Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Micro cone-beam CT scanner based on X-ray polycapillary optics

Zhou La-Zhen Xia Wen-Jing Xu Qian-Qian Chen Zan Li Fang-Zuo Liu Zhi-Guo Sun Tian-Xi

Citation:

Micro cone-beam CT scanner based on X-ray polycapillary optics

Zhou La-Zhen, Xia Wen-Jing, Xu Qian-Qian, Chen Zan, Li Fang-Zuo, Liu Zhi-Guo, Sun Tian-Xi
PDF
HTML
Get Citation
  • In-vivo small animal imaging system is an important part of disease research and new drug development. It is essential for living small animal imaging system to be able to provide the anatomical structure, molecular and functional information. The X-ray micro cone-beam computed tomography (micro-CBCT) can perform longitudinal study with a resolution of tens-to-hundreds of microns in a short imaging time at a relatively low cost. Furthermore, it is easy to combine with other modalities to provide abundant information about small animals. A key challenge to the micro-CBCT scanner is that its spatial and contrast resolution determined primarily by the X-ray focal spot size, the detector element size, and the system geometry. Aiming to improve the spatial resolution, contrast resolution, and imaging uniformity of the micro-CBCT system, we use the X-ray polycapillary optics for adjusting the X-ray source. A micro-CBCT based on X-ray polycapillary optics with a large field of view is constructed for the small animal imaging study. The micro-CBCT system is composed of microfocus X-ray tube with an attached polycapillary focusing X-ray lens, amorphous silicon-based flat panel detector, rotation stage, and controlling PC. The Feldkamp-Daivs-Kress (FDK) algorithm is adopted to reconstruct the image. The system performances are evaluated. The magnification of this micro-CBCT system is 1.97. The results show that the spatial resolution of the system at 10% modulation transfer function (MTF) is 9.1 lp/mm, which is 1.35 times higher than that in the case of no optics. The image uniformity deterioration caused by hardening effect is effectively alleviated by filtrating the low energy X-rays with the X-ray polycapillary optics and the contrast enhancement is more than twice. The anesthetic rats are imaged with this micro-CBCT system in vivo and the practicability of the system in small animal imaging research is verified.
      Corresponding author: Li Fang-Zuo, lfz880920@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11865003), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20192BAB212008), and the Gannan Medicla University Foundation, China (Grant No. QD201805).
    [1]

    Gregory S G, Sekhon M, Schein J, et al. 2002 Nature 418 743Google Scholar

    [2]

    Ntziachristos V, Ripoll J, Wang L V, Weissleder R 2005 Nat. Biotechnol. 23 313Google Scholar

    [3]

    Guerra A D, Belcari N 2007 Nucl. Instrum. Meth. Phys. Res. A 583 119Google Scholar

    [4]

    Badea C T, Drangova M, Holdsworth D W, Johnson G A 2008 Phys. Med. Biol. 53 319Google Scholar

    [5]

    Jan M L, Ni Y C, Chen K W, Ching H 2006 Nucl. Instrum. Meth. Phys. Res. A 569 314Google Scholar

    [6]

    Biederer J, Mirsadraee S, Beer M, Molinari F, Puderbach M 2012 Insights Into Imaging 3 373Google Scholar

    [7]

    Hoyer C, Gass N, Fahr W W, Sartorius A 2014 Neuropsychobiology 69 187Google Scholar

    [8]

    Kunjachan S, Ehling J, Storm G, Kiessling F, Lammers T 2015 Chem. Rev. 115 10907Google Scholar

    [9]

    Eghtedari M, Oraevsky A, Copland J A, Kotov N A, Conjusteau A, Motamedi M 2007 Nano Lett. 7 1914Google Scholar

    [10]

    Taruttis A, Ntziachristos V 2015 Nat. Photonics 9 219Google Scholar

    [11]

    Paulus M J, Gleason S S, Kennel S J, Hunsicker P R, Johnson D K 2000 Neoplasia 2 62Google Scholar

