Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X-ray three-dimensional imaging based on light field imaging technology

Qi Jun-Cheng Liu Bin Chen Rong-Chang Xia Zheng-De Xiao Ti-Qiao

Citation:

X-ray three-dimensional imaging based on light field imaging technology

Qi Jun-Cheng, Liu Bin, Chen Rong-Chang, Xia Zheng-De, Xiao Ti-Qiao
PDF
HTML
Get Citation
  • X-ray three-dimensional (3D) imaging technology is a research hotspot in the field of X-ray imaging. However, for some special imaging targets, the imaging mode of the traditional computer tomography (CT) circular trajectory is prone to lack of projection information, and thus affects the quality of CT reconstruction images, which limites the application of CT imaging. Light field imaging technology, in which a microlens array is inserted between the sensor and main lens in a traditional camera, achieves four-dimensional (4D) light field data with sensor during imaging including both the two-dimensional (2D) directional information of the radiance propagation and 2D spatial distribution information of object radiation. Through computer calculation imaging, 3D imaging such as digital refocusing, slice in the depth direction, stereo imaging, and depth estimation is realized. This article focuses on the 3D X-ray imaging based on the theory of light field imaging in visible light. Based on the model of parallel X-ray of synchrotron radiation source, the data of the X-ray light field with many projection views are acquired by rotating the image sample. Then, the light passing through any voxel in the imaging target is acquired by a geometric projection method, and based on integral imaging theory of light field imaging, the gray value of the slice in depth dimension is reconstructed and the depth information of reconstructed target is acquired. The reconstruction results show that this method can be used to reconstruct the internal slices at any depth in any viewing direction of the imaging target. In the optical imaging, the scene beyond the depth of field is blurred, making the scene more prominent and the imaging effect better. However, for the X-ray imaging, the imaging mode that is completely transmissive, and the light passing through the foreground carry the information about the background. In the refocusing process, the object at the refocusing depth is focused, and other background information is defocused. Excessive background information overwhelms the real useful information, and makes the slice, especially the edge of the image, blurred. Consequently more severe background noise is introduced due to the defocusing phenomenon in the optical refocusing process. Referring to the reconstruction method of the X-ray 3D imaging and light field imaging, the S-L filter is applied to the original data in the article. After filtering the original data, the X-ray "light field refocusing" is processed. The reconstruction results shown that the method can effectively eliminate reconstruction artifacts and improve image reconstruction quality in the reconstruction depth slice. And in this paper, the light field data are collected by rotating the sample with low time resolution. For the fast imaging, according to the digital refocusing theory of the light field imaging, the array X-ray source and detector can be used. After being calibrated, the system can realize the 3D reconstruction of the light field of the target field with high time resolution. This research has not only the theoretical significance in algorithm, but also great application value in the rapid detection of more complicated targets such as industry and medical treatment.
      Corresponding author: Qi Jun-Cheng, qijuncheng@nuc.edu.cn ; Xiao Ti-Qiao, tqxiao@sinap.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11375257, 61301259, U1232205) and the Foundation of North University of China (Grant No. 2015110246).
    [1]

    Zhu P P, Zhang K, Wang Z L, Liu Y J, Liu X S, Wu Z Y, McDonald S A, Marone F, Stampanoni M 2010 Proc. Natl. Acad. Sci. USA 107 13576Google Scholar

    [2]

    戚俊成, 任玉琦, 杜国浩, 陈荣昌, 王玉丹, 和友, 肖体乔 2013 光学学报 33 1034001

    Qi J C, Ren Y Q, Du G H, Chen R C, Wang Y D, He Y, Xiao T Q 2013 Acta Opt. Sin. 33 1034001

    [3]

