Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fringe visibility in X-ray interferometer using dual triangular phase gratings

Chen Zi-Han Song Meng-Qi Chen Heng Wang Zhi-Li

Citation:

Fringe visibility in X-ray interferometer using dual triangular phase gratings

Chen Zi-Han, Song Meng-Qi, Chen Heng, Wang Zhi-Li
PDF
HTML
Get Citation
  • In recent years, the X-ray interferometer using dual phase gratings has been extensively studied. The large periodic fringes produced by the X-ray interferometer using dual phase gratings can be directly detected by ordinary detectors. At the same time, the X-ray interferometer using dual phase gratings can reduce the radiation dose of the sample without using absorption gratings. Meanwhile, a high fringe visibility is always preferred to achieve a high signal-to-noise ratio for X-ray grating interferometry. However, recent studies have reported that experimental fringe visibility in X-ray interferometer using dual rectangular phase gratings is relatively low. Therefore, it is necessary to further increase the fringe visibility in X-ray interferometry using dual phase gratings. This work focuses on the analysis of fringe visibility in X-ray interferometer using dual triangular phase gratings. Based on the fringe intensity distribution formula of X-ray dual phase grating interferometer, the fringe visibility of the dual triangular phase grating interferometer is investigated as a function of the grating spacing under monochromatic and polychromatic illumination, respectively. For comparison, the fringe visibility of the dual rectangular phase grating interferometer is also studied under the same condition. The results show that the maximum fringe visibility of the dual triangular phase grating interferometer increases with the phase shift increasing regardless of monochromatic or polychromatic illumination. Under monochromatic illumination, the maximum fringe visibility of dual 5π/2 triangular phase gratings is about 21% higher than that of dual rectangular phase gratings. Under polychromatic illumination, the fringe visibility of dual 5π/2 triangular phase gratings is at least 23% higher than that of dual rectangular phase gratings. Under polychromatic illumination, the greater the deviation of X-ray average energy from the grating design energy, the greater the decrease of maximum fringe visibility of the dual phase grating interferometer is. In addition, with the increase of the focal size of X-ray source, the maximum fringe visibility of the dual phase grating interferometer decreases, under polychromatic illumination. We hope that those results can be used as guidelines for designing and optimizing X-ray interferometer using dual triangular phase gratings.
      Corresponding author: Wang Zhi-Li, dywangzl@hfut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11475170, U1532113, 11905041), the Fundamental Research Fund for the Central Universities, China (Grant No. JZ2022HGTB0244), and the Natural Science Foundation of Anhui Province, China (Grant No. 2208085MA18).
    [1]

    Pfeiffer F, Weitkamp T, Bunk O, David C 2006 Nat. Phys. 2 258Google Scholar

    [2]

    Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E F, Brönnimann C, Grünzweig C, David C 2008 Nat. Mater. 7 134Google Scholar

    [3]

    Kai S, Lorenz B, Konstantin W, Michael C, Julia H, Pfeiffer F 2016 Nat. Commun. 7 10863Google Scholar

    [4]

    Yan A, Wu X, Liu H 2016 Opt. Express 24 15927Google Scholar

    [5]

    Wang Z L, Shi X M, Ren K, Chen H, Ren Y Q, Gao K, Wu Z 2020 J. Synchrotron Radiat. 27 494Google Scholar

    [6]

    Vila-Comamala J, Romano L, Jefimovs K, Dejea H, Bonnin A, Cook A C, Planinc I, Cikes M, Wang Z, Stampanoni M 2021 Opt. Express 29 2049Google Scholar

    [7]

    Shi Z, Jefimovs K, Romano L, Vila-Comamala J, Stampanoni M 2021 Opt. Lett. 46 3693Google Scholar

    [8]

    Xu J Q, Wang Z T, Stefano V G, Michał R, Simon S, Stampanoni M 2022 Opt. Express 30 13847Google Scholar

    [9]