    [12]

    罗召洋, 杨孝全, 孟远征, 邓勇 2010 58 8237Google Scholar

    Luo Z Y, Yang X Q, Meng Y Z, Deng Y 2010 Acta Phys. Sin. 58 8237Google Scholar

    [13]

    魏星, 闫镔, 张峰, 李永丽, 席晓琦, 李磊 2014 63 058702Google Scholar

    Wei X, Yan B, Zhang F, Li Y L, Xi X Q, Li L 2014 Acta Phys. Sin. 63 058702Google Scholar

    [14]

    Mazel V, Reiche I, Busignies V, Walter P, Tchoreloff P 2011 Talanta 85 556Google Scholar

    [15]

    Sun T, Liu Z, Li Y, Lin X, Wang G, Zhu G, Xu Q, Luo P, Pan Q, Liu H 2010 Nucl. Instrum. Meth. Phys. Res. A 622 295Google Scholar

    [16]

    Macdonald C A, Gibson W M 2003 X-Ray Spectrom. 32 258Google Scholar

    [17]

    Albertini V R, Paci B, Generosi A, Dabagov S B, Kumakhov M A 2007 Spectrochim. Acta B 62 1203Google Scholar

    [18]

    Huang R, Bilderback D H 2006 J. Synchrotron Radiat. 13 74Google Scholar

    [19]

    Balaic D X, Barnea Z, Nugent K A, Garrett R F, Wilkins S W 1996 J. Synchrotron Radiat. 3 289Google Scholar

    [20]

    MacDonald C A, Owens S M, Gibson W M 1999 J. Appl. Crystallogr. 32 160Google Scholar

    [21]

    Bjeoumikhov A, Bjeoumikhova S, Langhoff N, Wedell R 2005 Appl. Phys. Lett. 86 144102Google Scholar

    [22]

    Sun T, Liu Z, Ding X 2007 Nucl. Instrum. Meth. Phys. Res. B 262 153Google Scholar

    [23]

    Sun T, Peng S, Liu Z, Sun W, Ma Y, Ding X 2013 J. Appl. Crystallogr. 46 1880Google Scholar

    [24]

    Sun T, Macdonald C A 2013 J. Appl. Phys. 113 053104Google Scholar

    [25]

    Lamb J S, Bilderback D H, Pollack L, Kwok L, Smilgies D M 2007 J. Appl. Crystallogr. 40 193Google Scholar

    [26]

    Barrea R A, Huang R, Cornaby S, Bilderback D H, Irving T C 2009 J. Synchrotron Radiat. 16 76Google Scholar

    [27]

    Zeng X, Duewer F, Feser M, Huang C, Lyon A, Tkachuk A, Yun W 2008 Appl. Opt. 47 2376Google Scholar

    [28]

    Li F, Liu Z, Sun T, Jiang B, Zhu Y 2016 J. Chem. Phys. 144 104201Google Scholar

    [29]

    Li F, Liu Z, Sun T 2016 J. Appl. Crystallogr. 49 627Google Scholar

    [30]

    Li F, Liu Z, Sun T 2016 Rev. Sci. Instrum. 87 093106Google Scholar

    [31]

    Li F, Liu Z, Sun T 2016 Food Chem. 210 435Google Scholar

    [32]

    Li F, Liu Z, Sun T, Ma Y, Ding X 2015 Food Control 54 120Google Scholar

    [33]

    Abreu C C, Kruger D G, MacDonald C A, Mistretta C A, Peppler W W, Xiao Q F 1995 Med. Phys. 22 1793Google Scholar

    [34]

    Goertzen A L, Nagarkar V, Street R A, Paulus M J, Boone J M, Cherry S R 2004 Phys. Med. Biol. 49 5251Google Scholar

    [35]

    Kim H K, Min K C, Achterkirchen T, Lee W 2009 IEEE Trans. Nucl. Sci. 56 1179Google Scholar