    薛艳玲, 肖体乔, 吴立宏, 陈灿, 郭荣怡, 杜国浩, 谢红兰, 邓彪, 任玉琦, 徐洪杰 2010 59 5496Google Scholar

    Xue Y L, Xiao T Q, Wu L H, Chen C, Guo R Y, Du G H, Xie H L, Deng B, Ren Y Q, Xu H J 2010 Acta Phys. Sin. 59 5496Google Scholar

    [4]

    Zeng J, Bian F, Wang J, Li X, Wang Y, Tian F, Zhou P 2017 J. Synchrotron Radiat. 24 509Google Scholar

    [5]

    Hounsfield G N 1973 Brit. J. Radiol 46 1016Google Scholar

    [6]

    戚俊成, 陈荣昌, 刘宾, 陈平, 杜国浩, 肖体乔 2017 66 054202

    Qi J C, Chen R C, Liu B, Chen P, Du G H, Xiao T Q 2017 Acta Phys. Sin. 66 054202

    [7]

    王飞翔, 邓彪, 王玉丹, 任玉琦, 孙天希, 肖体乔 2016 光学学报 36 0834004

    Wang F X, Deng B, Wang Y D, Ren Y Q, Sun T X, Xiao T Q 2016 Acta Opt. Sin. 36 0834004

    [8]

    Mokso R, Oberta P 2015 J. Synchrotron Radiat. 22 1078Google Scholar

    [9]

    Hoshino M, Uesugi K, Pearson J, Sonobe T, Shirai M, Yagi N 2011 J. Synchrotron Radiat. 18 569Google Scholar

    [10]

    邾继贵, 李艳军, 叶声华, 唐大林, 张国全 2005 光学学报 25 943Google Scholar

    Zhu J G, Li Y J, Ye S H, Tang D L, Zhang G Q 2005 Acta Opt. Sin. 25 943Google Scholar

    [11]

    Adelson E H, Wang J Y A 1992 IEEE Trans. Pattern Anal. Mach. Intell. 14 99Google Scholar

    [12]

    Ng R, Levoy M, Bredif M, Duval G, Horowitz M, Hanrahan P 2005 Stanford Tech. Report CTSR 2005-02

    [13]

    Berry M V, Klein S 1996 J. Mod. Opt. 43 2139Google Scholar

    [14]

    You S, Lu Y, Zhang W, Yang B, Peng R, Zhuang S 2015 Opt. Commun. 355 419Google Scholar

    [15]

    Park J H, Jung S, Choi H, Kim Y, Lee B 2004 Appl. Opt. 43 4882Google Scholar

    [16]

    Wanner S, Goldluecke B 2014 IEEE Trans. Pattern Anal. Mach Intell. 36 606Google Scholar

    [17]

    Ma Z, Cen Z, Li X 2017 Opt. Lett. 56 6603

    [18]

    Lin X, Wu J M, Zheng G A, Dai Q H 2015 Biomed. Opt. Express 6 3179Google Scholar

    [19]

    Carles G, Downing J, Harvey A R 2014 Appl. Opt. 39 1889

    [20]

    Ng R 2005 ACM Trans. Graph. 24 735Google Scholar

    [21]

    杨富强, 张定华, 黄魁东, 王鹍, 徐哲 2014 63 058701

    Yang F Q, Zhang D H, Huang K D, Wang K, Xu Z 2014 Acta Phys. Sin. 63 058701

  • 图 1  光场成像原理示意图

    Figure 1.  Schematic diagram of light field imaging principle.

    图 2  X射线光场成像系统模型示意图

    Figure 2.  Schematic diagram of X-ray light field imaging system.

    图 3  投影数据图 (a) 随机选取的64个投影角度; (b)图(a)中所有角度下的投影图中某一排像素图像组成的正弦图

    Figure 3.  Projection data: (a) 64 random projection angles; (b) sinogram of some pixel image of projection in Fig.(a) under all angles.