    Seifert M, Ludwig V, Kaeppler S, Horn F, Meyer P, Pelzer G, Rieger J, Sand D, Michel T, Mohr J, Riess C, Anton G 2019 Sci. Rep. 9 4199Google Scholar

    [10]

    戚俊成, 陈荣昌, 刘宾, 陈平, 杜国浩, 肖体乔 2017 66 054202Google Scholar

    Qi J C, Chen R C, Liu B, Chen P, Du G H, Xiao T Q 2017 Acta Phys. Sin. 66 054202Google Scholar

    [11]

    Wang Z L, Chen Z H, Gu Y, Chen H, Ge X 2023 Chin. Phys. B 32 038704Google Scholar

    [12]

    Wang Z L, Zhou R C, Zhao L M, Ren K, Xu W, Liu B, Chen H 2021 Chin. Phys. B 30 028702Google Scholar

    [13]

    杨君, 吴浩, 罗琨皓, 郭金川, 宗方轲 2021 70 104101Google Scholar

    Yang J, Wu H, Luo K H, Guo J C, Zong F K 2021 Acta Phys. Sin. 70 104101Google Scholar

    [14]

    Katharina H, Felix G, Thomas M, Konstantin W, Andre Y, Astrid Velroyen, Margarita B, Sigrid A, Maximilian F, Oliver E, Pfeiffer F, Yildirim A Ö 2018 Sci. Rep. 8 2096Google Scholar

    [15]

    Lorenzo M, Tamara S, Charlotte K, Marco E, Peter R, Glafkos H, Sam H, Bennie S, Alberto A, Oliver J 2021 Sci. Rep. 11 3663Google Scholar

    [16]

    Kagias M, Wang Z, Birkbak M E, Lauridsen E, Abis M, Lovric G, Jefimovs K, Stampanoni M 2019 Nat. Commun. 10 5130Google Scholar

    [17]

    Kim J, Kagias M, Marone F, Stampanoni M 2020 Appl. Phys. Lett. 116 134102Google Scholar

    [18]

    Momose A, Takano H, Wu Y, Hashimoto K, Samoto T, Hoshino M, Seki Y, Shinohara T 2020 Quantum Beam Sci. 4 9Google Scholar

    [19]

    Yan A, Wu X, Liu H 2018 Opt. Express 26 23142Google Scholar

    [20]

    Yan A, Wu X, Liu H 2020 J. X-Ray Sci. Technol. 28 1055Google Scholar

    [21]

    Ge Y S, Chen J W, Yang J C, Zhu P P, Zhang H T, Zhang A Z, Liang D 2021 Opt. Lett. 46 2791Google Scholar

    [22]

    Organista C, Kagias M, Tang R, Shi Z, Jefimovs K, Boone M, Stampanoni M 2023 Opt. Continuum 2 232Google Scholar

    [23]

    Tang R, Organista C, Goethals W, Stolp W, Stampanoni M, Aelterman J, Boone M N 2023 Opt. Express 31 1677Google Scholar

    [24]

    Kagias M, Wang Z, Jefimovs K, Stampanoni M 2017 Appl. Phys. Lett. 110 014105Google Scholar

    [25]

    Miao H, Panna A, Gomella A A, Bennett E E, Znati S, Chen L, Wen H 2016 Nat. Phys. 12 830Google Scholar

    [26]

    Thomas W, Peter B, Florian B, Jürgen D, Wilhelm H 2011 Med. Phys. 38 4133Google Scholar

    [27]

    Lei Y H, Liu X, Huang J H, Du Y, Guo J C, Zhao Z G, Li J 2018 J. Phys. D:Appl. Phys. 51 385302Google Scholar

    [28]

    Ge Y S, Chen J W, Zhu P P, Yang J, Deng S W, Shi W, Zhang K, Guo J C, Zhang H T, Zheng H R, Liang D 2020 Opt. Express 28 9786Google Scholar

    [29]

    Yaroshenko A, Bech M, Potdevin G, Malecki A, Biernath T, Wolf J, Tapfer A, Schüttler M, Meiser J, Kunka D, Amberger M, Mohr J, Pfeiffer F 2014 Opt. Express 22 547Google Scholar