    [36]

    Feldkamp L A, Davis L C, Kress J W 1984 J. Opt. Soc. Am. A 1 612Google Scholar

    [37]

    Flannery B P, Deckman H W, Roberge W G, D'Amico K L 1987 Science 237 1439Google Scholar

    [38]

    Sun T, Ding X 2005 J. Appl. Phys. 97 124904Google Scholar

    [39]

    Kai Y, Kwan A L C, Miller D W F, Boone J M 2006 Med. Phys. 33 1695Google Scholar

    [40]

    Kwan A L C, Boone J M, Yang K, Huang S Y 2007 Med. Phys. 34 275

    [41]

    余晓锷, 占杰, 李萍, 李婵娟 2006 第四军医大学学报 27 978Google Scholar

    Yu X E, Zhan J, Li P, Li C J 2006 J. Fourth Mil. Med. Univ. 27 978Google Scholar

  • 图 1  X射线源焦斑大小、SOD和SDD共同决定了Micro-CBCT的有效探测器孔径大小 (a) 焦点大小与有效探测器孔径α成正比; (b) SOD/SDD比值与有效探测器孔径α成正比

    Figure 1.  X-ray tube focal spot size, SOD and SDD jointly determine the effective detector aperture size of the micro-CT system: (a) Focal spot size is proportional to the effective detector aperture (α); (b) ratio of SOD/SDD is proportional to the effective detector aperture (α).

    图 2  X射线焦斑大小的半影效应

    Figure 2.  Penumbra effect of X-ray focal spot size.

    图 3  Micro-CBCT系统, 该系统由一个结合PFXRL的微聚焦X射线源、一个旋转样品台和一个非晶硅平板探测器组成 (a) Micro-CBCT原理图; (b) Micro-CBCT实物图; (c) 采用的PFXRL实物图

    Figure 3.  Micro-CBCT system. The system consists of a microfocus X-ray source combined with a PFXRL, a rotating sample stage and an amorphous silicon-based FPD: (a) Micro-CBCT schematic diagram; (b) desktop micro-CBCT system; (c) the PFXRL.

    图 4  PFXRL的出口焦斑尺寸和收敛度随X射线能量的依赖关系

    Figure 4.  Energy dependence of the output focal spot size and convergence for the PFXRL, respectively.

    图 5  PFXRL的传输效率和能量密度增益随X射线能量的依赖关系

    Figure 5.  Energy dependence of transmission efficiency and gain in power density of the PFXRL, respectively.

    图 6  使用和不使用PFXRL两种条件下的Micro-CBCT图像和对应的MTF (a)使用PFXRL; (b)不使用PFXRL; (c) MTF曲线

    Figure 6.  Measured images and corresponding MTF of the micro-CBCT system with and without PFXRL: (a) With PFXRL; (b) without PFXRL; (c) MTF curves.

    图 7  对于测量的水模, 在使用和不使用PFXRL下的Micro-CBCT系统对比度分辨率与管电压的关系

    Figure 7.  Measured contrast resolution of Micro-CBCT system as a function of tube voltages for water phantom.

    图 8  水模的均匀性响应 (a) 不使用PFXRL, 重建的水模中平横断面图像及绿线对应的CT值; (b) 使用PFXRL, 重建的水模中平横断面图像及绿线对应的CT值; (c) 采用0.5 mm厚的铝片附加滤过, 重建的水模中平横断面图像及绿线对应的CT值. 空气和水的CT值分别归一化为0和50

    Figure 8.  Uniformity response of the water phantom: (a) Reconstructed transaxial image of the uniformity phantom without using PFXRL and radial signal profile taken from the green line; (b) reconstructed transaxial image of the uniformity phantom with using PFXRL and radial signal profile taken from the green line; (c) reconstructed transaxial image of the uniformity phantom with a 0.5 mm thick aluminum sheet as filter and radial signal profile taken from the green line. The CT values of air and water are normalized to 0 and 50, respectively.