    图 4  数字重聚焦结果 (a) Shepp-Logan模型; (a)中i线(b)、ii线(c)、iii线(d)和iv线(e)所在处的深度切片

    Figure 4.  Digital refocus result: (a) Original Shepp-Logan phantom; depth slices where i line (b), ii line (c), iii line (d) and iv line (e) are located in Fig.(a).

    图 5  经R-L滤波器滤波后的数字重聚焦结果 (a) Shepp-Logan模型; (a)中i线(b)、ii线(c)、iii线(d)和iv线(e)所在处的深度切片

    Figure 5.  Digital refocus result after filtering by R-L filter: (a) Original Shepp-Logan phantom; depth slices where i line (b), ii line (c), iii line (d) and iv line (e) are located in Fig.(a).

    Baidu
  • [1]

    Zhu P P, Zhang K, Wang Z L, Liu Y J, Liu X S, Wu Z Y, McDonald S A, Marone F, Stampanoni M 2010 Proc. Natl. Acad. Sci. USA 107 13576Google Scholar

    [2]

    戚俊成, 任玉琦, 杜国浩, 陈荣昌, 王玉丹, 和友, 肖体乔 2013 光学学报 33 1034001

    Qi J C, Ren Y Q, Du G H, Chen R C, Wang Y D, He Y, Xiao T Q 2013 Acta Opt. Sin. 33 1034001

    [3]

    薛艳玲, 肖体乔, 吴立宏, 陈灿, 郭荣怡, 杜国浩, 谢红兰, 邓彪, 任玉琦, 徐洪杰 2010 59 5496Google Scholar

    Xue Y L, Xiao T Q, Wu L H, Chen C, Guo R Y, Du G H, Xie H L, Deng B, Ren Y Q, Xu H J 2010 Acta Phys. Sin. 59 5496Google Scholar

    [4]

    Zeng J, Bian F, Wang J, Li X, Wang Y, Tian F, Zhou P 2017 J. Synchrotron Radiat. 24 509Google Scholar

    [5]

    Hounsfield G N 1973 Brit. J. Radiol 46 1016Google Scholar

    [6]

    戚俊成, 陈荣昌, 刘宾, 陈平, 杜国浩, 肖体乔 2017 66 054202

    Qi J C, Chen R C, Liu B, Chen P, Du G H, Xiao T Q 2017 Acta Phys. Sin. 66 054202

    [7]

    王飞翔, 邓彪, 王玉丹, 任玉琦, 孙天希, 肖体乔 2016 光学学报 36 0834004

    Wang F X, Deng B, Wang Y D, Ren Y Q, Sun T X, Xiao T Q 2016 Acta Opt. Sin. 36 0834004

    [8]

    Mokso R, Oberta P 2015 J. Synchrotron Radiat. 22 1078Google Scholar

    [9]

    Hoshino M, Uesugi K, Pearson J, Sonobe T, Shirai M, Yagi N 2011 J. Synchrotron Radiat. 18 569Google Scholar

    [10]

    邾继贵, 李艳军, 叶声华, 唐大林, 张国全 2005 光学学报 25 943Google Scholar

    Zhu J G, Li Y J, Ye S H, Tang D L, Zhang G Q 2005 Acta Opt. Sin. 25 943Google Scholar

    [11]

    Adelson E H, Wang J Y A 1992 IEEE Trans. Pattern Anal. Mach. Intell. 14 99Google Scholar

    [12]

    Ng R, Levoy M, Bredif M, Duval G, Horowitz M, Hanrahan P 2005 Stanford Tech. Report CTSR 2005-02

    [13]

    Berry M V, Klein S 1996 J. Mod. Opt. 43 2139Google Scholar

    [14]

    You S, Lu Y, Zhang W, Yang B, Peng R, Zhuang S 2015 Opt. Commun. 355 419Google Scholar

    [15]

    Park J H, Jung S, Choi H, Kim Y, Lee B 2004 Appl. Opt. 43 4882Google Scholar

    [16]

