabinovich M I 2007 Phys. Rev. Lett. 98 128106

    [46]

    Sitt J D, Aliaga J 2007 Phys. Rev. E 76 051919

    [47]

    Kwon O, Kim K, Park S, Moon H T 2011 Phys. Rev. E 84 021911

    [48]

    Ayers J, Rulkov N, Knudsen D, Kim Y B, Volkovskii A, Selverston A 2010 Appl. Bionics. Biom. 7 57

    [49]

    Lee Y J, Lee J, Kim K K, Kim Y B, Ayers J 2007 Neurocomput . 71 284

    [50]

    Bekkers J M 2003 Curr. Biol. 13 R433

    [51]

    Bekkers J M 2002 Curr. Biol. 12 R648

    [52]

    Bekkers J M 2009 Curr. Biol. 19 R296

    [53]

    Herrmann C S, Klaus A 2004 Int. J. Bifurcat. Chaos 14 623

    [54]

    Wang H T, Ma J, Chen Y L, Chen Y 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 3242

    [55]

    Qin H X, Ma J, Jin W Y, Wang C N 2014 Sci. China Tech. Sci. 57 936

    [56]

    Chen J, Li C G 2011 Acta Phys. Sin. 60 050503 (in Chinese) [陈军, 李春光 2011 60 050503]

    [57]

    L Y Y, Schmid G, Hänggi P, Schimansky-Geier L 2010 Phys. Rev. E 82 061907

    [58]

    Ma J, Ying H P, Liu Y, Li S R 2009 Chin. Phys. B 18 98

  • [1]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 117 500

    [2]

    Rinzel J, Ermentrout G B 1989 Analysis of neuronal excitability and oscillations, C Koch and I. Segev (Eds.), Methods in neuronal Modeling: from synapses to Networks (MIT press, London)

    [3]

    Cronin J 1987 Mathematical Aspects of Hodgkin-Huxley Neural Theory (Cambridage University Press, Cambridge, UK)

    [4]

    Morris C, Lecar H 1981 Biophys. J. 35 193

    [5]

    Smith G D 2002 Comput. Cell Biol. 20 285

    [6]

    Sanjuán M A F, Ibarz B, Casado J M 2011 Phys. Rep. 501 1

    [7]

    Hindmarsh J L, Rose R M 1982 Nature 296 162

    [8]

    Hindmarsh J L, Rose R M 1984 Proc. R. Soc. Lond. B 221 87

    [9]

    Gu H G 2013 Chaos 23 023126

    [10]

    Kunichika T, Hiroyuki K, Tetsuya Y, Aiharad K, Kawakamif H 2006 Neurocomput. 69 293

    [11]

    Shilnikov A 2012 Nonlinear Dyn. 68 305

    [12]

    Yang Z Q, Lu Q S 2008 Sci. China Ser. Phys. Mech. Astron. 51 687

    [13]

    Crotti P 2011 Analysis of coherence resonance near bifurcation points in the stochastic Class II Morris-Lecar model. Master thesis (University of Fribourg Switzerland)

    [14]

    Selverston A I, Rabinovich M I, Abarbanel H D I Elson R, Szcs A, Pinto R D, Huerta R, Varona P 2000 J. Physiol. (Paris) 94 357

    [15]

    Wang W, Chen G, Wang Z D 1997 Phys. Rev. E 56 3728

    [16]

    Wei D Q, Luo X S 2007 Commun. Theor. Phys. 48 759

    [17]

    Perc M 2007 Phys. Rev. E 76 066203

    [18]

    Perc M, Gosak M 2008 New J. Phys. 10 053008

    [19]

    Gosak M, Marhl M, Perc M 2009 Physica D 238 506

    [20]

    Kwon O, Jo H H, Moon H T 2005 Phys. Rev. E 72 066121

    [21]

    Yuan W J, Luo X S, Yang R H 2007 Chin. Phys. Lett. 24 835

    [22]

    Perc M 2009 Eur. Phys. J. B 69 147

    [23]

    Chik D T W, Wang Y Q, Wang Z D 2001 Phys. Rev. E 64 021913

    [24]

    Yu Y G, Wang W, Wang J F, Liu F 2001 Phys. Rev. E 63 021907

    [25]

    Zhang J Q, Wang C D, Wang M S, Huang S F 2011 Nerocomput. 74 2961

    [26]

    Gu H G, Jia B, Li Y Y, Chen G R 2013 Physica A 392 1361

    [27]

    Wang Q Y, Zheng Y H, Ma J 2013 Chaos Solitons & Fractals 56 19

    [28]

    Ma J, Wu Y, Wu N J, Guo H Y 2013 Sci. China Phys. .Mech. Astro. 56 952

    [29]

    H B L, Ma J, Tang J 2013 Plos One 8 69251

    [30]