    图 9  水模的噪声响应 (a)不使用PFXRL (附加滤过: 0.5 mm Al); (b)使用PFXRL

    Figure 9.  Noise response of the water phantom: (a) Without PFXRL (additional filtration: 0.5 mm Al); (b) with PFXRL.

    图 10  小鼠Micro-CBCT成像 (a)使用PFXRL; (b)不使用PFXRL

    Figure 10.  CT images of rats: (a) With PFXRL; (b) without PFXRL.

    图 11  麻醉小鼠横断面图像比较 (a)使用PFXRL; (b)不使用PFXRL

    Figure 11.  Comparison of axial images of the anesthetized mice: (a) With PFXRL; (b) without PFXRL.

    图 12  麻醉小鼠肺、肾和下脊柱区域的基于PFXRL的Micro-CBCT图像. 每个图像的窗宽窗位设置不同以呈现出感兴趣的结构. 横断面((a), (d), (g))、冠状面((b), (e), (h))和矢状面((c), (f), (i))切片展示了各向同性的空间分辨率和好的软组织对比度. 肺内支气管结构、肾脏与周围的肌肉和脂肪、椎骨和椎间隙都清晰可见. 图像中的垂直比例尺显示1 cm的间距

    Figure 12.  PFXRL-based Micro-CBCT images of the lung, kidney and lower spine of the anesthetized mice. The window and level settings are varied in each image to allow visualization of the structures of interest. Axial ((a), (d), (g)) , coronal ((b), (e), (h)) , and sagittal ((c), (f), (i)) slices qualitatively demonstrate isotropic spatial resolution, with excellent soft-tissue contrast in each case. Bronchial structure within the lungs is clearly identifiable, the kidney is well delineated from surrounding muscle and fat, and fine detail in the vertebrae and intervertebral spaces is demonstrated. The vertical scale in the images shows 1 cm spacing.

    表 1  PFXRL的基本参数

    Table 1.  Parameters of the PFXRL.

    PFXRL
    Length /mm69.4
    Input focal distance /mm76.3
    Output focal distance /mm20.1
    Diameter of IFS at 17.4 keV /${\mu }\mathrm{m}$169.2
    Diameter of OFS at 17.4 keV /${\mu }\mathrm{m}$46.7
    Channel inner diameter of capillary at input/output /μm10.4
    DownLoad: CSV
    Baidu
  • [1]

    Gregory S G, Sekhon M, Schein J, et al. 2002 Nature 418 743Google Scholar

    [2]

    Ntziachristos V, Ripoll J, Wang L V, Weissleder R 2005 Nat. Biotechnol. 23 313Google Scholar

    [3]

    Guerra A D, Belcari N 2007 Nucl. Instrum. Meth. Phys. Res. A 583 119Google Scholar

    [4]

    Badea C T, Drangova M, Holdsworth D W, Johnson G A 2008 Phys. Med. Biol. 53 319Google Scholar

    [5]

    Jan M L, Ni Y C, Chen K W, Ching H 2006 Nucl. Instrum. Meth. Phys. Res. A 569 314Google Scholar

    [6]

    Biederer J, Mirsadraee S, Beer M, Molinari F, Puderbach M 2012 Insights Into Imaging 3 373Google Scholar

    [7]

    Hoyer C, Gass N, Fahr W W, Sartorius A 2014 Neuropsychobiology 69 187Google Scholar

    [8]

    Kunjachan S, Ehling J, Storm G, Kiessling F, Lammers T 2015 Chem. Rev. 115 10907Google Scholar

    [9]

    Eghtedari M, Oraevsky A, Copland J A, Kotov N A, Conjusteau A, Motamedi M 2007 Nano Lett. 7 1914Google Scholar

    [10]

    Taruttis A, Ntziachristos V 2015 Nat. Photonics 9 219Google Scholar

    [11]