    Wanner S, Goldluecke B 2014 IEEE Trans. Pattern Anal. Mach Intell. 36 606Google Scholar

    [17]

    Ma Z, Cen Z, Li X 2017 Opt. Lett. 56 6603

    [18]

    Lin X, Wu J M, Zheng G A, Dai Q H 2015 Biomed. Opt. Express 6 3179Google Scholar

    [19]

    Carles G, Downing J, Harvey A R 2014 Appl. Opt. 39 1889

    [20]

    Ng R 2005 ACM Trans. Graph. 24 735Google Scholar

    [21]

    杨富强, 张定华, 黄魁东, 王鹍, 徐哲 2014 63 058701

    Yang F Q, Zhang D H, Huang K D, Wang K, Xu Z 2014 Acta Phys. Sin. 63 058701

  • [1] Liao Ke-Liang, He Qi-Li, Song Yang, Li Rong-Gang, Song Mao-Hua, Li Pan-Yun, Zhao Hai-Feng, Liu Peng, Zhu Pei-Ping. Development of a transmission X-ray nanometer-resolution microscope based on laboratory light source. Acta Physica Sinica, 2024, 73(17): 178701. doi: 10.7498/aps.73.20240727
    [2] Chen Zi-Han, Song Meng-Qi, Chen Heng, Wang Zhi-Li. Fringe visibility in X-ray interferometer using dual triangular phase gratings. Acta Physica Sinica, 2023, 72(14): 148701. doi: 10.7498/aps.72.20230461
    [3] Ma Yong-Jun, Li Rui-Xuan, Li Kui, Zhang Guang-Yin, Niu Jin, Ma Yun-Feng, Ke Chang-Jun, Bao Jie, Chen Ying-Shuang, Lü Chun, Li Jie, Fan Zhong-Wei, Zhang Xiao-Shi. Three-dimensional nano-coherent diffraction imaging technology based on high order harmonic X-ray sources. Acta Physica Sinica, 2022, 71(16): 164205. doi: 10.7498/aps.71.20220976
    [4] Zhou La-Zhen, Xia Wen-Jing, Xu Qian-Qian, Chen Zan, Li Fang-Zuo, Liu Zhi-Guo, Sun Tian-Xi. Micro cone-beam CT scanner based on X-ray polycapillary optics. Acta Physica Sinica, 2022, 71(9): 090701. doi: 10.7498/aps.71.20212195
    [5] Ju Xiao-Lu, Li Ke, Yu Fu-Cheng, Xu Ming-Wei, Deng Biao, Li Bin, Xiao Ti-Qiao. Move contrast X-ray imaging of electrochemical reaction process in electrolytic cell. Acta Physica Sinica, 2022, 71(14): 144101. doi: 10.7498/aps.71.20220339
    [6] Li Shuang-Shuang, Zhao Quan-Tang, Cao Shu-Chun, Ran Zhao-Hui, Shen Xiao-Kang, Zhao Shu-Jun, Zhang Zi-Min. Experimental demonstration of three-dimensional high energy electron radiography. Acta Physica Sinica, 2021, 70(18): 184204. doi: 10.7498/aps.70.20210686
    [7] Rong Feng, Xie Yan-Na, Tai Xue-Feng, Geng Lei. Research on dual energy grating based X-ray phase contrast imaging. Acta Physica Sinica, 2017, 66(1): 018701. doi: 10.7498/aps.66.018701
    [8] Qi Jun-Cheng, Chen Rong-Chang, Liu Bin, Chen Ping, Du Guo-Hao, Xiao Ti-Qiao. Grating based X-ray phase contrast CT imaging with iterative reconstruction algorithm. Acta Physica Sinica, 2017, 66(5): 054202. doi: 10.7498/aps.66.054202
    [9] Du Yang, Liu Xin, Lei Yao-Hu, Huang Jian-Heng, Zhao Zhi-Gang, Lin Dan-Ying, Guo Jin-Chuan, Li Ji, Niu Han-Ben. Quantitative analysis of the field of view for X-ray differential phase contrast imaging. Acta Physica Sinica, 2016, 65(5): 058701. doi: 10.7498/aps.65.058701