    [30]

    Viermetz M, Gustschin N, Schmid C, Haeusele J, Noel P B, Proksa R, Loscher S, Koehler T, Pfeiffer F 2023 IEEE Trans. Med. Imaging. 42 220Google Scholar

    [31]

    Munro P, Ignatyev K, Speller R D, Olivo A 2010 Opt. Express 18 19681Google Scholar

    [32]

    Viermetz M, Gustschin N, Schmid C, Jakob H, Maximilian T, Pascal M, Frank B, Tobias L, Roland P, Thomas K, Franz P 2022 Proc. Natl. Acad. Sci. U. S. A. 119 e2118799119Google Scholar

    [33]

    Günther B, Hehn L, Jud C, Alexander H, Martin D, Pfeiffer F 2019 Nat. Commun. 10 2494Google Scholar

    [34]

    Shashev Y, Andreas K, Lange A, Müller, Bernd R, Giovanni B 2016 Mater. Test. 58 970Google Scholar

  • 图 1  双三角形相位光栅X射线干涉仪示意图

    Figure 1.  Schematic diagram of X-ray interferometer using dual triangular phase gratings.

    图 2  条纹可见度随光栅间距和光栅相移量的变化 (a) 单色照明, 光源焦点尺寸9.5 μm; (b) 单色照明, 光源焦点尺寸40 μm; (c) 多色照明, 光源焦点尺寸9.5 μm; (d) 多色照明, 光源焦点尺寸40 μm

    Figure 2.  Fringe visibility as a function of grating spacing and grating phase shift: (a) Monochromatic illumination with a source size of 9.5 μm; (b) monochromatic illumination with a source size of 40 μm; (c) polychromatic illumination with a source size of 9.5 μm; (d) polychromatic illumination with a source size of 40 μm.

    图 3  单色照明下条纹可见度随光栅间距的变化

    Figure 3.  Fringe visibility as a function of grating spacing under monochromatic illumination.

    图 4  多色照明下条纹可见度随光栅间距的变化

    Figure 4.  Fringe visibility as a function of grating spacing under polychromatic illumination.

    图 5  条纹可见度随光栅间距的变化, 其中光源焦点尺寸为7 μm (a) 峰值电压为55 kV; (b) 峰值电压为75 kV; (c) 峰值电压为95 kV

    Figure 5.  Fringe visibility as a function of grating spacing with a source size of 7 μm: (a) Peak voltage of 55 kV; (b) peak voltage of 75 kV; (c) peak voltage of 95 kV.

    图 6  条纹可见度随光栅间距的变化, 其中峰值电压为55 kV (a) 光源焦点尺寸为7 μm; (b) 光源焦点尺寸为25 μm; (c) 光源焦点尺寸为40 μm

    Figure 6.  Fringe visibility as a function of grating spacing with peak voltage of 55 kV: (a) Source size of 7 μm; (b) source size of 25 μm; (c) source size of 40 μm.

    表 1  单色照明下, 条纹可见度峰值、对应的光栅间距和条纹可见度曲线的FWHM

    Table 1.  Visibility peak, corresponding grating spacing and FWHM of visibility curve under monochromatic illumination.

    参数双三角形相位光栅双矩形相位光栅
    π/2π3π/25π/2 π/2π
    $ {V_{\text{p}}} $0.250.480.640.680.740.340.61
    s/mm9.86.6.4.83.73.010.83.7
    W/mm12.19.15.84.93.412.03.8
    DownLoad: CSV

    表 2  多色照明下, 条纹可见度峰值、对应的光栅间距和条纹可见度曲线的FWHM

    Table 2.  Visibility peak, corresponding grating spacing, and FWHM of visibility curve under polychromatic illumination.