    Paulus M J, Gleason S S, Kennel S J, Hunsicker P R, Johnson D K 2000 Neoplasia 2 62Google Scholar

    [12]

    罗召洋, 杨孝全, 孟远征, 邓勇 2010 58 8237Google Scholar

    Luo Z Y, Yang X Q, Meng Y Z, Deng Y 2010 Acta Phys. Sin. 58 8237Google Scholar

    [13]

    魏星, 闫镔, 张峰, 李永丽, 席晓琦, 李磊 2014 63 058702Google Scholar

    Wei X, Yan B, Zhang F, Li Y L, Xi X Q, Li L 2014 Acta Phys. Sin. 63 058702Google Scholar

    [14]

    Mazel V, Reiche I, Busignies V, Walter P, Tchoreloff P 2011 Talanta 85 556Google Scholar

    [15]

    Sun T, Liu Z, Li Y, Lin X, Wang G, Zhu G, Xu Q, Luo P, Pan Q, Liu H 2010 Nucl. Instrum. Meth. Phys. Res. A 622 295Google Scholar

    [16]

    Macdonald C A, Gibson W M 2003 X-Ray Spectrom. 32 258Google Scholar

    [17]

    Albertini V R, Paci B, Generosi A, Dabagov S B, Kumakhov M A 2007 Spectrochim. Acta B 62 1203Google Scholar

    [18]

    Huang R, Bilderback D H 2006 J. Synchrotron Radiat. 13 74Google Scholar

    [19]

    Balaic D X, Barnea Z, Nugent K A, Garrett R F, Wilkins S W 1996 J. Synchrotron Radiat. 3 289Google Scholar

    [20]

    MacDonald C A, Owens S M, Gibson W M 1999 J. Appl. Crystallogr. 32 160Google Scholar

    [21]

    Bjeoumikhov A, Bjeoumikhova S, Langhoff N, Wedell R 2005 Appl. Phys. Lett. 86 144102Google Scholar

    [22]

    Sun T, Liu Z, Ding X 2007 Nucl. Instrum. Meth. Phys. Res. B 262 153Google Scholar

    [23]

    Sun T, Peng S, Liu Z, Sun W, Ma Y, Ding X 2013 J. Appl. Crystallogr. 46 1880Google Scholar

    [24]

    Sun T, Macdonald C A 2013 J. Appl. Phys. 113 053104Google Scholar

    [25]

    Lamb J S, Bilderback D H, Pollack L, Kwok L, Smilgies D M 2007 J. Appl. Crystallogr. 40 193Google Scholar

    [26]

    Barrea R A, Huang R, Cornaby S, Bilderback D H, Irving T C 2009 J. Synchrotron Radiat. 16 76Google Scholar

    [27]

    Zeng X, Duewer F, Feser M, Huang C, Lyon A, Tkachuk A, Yun W 2008 Appl. Opt. 47 2376Google Scholar

    [28]

    Li F, Liu Z, Sun T, Jiang B, Zhu Y 2016 J. Chem. Phys. 144 104201Google Scholar

    [29]

    Li F, Liu Z, Sun T 2016 J. Appl. Crystallogr. 49 627Google Scholar

    [30]

    Li F, Liu Z, Sun T 2016 Rev. Sci. Instrum. 87 093106Google Scholar

    [31]

    Li F, Liu Z, Sun T 2016 Food Chem. 210 435Google Scholar

    [32]

    Li F, Liu Z, Sun T, Ma Y, Ding X 2015 Food Control 54 120Google Scholar

    [33]

    Abreu C C, Kruger D G, MacDonald C A, Mistretta C A, Peppler W W, Xiao Q F 1995 Med. Phys. 22 1793Google Scholar

    [34]

    Goertzen A L, Nagarkar V, Street R A, Paulus M J, Boone J M, Cherry S R 2004 Phys. Med. Biol. 49 5251Google Scholar

    [35]

