-
Spiking neural network (SNN) as the third-generation artificial neural network, has higher computational efficiency, lower resource overhead and higher biological rationality. It shows greater potential applications in audio and image processing. With the traditional method, the adder is used to add the membrane potential, which has low efficiency, high resource overhead and low level of integration. In this work, we propose a spiking neural network inference accelerator with higher integration and computational efficiency. Resistive random access memory (RRAM or memristor) is an emerging storage technology, in which resistance varies with voltage. It can be used to build a crossbar architecture to simulate matrix computing, and it has been widely used in processing in memory (PIM), neural network computing, and other fields. In this work, we design a weight storage matrix and peripheral circuit to simulate the leaky integrate and fire (LIF) neuron based on the memristor array. And we propose an SNN hardware inference accelerator, which integrates 24k neurons and 192M synapses with 0.75k memristor. We deploy a three-layer fully connected network on the accelerator and use it to execute the inference task of the MNIST dataset. The result shows that the accelerator can achieve 148.2 frames/s and 96.4% accuracy at a frequency of 50 MHz.
-
Keywords:
- spiking neural networks /
- resistive random access memory /
- processing in memory /
- leaky integrate and fire model /
- hardware inference accelerator
[1] Redmon J, Farhadi A 2017 30th IEEE Conference on Computer Vision & Pattern Recognition Honolulu, HI, July 21–26, 2017 pp6517–6525
[2] Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A, Chen Y, Lillicrap T, Hui F, Sifre L, Van Den Driessche G, Graepel T, Hassabis D 2017 Nature 550 354Google Scholar
[3] McCulloch W S, Pitts W 1943 Bull. Math. Biophys. 5 115Google Scholar
[4] Hodgkin A L, Huxley A F 1952 J. Physiol. 116 449Google Scholar
[5] Gerstner W 1995 Phys. Rev. E:Stat. Phys. Plasmas Fluids Relat. Interdisciplin. Top. 51 738
[6] Maass W 1997 Neural Networks 10 1659Google Scholar
[7] Roy K, Jaiswal A, Panda P 2019 Nature 575 607Google Scholar
[8] 陈怡然, 李海, 陈逸中, 陈凡, 李思成, 刘晨晨, 闻武杰, 吴春鹏, 燕博南 2018 人工智能 13 46
Chen Y R, Li H, Chen Y Z, Chen F, Li S C, Liu C C, Wen W J, Wu C P, Yan B N 2018 Artif. Intell. View 13 46
[9] Schuman C D, Potok T E, Patton R M, Birdwell J D, Dean M E, Rose G S, Plank J S2017 arXiv:1705.06963
[10] Mahapatra N R, Venkatrao B 1999 Crossroads 5 2
[11] von Neumann J 1993 IEEE Ann. Hist. Comput. 15 27Google Scholar
[12] Chen T, Du Z, Sun N, Wang J, Wu C, Chen Y, Temam O 2014 Acm Sigplan Notices 49 269
[13] Benjamin B V, Gao P, Mcquinn E, Chou D Hary S, Chandrasekaran A R, Bussat J, Alvarez-Icaza R, Arthur J V, Merolla P A, Boahen K 2014 Proc. IEEE 102 699Google Scholar
[14] Pei J, Deng L, Song S, Zhao M G, Zhang Y H, Wu S, Wang G R, Zou Z, Wu Z Z, He W, Chen F, Deng N, Wu S, Wang Y, Wu Y J, Yang Z Y, Ma C, Li G Q, Han W T, Li H L, Wu H Q, Zhao R, Xie Y, Shi L P 2019 Nature 572 106Google Scholar
[15] Davies M, Srinivasa N, Lin T H, Chinya G, Cao Y, Choday S H, Dimou G, Joshi P, Imam N, Jain S 2018 IEEE Micro 38 82Google Scholar
[16] Akopyan F, Sawada J, Cassidy A, Alvarez-Icaza R, Arthur J, Merolla P, Imam N, Nakamura Y, Datta P, Nam G J 2015 IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34 1537Google Scholar
[17] Furber S B, Galluppi F, Temple S, Plana L A 2014 Proc. IEEE 102 652Google Scholar
[18] 李锟, 曹荣荣, 孙毅, 刘森, 李清江, 徐晖 2019 微纳电子与智能制造 1 87
Li K, Cao R R, Sun Y, Liu S, Li Q J, Xu H 2019 Micro/nano Electron. Intell. Manuf. 1 87
[19] Xia Q F, Yang J J 2019 Nat. Mater. 18 309Google Scholar
[20] 邓亚彬, 王志伟, 赵晨晖, 李琳, 贺珊, 李秋红, 帅建伟, 郭东辉 2021 计算机应用研究 38 2241
Deng Y B, Wang Z W, Zhao C H, Li L, He S, Li Q H, Shuai J W, Guo D H 2021 Appl. Res. Comput. 38 2241
[21] Burr G W, Shelby R M, Sidler S, Nolfo C D, Jang J, Boybat I, Shenoy R S, Narayanan P, Virwani K, Giacometti E U 2015 IEEE Trans. Electron Devices 62 3498Google Scholar
[22] Moro F, Hardy M, Fain B, Dalgaty T, Clemencon P, De Pra A, Esmanhotto E, Castellani N, Blard F, Gardien F, Mesquida T, Rummens F, Eseni D, Casas J, Indiveri G, Payvand M, Vianello E 2022 Nat. Commun. 13 3506Google Scholar
[23] 方旭东, 吴俊杰 2020 计算机工程与科学 42 1929Google Scholar
Fang X D, Wu J J 2020 Comput. Eng. Sci. 42 1929Google Scholar
[24] Peng Y, Wu H, Gao B, Eryilmaz S B, Qian H 2017 Nat. Commun. 8 15199Google Scholar
[25] Huang L, Diao J T, Nie H S, Wang W, Li Z W, Li Q J, Liu H J 2021 Front. Neurosci. 15 639526Google Scholar
-
表 1 本次工作与其他类似工作的对比
Table 1. Comparison of this work with other works.