    参数双三角形相位光栅双矩形相位光栅
    π/2π3π/25π/2 π/2π
    $ {V_{\text{p}}} $0.250.410.560.580.630.300.51
    s/mm9.16.54.53.62.810.93.5
    W/mm12.310.46.85.54.215.04.0
    DownLoad: CSV

    表 3  光源焦点尺寸为7 μm, 峰值电压分别为55, 75和95 kV时, 条纹可见度峰值、对应的光栅间距和条纹可见度曲线的FWHM

    Table 3.  Visibility peak, corresponding grating spacing and FWHM of visibility curve with source size of 7 μm and peak voltage of 55, 75, and 95 kV, respectively.

    光源峰值电压/kV参数双三角形相位光栅双矩形相位光栅
    π/2π3π/25π/2 π/2π
    55$ {V_{\text{p}}} $0.200.320.370.410.420.220.28
    s/mm67.937.335.626.719.525.737.3
    W/mm117.396.381.569.367.644.852.9
    75$ {V_{\text{p}}} $0.140.270.310.340.370.160.25
    s/mm71.040.138.929.427.526.737.4
    W/mm116.7105.796.685.879.951.853.6
    95$ {V_{\text{p}}} $0.110.200.260.290.320.130.22
    s/mm76.541.445.443.632.126.738.8
    W/mm116.7111.3104.198.392.155.354.1
    DownLoad: CSV

    表 4  峰值电压分别为55 kV, 光源焦点尺寸为7, 25和40 μm时, 条纹可见度峰值、对应的光栅间距和条纹可见度曲线的FWHM

    Table 4.  Visibility peak, corresponding grating spacing and FWHM of visibility curve with peak voltage of 55 kV and source size of 7, 25, and 40 μm, respectively.

    光源焦点尺/µm参数双三角形相位光栅双矩形相位光栅
    π/2π3π/25π/2 π/2π
    7$ {V_{\text{p}}} $0.200.320.370.410.420.220.28
    s/mm67.937.335.626.719.525.737.3
    W/mm117.396.381.569.367.644.852.9
    25$ {V_{\text{p}}} $0.140.250.310.340.380.170.17
    s/mm48.635.028.324.921.621.528.3
    W/mm75.866.261.357.554.534.343.3
    40$ {V_{\text{p}}} $0.100.190.260.310.340.120.11
    s/mm36.229.224.121.119.317.921.1
    W/mm52.549.146.344.142.327.925.4
    DownLoad: CSV
    Baidu
  • [1]

    Pfeiffer F, Weitkamp T, Bunk O, David C 2006 Nat. Phys. 2 258Google Scholar

    [2]

    Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E F, Brönnimann C, Grünzweig C, David C 2008 Nat. Mater. 7 134Google Scholar

    [3]

    Kai S, Lorenz B, Konstantin W, Michael C, Julia H, Pfeiffer F 2016 Nat. Commun. 7 10863Google Scholar

    [4]

    Yan A, Wu X, Liu H 2016 Opt. Express 24 15927Google Scholar

    [5]

    Wang Z L, Shi X M, Ren K, Chen H, Ren Y Q, Gao K, Wu Z 2020 J. Synchrotron Radiat. 27 494Google Scholar

    [6]

    Vila-Comamala J, Romano L, Jefimovs K, Dejea H, Bonnin A, Cook A C, Planinc I, Cikes M, Wang Z, Stampanoni M 2021 Opt. Express 29 2049Google Scholar

    [7]

    Shi Z, Jefimovs K, Romano L, Vila-Comamala J, Stampanoni M 2021 Opt. Lett. 46 3693Google Scholar

    [8]

    Xu J Q, Wang Z T, Stefano V G, Michał R, Simon S, Stampanoni M 2022 Opt. Express 30 13847Google Scholar

    [9]

    Seifert M, Ludwig V, Kaeppler S, Horn F, Meyer P, Pelzer G, Rieger J, Sand D, Michel T, Mohr J, Riess C, Anton G 2019 Sci. Rep. 9 4199Google Scholar

    [10]

    戚俊成, 陈荣昌, 刘宾, 陈平, 杜国浩, 肖体乔 2017 66 054202Google Scholar

    Qi J C, Chen R C, Liu B, Chen P, Du G H, Xiao T Q 2017 Acta Phys. Sin. 66 054202Google Scholar