    Kim H K, Min K C, Achterkirchen T, Lee W 2009 IEEE Trans. Nucl. Sci. 56 1179Google Scholar

    [36]

    Feldkamp L A, Davis L C, Kress J W 1984 J. Opt. Soc. Am. A 1 612Google Scholar

    [37]

    Flannery B P, Deckman H W, Roberge W G, D'Amico K L 1987 Science 237 1439Google Scholar

    [38]

    Sun T, Ding X 2005 J. Appl. Phys. 97 124904Google Scholar

    [39]

    Kai Y, Kwan A L C, Miller D W F, Boone J M 2006 Med. Phys. 33 1695Google Scholar

    [40]

    Kwan A L C, Boone J M, Yang K, Huang S Y 2007 Med. Phys. 34 275

    [41]

    余晓锷, 占杰, 李萍, 李婵娟 2006 第四军医大学学报 27 978Google Scholar

    Yu X E, Zhan J, Li P, Li C J 2006 J. Fourth Mil. Med. Univ. 27 978Google Scholar

  • [1] Liao Ke-Liang, He Qi-Li, Song Yang, Li Rong-Gang, Song Mao-Hua, Li Pan-Yun, Zhao Hai-Feng, Liu Peng, Zhu Pei-Ping. Development of a transmission X-ray nanometer-resolution microscope based on laboratory light source. Acta Physica Sinica, 2024, 73(17): 178701. doi: 10.7498/aps.73.20240727
    [2] Chen Zi-Han, Song Meng-Qi, Chen Heng, Wang Zhi-Li. Fringe visibility in X-ray interferometer using dual triangular phase gratings. Acta Physica Sinica, 2023, 72(14): 148701. doi: 10.7498/aps.72.20230461
    [3] Deng Wen-Juan, Zhu Bin, Wang Zhuang-Fei, Peng Xin-Cun, Zou Ji-Jun. Resolution characteristics of varying doping and varying composition AlxGa1–xAs/GaAs reflective photocathodes. Acta Physica Sinica, 2022, 71(15): 157901. doi: 10.7498/aps.71.20220244
    [4] Ju Xiao-Lu, Li Ke, Yu Fu-Cheng, Xu Ming-Wei, Deng Biao, Li Bin, Xiao Ti-Qiao. Move contrast X-ray imaging of electrochemical reaction process in electrolytic cell. Acta Physica Sinica, 2022, 71(14): 144101. doi: 10.7498/aps.71.20220339
    [5] Liu Shang-Kuo, Wang Tao, Li Kun, Cao Kun, Zhang Xi-Bin, Zhou Yan, Zhao Jian-Ke, Yao Bao-Li. Influence of spectral characteristics of light sources on measuring space camera modulation transfer function. Acta Physica Sinica, 2021, 70(13): 134208. doi: 10.7498/aps.70.20201575
    [6] Liu Jun, Jiang Qi-Li, Shuai Qi-Lin, Li Rong-Wu, Pan Qiu-Li, Cheng Lin, Wang Rong. A type of X-ray diffractometer with adaptive X-ray spot sizes. Acta Physica Sinica, 2021, 70(1): 010701. doi: 10.7498/aps.70.20201228
    [7] Zhang Mei, Li Kui-Nian, Li Yang, Sheng Liang, Zhang Yan-Hong. Spatial resolution of novel liquid scintillating capillary array. Acta Physica Sinica, 2020, 69(6): 062801. doi: 10.7498/aps.69.20191545
    [8] Hao Wei-Qian, Liang Zhong-Cheng, Liu Xiao-Yao, Zhao Rui, Kong Mei-Mei, Guan Jian-Fei, Zhang Yue. Imaging performance of fractal structuresparse aperture arrays. Acta Physica Sinica, 2019, 68(19): 199501. doi: 10.7498/aps.68.20190818
    [9] Qi Jun-Cheng, Liu Bin, Chen Rong-Chang, Xia Zheng-De, Xiao Ti-Qiao. X-ray three-dimensional imaging based on light field imaging technology. Acta Physica Sinica, 2019, 68(2): 024202. doi: 10.7498/aps.68.20181555