    Li Y Y, Jia B, Gu H G 2012 Acta Phys. Sin. 61 070504 (in Chinese) [李玉叶, 贾冰, 古华光 2012 61 070504]

    [31]

    Tang Z, Li Y Y, Xi L, Jia B, Gu H G 2012 Commun. Theor. Phys. 57 61

    [32]

    Liu S B, Wu Y, Li J J, Xie Y, Tan N 2013 Nonlinear. Dyn. 73 1055

    [33]

    Wu Y, Li J J, Liu S B, Pan J Z, Du M M, Lin P 2013 Cogn. Neurodyn. 7 431

    [34]

    Gu H G 2013 Plos One 8 81759

    [35]

    Gu H G, Pan B B, Xu J 2014 EPL 106 50003

    [36]

    Gu H G, Jia B, Chen G R 2013 Phys. Lett. A 377 718

    [37]

    Jia B, Gu H G 2012 Acta Phys. Sin. 61 240505 (in Chinese) [贾冰, 古华光 2012 61 240505]

    [38]

    Knudsen Daniel P 2006 Creating functional neural control circuits incorporating both discrete-time, map based neuron and Hindmarsh-Rose electronic neurons (Honors Junior/Senior Projects) Paper 11

    [39]

    Wu X Y, Ma J, Yuan L H, Liu Y 2014 Nonlinear Dyn. 75 113

    [40]

    Wagemakers A, Sanjuán A F, Casado J M 2006 Int. J. Bifurcat. Chaos 16 3617

    [41]

    Dahasert N, Ozturk I, Kilic R 2012 Nonlinear Dyn. 70 2343

    [42]

    Rabinovich M, Huerta R, Bazhenov M, Kozlov A K, Abarbanel H D I 1998 Phys. Rev. E 58 6418

    [43]

    Mayer J, Schuster H G, Claussen J C 2006 Phys. Rev E. 73 031908

    [44]

    Li F, Liu Q R, Guo H Y et al. 2012 Nonlinear Dyn. 69 2169

    [45]

    Nowotny T, Rabinovich M I 2007 Phys. Rev. Lett. 98 128106

    [46]

    Sitt J D, Aliaga J 2007 Phys. Rev. E 76 051919

    [47]

    Kwon O, Kim K, Park S, Moon H T 2011 Phys. Rev. E 84 021911

    [48]

    Ayers J, Rulkov N, Knudsen D, Kim Y B, Volkovskii A, Selverston A 2010 Appl. Bionics. Biom. 7 57

    [49]

    Lee Y J, Lee J, Kim K K, Kim Y B, Ayers J 2007 Neurocomput . 71 284

    [50]

    Bekkers J M 2003 Curr. Biol. 13 R433

    [51]

    Bekkers J M 2002 Curr. Biol. 12 R648

    [52]

    Bekkers J M 2009 Curr. Biol. 19 R296

    [53]

    Herrmann C S, Klaus A 2004 Int. J. Bifurcat. Chaos 14 623

    [54]

    Wang H T, Ma J, Chen Y L, Chen Y 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 3242

    [55]

    Qin H X, Ma J, Jin W Y, Wang C N 2014 Sci. China Tech. Sci. 57 936

    [56]

    Chen J, Li C G 2011 Acta Phys. Sin. 60 050503 (in Chinese) [陈军, 李春光 2011 60 050503]

    [57]

    L Y Y, Schmid G, Hänggi P, Schimansky-Geier L 2010 Phys. Rev. E 82 061907

    [58]