    [11]

    Wang Z L, Chen Z H, Gu Y, Chen H, Ge X 2023 Chin. Phys. B 32 038704Google Scholar

    [12]

    Wang Z L, Zhou R C, Zhao L M, Ren K, Xu W, Liu B, Chen H 2021 Chin. Phys. B 30 028702Google Scholar

    [13]

    杨君, 吴浩, 罗琨皓, 郭金川, 宗方轲 2021 70 104101Google Scholar

    Yang J, Wu H, Luo K H, Guo J C, Zong F K 2021 Acta Phys. Sin. 70 104101Google Scholar

    [14]

    Katharina H, Felix G, Thomas M, Konstantin W, Andre Y, Astrid Velroyen, Margarita B, Sigrid A, Maximilian F, Oliver E, Pfeiffer F, Yildirim A Ö 2018 Sci. Rep. 8 2096Google Scholar

    [15]

    Lorenzo M, Tamara S, Charlotte K, Marco E, Peter R, Glafkos H, Sam H, Bennie S, Alberto A, Oliver J 2021 Sci. Rep. 11 3663Google Scholar

    [16]

    Kagias M, Wang Z, Birkbak M E, Lauridsen E, Abis M, Lovric G, Jefimovs K, Stampanoni M 2019 Nat. Commun. 10 5130Google Scholar

    [17]

    Kim J, Kagias M, Marone F, Stampanoni M 2020 Appl. Phys. Lett. 116 134102Google Scholar

    [18]

    Momose A, Takano H, Wu Y, Hashimoto K, Samoto T, Hoshino M, Seki Y, Shinohara T 2020 Quantum Beam Sci. 4 9Google Scholar

    [19]

    Yan A, Wu X, Liu H 2018 Opt. Express 26 23142Google Scholar

    [20]

    Yan A, Wu X, Liu H 2020 J. X-Ray Sci. Technol. 28 1055Google Scholar

    [21]

    Ge Y S, Chen J W, Yang J C, Zhu P P, Zhang H T, Zhang A Z, Liang D 2021 Opt. Lett. 46 2791Google Scholar

    [22]

    Organista C, Kagias M, Tang R, Shi Z, Jefimovs K, Boone M, Stampanoni M 2023 Opt. Continuum 2 232Google Scholar

    [23]

    Tang R, Organista C, Goethals W, Stolp W, Stampanoni M, Aelterman J, Boone M N 2023 Opt. Express 31 1677Google Scholar

    [24]

    Kagias M, Wang Z, Jefimovs K, Stampanoni M 2017 Appl. Phys. Lett. 110 014105Google Scholar

    [25]

    Miao H, Panna A, Gomella A A, Bennett E E, Znati S, Chen L, Wen H 2016 Nat. Phys. 12 830Google Scholar

    [26]

    Thomas W, Peter B, Florian B, Jürgen D, Wilhelm H 2011 Med. Phys. 38 4133Google Scholar

    [27]

    Lei Y H, Liu X, Huang J H, Du Y, Guo J C, Zhao Z G, Li J 2018 J. Phys. D:Appl. Phys. 51 385302Google Scholar

    [28]

    Ge Y S, Chen J W, Zhu P P, Yang J, Deng S W, Shi W, Zhang K, Guo J C, Zhang H T, Zheng H R, Liang D 2020 Opt. Express 28 9786Google Scholar

    [29]

    Yaroshenko A, Bech M, Potdevin G, Malecki A, Biernath T, Wolf J, Tapfer A, Schüttler M, Meiser J, Kunka D, Amberger M, Mohr J, Pfeiffer F 2014 Opt. Express 22 547Google Scholar

    [30]

    Viermetz M, Gustschin N, Schmid C, Haeusele J, Noel P B, Proksa R, Loscher S, Koehler T, Pfeiffer F 2023 IEEE Trans. Med. Imaging. 42 220Google Scholar