-
[1] Redmon J, Farhadi A 2017 30th IEEE Conference on Computer Vision & Pattern Recognition Honolulu, HI, July 21–26, 2017 pp6517–6525
[2] Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A, Chen Y, Lillicrap T, Hui F, Sifre L, Van Den Driessche G, Graepel T, Hassabis D 2017 Nature 550 354Google Scholar
[3] McCulloch W S, Pitts W 1943 Bull. Math. Biophys. 5 115Google Scholar
[4] Hodgkin A L, Huxley A F 1952 J. Physiol. 116 449Google Scholar
[5] Gerstner W 1995 Phys. Rev. E:Stat. Phys. Plasmas Fluids Relat. Interdisciplin. Top. 51 738
[6] Maass W 1997 Neural Networks 10 1659Google Scholar
[7] Roy K, Jaiswal A, Panda P 2019 Nature 575 607Google Scholar
[8] 陈怡然, 李海, 陈逸中, 陈凡, 李思成, 刘晨晨, 闻武杰, 吴春鹏, 燕博南 2018 人工智能 13 46
Chen Y R, Li H, Chen Y Z, Chen F, Li S C, Liu C C, Wen W J, Wu C P, Yan B N 2018 Artif. Intell. View 13 46
[9] Schuman C D, Potok T E, Patton R M, Birdwell J D, Dean M E, Rose G S, Plank J S2017 arXiv:1705.06963
[10] Mahapatra N R, Venkatrao B 1999 Crossroads 5 2
[11] von Neumann J 1993 IEEE Ann. Hist. Comput. 15 27Google Scholar
[12] Chen T, Du Z, Sun N, Wang J, Wu C, Chen Y, Temam O 2014 Acm Sigplan Notices 49 269
[13] Benjamin B V, Gao P, Mcquinn E, Chou D Hary S, Chandrasekaran A R, Bussat J, Alvarez-Icaza R, Arthur J V, Merolla P A, Boahen K 2014 Proc. IEEE 102 699Google Scholar
[14] Pei J, Deng L, Song S, Zhao M G, Zhang Y H, Wu S, Wang G R, Zou Z, Wu Z Z, He W, Chen F, Deng N, Wu S, Wang Y, Wu Y J, Yang Z Y, Ma C, Li G Q, Han W T, Li H L, Wu H Q, Zhao R, Xie Y, Shi L P 2019 Nature 572 106Google Scholar
[15] Davies M, Srinivasa N, Lin T H, Chinya G, Cao Y, Choday S H, Dimou G, Joshi P, Imam N, Jain S 2018 IEEE Micro 38 82Google Scholar
[16] Akopyan F, Sawada J, Cassidy A, Alvarez-Icaza R, Arthur J, Merolla P, Imam N, Nakamura Y, Datta P, Nam G J 2015 IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34 1537Google Scholar
[17] Furber S B, Galluppi F, Temple S, Plana L A 2014 Proc. IEEE 102 652Google Scholar
[18] 李锟, 曹荣荣, 孙毅, 刘森, 李清江, 徐晖 2019 微纳电子与智能制造 1 87
Li K, Cao R R, Sun Y, Liu S, Li Q J, Xu H 2019 Micro/nano Electron. Intell. Manuf. 1 87
[19] Xia Q F, Yang J J 2019 Nat. Mater. 18 309Google Scholar
[20] 邓亚彬, 王志伟, 赵晨晖, 李琳, 贺珊, 李秋红, 帅建伟, 郭东辉 2021 计算机应用研究 38 2241
Deng Y B, Wang Z W, Zhao C H, Li L, He S, Li Q H, Shuai J W, Guo D H 2021 Appl. Res. Comput. 38 2241
[21] Burr G W, Shelby R M, Sidler S, Nolfo C D, Jang J, Boybat I, Shenoy R S, Narayanan P, Virwani K, Giacometti E U 2015 IEEE Trans. Electron Devices 62 3498Google Scholar
[22] Moro F, Hardy M, Fain B, Dalgaty T, Clemencon P, De Pra A, Esmanhotto E, Castellani N, Blard F, Gardien F, Mesquida T, Rummens F, Eseni D, Casas J, Indiveri G, Payvand M, Vianello E 2022 Nat. Commun. 13 3506Google Scholar
[23] 方旭东, 吴俊杰 2020 计算机工程与科学 42 1929Google Scholar
Fang X D, Wu J J 2020 Comput. Eng. Sci. 42 1929Google Scholar
[24] Peng Y, Wu H, Gao B, Eryilmaz S B, Qian H 2017 Nat. Commun. 8 15199Google Scholar
[25] Huang L, Diao J T, Nie H S, Wang W, Li Z W, Li Q J, Liu H J 2021 Front. Neurosci. 15 639526Google Scholar
Catalog
Metrics
- Abstract views: 8766
- PDF Downloads: 391
- Cited By: 0