    [10] Liu Xin, Yi Ming-Hao, Guo Jin-Chuan. Line focal X-ray source imaging. Acta Physica Sinica, 2016, 65(21): 219501. doi: 10.7498/aps.65.219501
    [11] Zhang Yu, Tang Zhi-Lie, Wu Yong-Bo, Shu Gang. Three-dimensional photoacoustic imaging technique based on acoustic lens. Acta Physica Sinica, 2015, 64(24): 240701. doi: 10.7498/aps.64.240701
    [12] Huang Jian-Heng, Du Yang, Lei Yao-Hu, Liu Xin, Guo Jin-Chuan, Niu Han-Ben. Noise analysis of hard X-ray differential phasecontrast imaging. Acta Physica Sinica, 2014, 63(16): 168702. doi: 10.7498/aps.63.168702
    [13] Li Hong-Wei, Zhou Yun-Long, Wang Shi-Yong, Sun Bin. The sliced trispectrum fluctuation characteristics and flow pattern representation of the nitrogen-water two-phase flow of small channel. Acta Physica Sinica, 2013, 62(14): 140505. doi: 10.7498/aps.62.140505
    [14] Chen Xiao-Hu, Wang Xiao-Fang, Zhang Wei-Wei, Wang Wen-Hui. Analysis of imaging an extended X-ray source by using a Fresnel phase zone plate. Acta Physica Sinica, 2013, 62(1): 015208. doi: 10.7498/aps.62.015208
    [15] Zhou Guang-Zhao, Wang Yu-Dan, Ren Yu-Qi, Chen Can, Ye Lin-Lin, Xiao Ti-Qiao. Digital simulation for 3D reconstruction of coherent x-ray diffractive imaging. Acta Physica Sinica, 2012, 61(1): 018701. doi: 10.7498/aps.61.018701
    [16] Liu Dong, Yan Jian-Hua, Wang Fei, Huang Qun-Xing, Chi Yong, Cen Ke-Fa. Simultaneous experimental reconstruction of three-dimensional flame soot temperature and volume fraction distributions. Acta Physica Sinica, 2011, 60(6): 060701. doi: 10.7498/aps.60.060701
    [17] Cheng Guan-Xiao, Hu Chao. X-ray Zernike apodized photon sieves for phase-contrast microscopy. Acta Physica Sinica, 2011, 60(8): 080703. doi: 10.7498/aps.60.080703
    [18] Wang Xiao-Fang, Wang Jing-Yu. Analysis of high-resolution X-ray imaging of an inertial-confinement-fusion target by using a Fresnel zone plate. Acta Physica Sinica, 2011, 60(2): 025212. doi: 10.7498/aps.60.025212
    [19] Chen Bo, Zhu Pei_Ping, Liu Yi-Jin, Wang Jun-Yue, Yuan Qing_Xi, Huang Wan_Xia, Ming Hai, Wu Zi-Yu. Theory and method of X_ray grating phase contrast imaging. Acta Physica Sinica, 2008, 57(3): 1576-1581. doi: 10.7498/aps.57.1576
    [20] Yu Bin, Peng Xiang, Tian Jin-Dong, Niu Han-Ben. Phase retrieval for hard x-ray in-line phase contrast imaging. Acta Physica Sinica, 2005, 54(5): 2034-2037. doi: 10.7498/aps.54.2034
Metrics
  • Abstract views:  9106
  • PDF Downloads:  169
  • Cited By: 0
Publishing process
  • Received Date:  18 August 2018
  • Accepted Date:  15 October 2018
  • Available Online:  01 January 2019
  • Published Online:  20 January 2019

/

返回文章
返回
Baidu
map