    [31]

    Munro P, Ignatyev K, Speller R D, Olivo A 2010 Opt. Express 18 19681Google Scholar

    [32]

    Viermetz M, Gustschin N, Schmid C, Jakob H, Maximilian T, Pascal M, Frank B, Tobias L, Roland P, Thomas K, Franz P 2022 Proc. Natl. Acad. Sci. U. S. A. 119 e2118799119Google Scholar

    [33]

    Günther B, Hehn L, Jud C, Alexander H, Martin D, Pfeiffer F 2019 Nat. Commun. 10 2494Google Scholar

    [34]

    Shashev Y, Andreas K, Lange A, Müller, Bernd R, Giovanni B 2016 Mater. Test. 58 970Google Scholar

  • [1] Liao Ke-Liang, He Qi-Li, Song Yang, Li Rong-Gang, Song Mao-Hua, Li Pan-Yun, Zhao Hai-Feng, Liu Peng, Zhu Pei-Ping. Development of a transmission X-ray nanometer-resolution microscope based on laboratory light source. Acta Physica Sinica, 2024, 73(17): 178701. doi: 10.7498/aps.73.20240727
    [2] Zhou La-Zhen, Xia Wen-Jing, Xu Qian-Qian, Chen Zan, Li Fang-Zuo, Liu Zhi-Guo, Sun Tian-Xi. Micro cone-beam CT scanner based on X-ray polycapillary optics. Acta Physica Sinica, 2022, 71(9): 090701. doi: 10.7498/aps.71.20212195
    [3] Ju Xiao-Lu, Li Ke, Yu Fu-Cheng, Xu Ming-Wei, Deng Biao, Li Bin, Xiao Ti-Qiao. Move contrast X-ray imaging of electrochemical reaction process in electrolytic cell. Acta Physica Sinica, 2022, 71(14): 144101. doi: 10.7498/aps.71.20220339
    [4] Sun Chen, Feng Yu-Tao, Fu Di, Zhang Ya-Fei, Li Juan, Liu Xue-Bin. A propagation of interferogram signal-to-noise (SNR) and phase uncertainty in Doppler asymmetric spatial heterodyne spectrometer. Acta Physica Sinica, 2020, 69(1): 014202. doi: 10.7498/aps.69.20191179
    [5] Qi Jun-Cheng, Liu Bin, Chen Rong-Chang, Xia Zheng-De, Xiao Ti-Qiao. X-ray three-dimensional imaging based on light field imaging technology. Acta Physica Sinica, 2019, 68(2): 024202. doi: 10.7498/aps.68.20181555
    [6] Li Shi-Yu,  Tian Jian-Feng,  Yang Chen,  Zuo Guan-Hua,  Zhang Yu-Chi,  Zhang Tian-Cai. Effect of detection efficiency on phase sensitivity in quantum-enhanced Mach-Zehnder interferometer. Acta Physica Sinica, 2018, 67(23): 234202. doi: 10.7498/aps.67.20181193
    [7] Rong Feng, Xie Yan-Na, Tai Xue-Feng, Geng Lei. Research on dual energy grating based X-ray phase contrast imaging. Acta Physica Sinica, 2017, 66(1): 018701. doi: 10.7498/aps.66.018701
    [8] Qi Jun-Cheng, Chen Rong-Chang, Liu Bin, Chen Ping, Du Guo-Hao, Xiao Ti-Qiao. Grating based X-ray phase contrast CT imaging with iterative reconstruction algorithm. Acta Physica Sinica, 2017, 66(5): 054202. doi: 10.7498/aps.66.054202
    [9] Liu Xin, Yi Ming-Hao, Guo Jin-Chuan. Line focal X-ray source imaging. Acta Physica Sinica, 2016, 65(21): 219501. doi: 10.7498/aps.65.219501
    [10] Du Yang, Liu Xin, Lei Yao-Hu, Huang Jian-Heng, Zhao Zhi-Gang, Lin Dan-Ying, Guo Jin-Chuan, Li Ji, Niu Han-Ben. Quantitative analysis of the field of view for X-ray differential phase contrast imaging. Acta Physica Sinica, 2016, 65(5): 058701. doi: 10.7498/aps.65.058701