    [10] Jiang Qi-Li, Duan Ze-Ming, Shuai Qi-Lin, Li Rong-Wu, Pan Qiu-Li, Cheng Lin. A new type of micro-X-ray diffractometer focused by polycapillary optics. Acta Physica Sinica, 2019, 68(24): 240701. doi: 10.7498/aps.68.20190497
    [11] Zheng Xin, Wu Peng-Fei, Rao Rui-Zhong. Image quality analysis method under background radiation in turbid atmosphere. Acta Physica Sinica, 2018, 67(8): 088701. doi: 10.7498/aps.67.20172625
    [12] Zhang Min-Rui, He Zheng-Quan, Wang Tao, Tian Jin-Shou. Analysis of the influence of diattenuation on optical imaging system by using the theory of vector plane wave spectrum. Acta Physica Sinica, 2017, 66(8): 084202. doi: 10.7498/aps.66.084202
    [13] Duan Ya-Xuan, Liu Shang-Kuo, Chen Yong-Quan, Xue Xun, Zhao Jian-Ke, Gao Li-Min. A method to measure the modulation transfer function of Bayer filter color camera. Acta Physica Sinica, 2017, 66(7): 074204. doi: 10.7498/aps.66.074204
    [14] Du Yang, Liu Xin, Lei Yao-Hu, Huang Jian-Heng, Zhao Zhi-Gang, Lin Dan-Ying, Guo Jin-Chuan, Li Ji, Niu Han-Ben. Quantitative analysis of the field of view for X-ray differential phase contrast imaging. Acta Physica Sinica, 2016, 65(5): 058701. doi: 10.7498/aps.65.058701
    [15] Liu Xin, Yi Ming-Hao, Guo Jin-Chuan. Line focal X-ray source imaging. Acta Physica Sinica, 2016, 65(21): 219501. doi: 10.7498/aps.65.219501
    [16] Chen Xiao-Hu, Wang Xiao-Fang, Zhang Wei-Wei, Wang Wen-Hui. Analysis of imaging an extended X-ray source by using a Fresnel phase zone plate. Acta Physica Sinica, 2013, 62(1): 015208. doi: 10.7498/aps.62.015208
    [17] Wang Xiao-Fang, Wang Jing-Yu. Analysis of high-resolution X-ray imaging of an inertial-confinement-fusion target by using a Fresnel zone plate. Acta Physica Sinica, 2011, 60(2): 025212. doi: 10.7498/aps.60.025212
    [18] Zou Ji-Jun, Chang Ben-Kang, Yang Zhi, Zhang Yi-Jun, Qiao Jian-Liang. Resolution characteristic of exponential-doping GaAs photocathodes. Acta Physica Sinica, 2009, 58(8): 5842-5846. doi: 10.7498/aps.58.5842
    [19] Qi Xun-Jun, Lin Bin, Cao Xiang-Qun, Chen Yu-Qing. Study of modular transfer function-based optieal low-pass filter evaluation model and experiment. Acta Physica Sinica, 2008, 57(5): 2854-2859. doi: 10.7498/aps.57.2854
    [20] Tian Jin-Shou, Zhao Bao-Sheng, Wu Jian-Jun, Zhao Wei, Liu Yun-Quan, Zhang Jie. Theoretical calculation of the modulation transfer function in a femoto-second electron diffraction system. Acta Physica Sinica, 2006, 55(7): 3368-3374. doi: 10.7498/aps.55.3368
Metrics
  • Abstract views:  5765
  • PDF Downloads:  99
  • Cited By: 0
Publishing process
  • Received Date:  28 November 2021
  • Accepted Date:  09 January 2022
  • Available Online:  26 January 2022
  • Published Online:  05 May 2022

/

返回文章
返回
Baidu
map