    Ma J, Ying H P, Liu Y, Li S R 2009 Chin. Phys. B 18 98

  • [1] Jia Mei-Mei, Cao Jia-Wei, Bai Ming-Ming. Firing modes and predefined-time chaos synchronization of novel memristor-coupled heterogeneous neuron. Acta Physica Sinica, 2024, 73(17): 170502. doi: 10.7498/aps.73.20240872
    [2] Guo Hui-Meng, Liang Yan, Dong Yu-Jiao, Wang Guang-Yi. Simplification of Chua corsage memristor and hardware implementation of its neuron circuit. Acta Physica Sinica, 2023, 72(7): 070501. doi: 10.7498/aps.72.20222013
    [3] Xu Zi-Heng, He Yu-Zhu, Kang Yan-Mei. Color image perception based on stochastic spiking neural network. Acta Physica Sinica, 2022, 71(7): 070501. doi: 10.7498/aps.71.20211982
    [4] Liang Yan-Mei, Lu Bo, Gu Hua-Guang. Analysis to dynamics of complex electrical activities in Wilson model of brain neocortical neuron using fast-slow variable dissection with two slow variables. Acta Physica Sinica, 2022, 71(23): 230502. doi: 10.7498/aps.71.20221416
    [5] Li Li, Zhao Zhi-Guo, Gu Hua-Guang. Suppression effects of excitatory and inhibitory self-feedbacks on neuronal spiking near Hopf bifurcation. Acta Physica Sinica, 2022, 71(5): 050504. doi: 10.7498/aps.71.20211829
    [6] Ding Xue-Li, Gu Hua-Guang, Jia Bing, Li Yu-Ye. Anticipated synchronization of electrical activity induced by inhibitory autapse in coupled Morris-Lecar neuron model. Acta Physica Sinica, 2021, 70(21): 218701. doi: 10.7498/aps.70.20210912
    [7] Zhao Ya-Qi, Liu Mou-Tian, Zhao Yong, Duan Li-Xia. Dynamics of mixed bursting in coupled pre-Bötzinger complex. Acta Physica Sinica, 2021, 70(12): 120501. doi: 10.7498/aps.70.20210093
    [8] Jiang Yi-Lan, Lu Bo, Zhang Wan-Qin, Gu Hua-Guang. Fast autaptic feedback induced-paradoxical changes of mixed-mode bursting and bifurcation mechanism. Acta Physica Sinica, 2021, 70(17): 170501. doi: 10.7498/aps.70.20210208
    [9] Xie Ying, Zhu Zhi-Gang, Zhang Xiao-Feng, Ren Guo-Dong. Control of firing mode in nonlinear neuron circuit driven by photocurrent. Acta Physica Sinica, 2021, 70(21): 210502. doi: 10.7498/aps.70.20210676
    [10] Hua Hong-Tao, Lu Bo, Gu Hua-Guang. Nonlinear mechanism of excitatory autapse-induced reduction or enhancement of firing frequency of neuronal bursting. Acta Physica Sinica, 2020, 69(9): 090502. doi: 10.7498/aps.69.20191709
    [11] Xue Xiao-Dan, Wang Mei-Li, Shao Yu-Zhu, Wang Jun-Song. Neural firing rate homeostasis via inhibitory synaptic plasticity. Acta Physica Sinica, 2019, 68(7): 078701. doi: 10.7498/aps.68.20182234
    [12] Xie Yong, Cheng Jian-Hui. A direct algorithm with square wave perturbation for calculating phase response curve. Acta Physica Sinica, 2017, 66(9): 090501. doi: 10.7498/aps.66.090501
    [13] Ding Xue-Li, Li Yu-Ye. Period-adding bifurcation of neural firings induced by inhibitory autapses with time-delay. Acta Physica Sinica, 2016, 65(21): 210502. doi: 10.7498/aps.65.210502
    [14] Li Jia-Jia, Wu Ying, Du Meng-Meng, Liu Wei-Ming. Dynamic behavior in firing rhythm transitions of neurons under electromagnetic radiation. Acta Physica Sinica, 2015, 64(3): 030503. doi: 10.7498/aps.64.030503
    [15] Wang Fu-Xia, Xie Yong. Synchronization of "Hopf/homoclinic" bursting with "SubHopf/homoclinic" bursting. Acta Physica Sinica, 2013, 62(2): 020509. doi: 10.7498/aps.62.020509
    [16] Jin Qi-Tao, Wang Jiang, Yi Guo-Sheng, Li Hui-Yan, Deng Bin, Wei Xi-Le, Che Yan-Qiu. Action potential initial dynamical mechanism analysis in a minimum neuron model exposure to TMS induced electric field. Acta Physica Sinica, 2012, 61(11): 118701. doi: 10.7498/aps.61.118701
    [17] Jin Qi-Tao, Wang Jiang, Wei Xi-Le, Deng Bin, Che Yan-Qiu. Action potential initial dynamical control and analysis of a minimum neuron model. Acta Physica Sinica, 2011, 60(9): 098701. doi: 10.7498/aps.60.098701
    [18] Li Chun-Guang, Chen Jun. Chaos in a neuron model with adaptive feedback synapse: Electronic circuit design. Acta Physica Sinica, 2011, 60(5): 050503. doi: 10.7498/aps.60.050503
    [19] Yang Zhuo-Qin, Guan Ting-Ting, Gan Chun-Biao, Zhang Jiao-Ying. Study on bursting of pancreatic cells in codimension-2 bifurcation regions. Acta Physica Sinica, 2011, 60(11): 110202. doi: 10.7498/aps.60.110202
    [20] Wang Bao-Yan, Xu Wei, Xing Zhen-Ci. Fire patterns of coupled FitzHugh-Nagumo neurons exposed to external electric field. Acta Physica Sinica, 2009, 58(9): 6590-6595. doi: 10.7498/aps.58.6590
Metrics
  • Abstract views:  8484
  • PDF Downloads:  1086
  • Cited By: 0
Publishing process
  • Received Date:  20 June 2014
  • Accepted Date:  30 September 2014
  • Published Online:  05 March 2015

/

返回文章
返回
Baidu
map