    [11] Tan Lin-Qiu, Hua Deng-Xin, Wang Li, Gao Fei, Di Hui-Ge. Wind velocity retrieval and field widening techniques of fringe-imaging Mach-Zehnder interferometer for Doppler lidar. Acta Physica Sinica, 2014, 63(22): 224205. doi: 10.7498/aps.63.224205
    [12] Qi Jun-Cheng, Ye Lin-Lin, Chen Rong-Chang, Xie Hong-Lan, Ren Yu-Qi, Du Guo-Hao, Deng Biao, Xiao Ti-Qiao. Coherence of X-ray in the third synchrotron radiation source. Acta Physica Sinica, 2014, 63(10): 104202. doi: 10.7498/aps.63.104202
    [13] Du Yang, Lei Yao-Hu, Liu Xin, Guo Jin-Chuan, Niu Han-Ben. Theoretical and experimental study of two-phase-stepping approach for hard X-ray differential phase contrast imaging. Acta Physica Sinica, 2013, 62(6): 068702. doi: 10.7498/aps.62.068702
    [14] Chen Xiao-Hu, Wang Xiao-Fang, Zhang Wei-Wei, Wang Wen-Hui. Analysis of imaging an extended X-ray source by using a Fresnel phase zone plate. Acta Physica Sinica, 2013, 62(1): 015208. doi: 10.7498/aps.62.015208
    [15] Dai Hai-Shan, Zhang Chun-Min, Mu Ting-Kui. Research of secondary fringes in field-widened achromatic, temperature-compensated wind, imaging interferometer (FATWindII). Acta Physica Sinica, 2012, 61(22): 224201. doi: 10.7498/aps.61.224201
    [16] Yang Qiang, Liu Xin, Guo Jin-Chuan, Lei Yao-Hu, Huang Jian-Heng, Niu Han-Ben. Experimental study of X-ray phase contrast imaging without absorbing grating. Acta Physica Sinica, 2012, 61(16): 160702. doi: 10.7498/aps.61.160702
    [17] Li Jing, Ning Ti-Gang, Pei Li, Zhou Qian, Hu Xu-Dong, Qi Chun-Hui, Gao Song, Yang Long. Fabrication of triangular chirped fiber Bragg grating and its application in single-sideband modulation based radio over fiber system. Acta Physica Sinica, 2011, 60(5): 054203. doi: 10.7498/aps.60.054203
    [18] Wang Xiao-Fang, Wang Jing-Yu. Analysis of high-resolution X-ray imaging of an inertial-confinement-fusion target by using a Fresnel zone plate. Acta Physica Sinica, 2011, 60(2): 025212. doi: 10.7498/aps.60.025212
    [19] Chen Bo, Zhu Pei_Ping, Liu Yi-Jin, Wang Jun-Yue, Yuan Qing_Xi, Huang Wan_Xia, Ming Hai, Wu Zi-Yu. Theory and method of X_ray grating phase contrast imaging. Acta Physica Sinica, 2008, 57(3): 1576-1581. doi: 10.7498/aps.57.1576
    [20] SHU XUE-WEN, HUANG DE-XIU, DENG GUI-HUA, SHI WEI, JIANG SHAN. THEORETICAL AND EXPERIMENTAL INVESTIGATIONS ON SAGNAC INTERFEROMETER BASED ON SI NGLE OPTICAL FIBER GRATING. Acta Physica Sinica, 2000, 49(9): 1731-1735. doi: 10.7498/aps.49.1731
Metrics
  • Abstract views:  2713
  • PDF Downloads:  61
  • Cited By: 0
Publishing process
  • Received Date:  27 March 2023
  • Accepted Date:  27 April 2023
  • Available Online:  13 May 2023
  • Published Online:  20 July 2023

/

返回文章
返回
Baidu
map