Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Image quality analysis method under background radiation in turbid atmosphere

Zheng Xin Wu Peng-Fei Rao Rui-Zhong

Citation:

Image quality analysis method under background radiation in turbid atmosphere

Zheng Xin, Wu Peng-Fei, Rao Rui-Zhong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Image quality is seriously degraded when propagating through the turbid atmosphere. It is practical to characterize the degradation process in terms of modulation transfer function (MTF). The MTF can describe the effect of the turbid medium on imaging quantitatively in spatial frequency domain, including attenuation and multiple scattering. It is inherent property of the turbid medium. The whole spatial frequency characteristic of the turbid atmosphere MTF can be acquired through the equivalence principle, i, e., the equivalence between the MTF of a turbid medium and the transmitted radiance from the medium under isotropic diffuse illumination. In practice, the image quality is not only affected by the turbid medium MTF but also related tightly to the background radiation. The influence of scattered background radiation on imaging was almost not considered in the past when dealing with the imaging problem in the turbid atmosphere. In this paper, this issue is considered in detail. The analysis results demonstrate that the scattered background radiation increases the zero frequency component of image in spatial frequency domain. As a result, it degrades the image contrast seriously in spatial domain. Based on the optical model of image degradation in the atmosphere, the theoretical analysis is carried out to study the image quality degradation process in spatial frequency domain. The formalized MTF is proposed, which considers the effects of attenuation, multiple scattering and scattered background radiation by the turbid medium on image quality. The quantitative relation among the formalized MTF, turbid medium MTF and background radiation is confirmed. Image blur simulations show that the results from the formalized MTF are more consistent with actual scenes than results only from turbid medium MTF. Thus, the formalized MTF can describe the image degradation process through atmosphere comprehensively. The image restoration results indicate that the formalized MTF method performs better than dark channel prior method. In order to evaluate different image restoration methods effectively in spatial frequency domain, spectrum area (AS) is proposed. The AS is the area of middle-high frequency information of the region of interest in restored image. So AS can represent the scene details in the restored image. The higher the AS, the better the image quality is, which is demonstrated in this paper. In conclusion, the formalized MTF provides a more effective method for image quality analysis and assessment. Additionally, it also supplies a new standpoint for researching atmospheric degradation mechanism and correction method for imaging in turbid atmosphere. Then, AS can be an effective reference for correction to the method evaluation.
      Corresponding author: Wu Peng-Fei, wupengfei@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41505023).
    [1]

    Eismann M T 2012 Hyperspectral Remote Sensing (Washington:SPIE Press) pp1-81

    [2]

    Wang Z, Alan C B 2006 Modern Image Quality Assessment (USA:Morgan Claypool Publishers) pp33-36

    [3]

    Xiong X H 2004 Sci. Survey. Map. 29 1 (in Chinese)[熊兴华 2004 测绘科学 29 1]

    [4]

    Rao R Z 2012 Modern Atmospheric Optics (Beijing:Science Press) pp514-543 (in Chinese)[饶瑞中 2012 现代大气光学 (北京:科学出版社) 第514543页]

    [5]

    LeMaster D A, Esimann M T 2012 Proc. SPIE 8355 1

    [6]

    Esimann M T, LeMaster D A 2013 Opt. Eng. 52 046201

    [7]

    Lutomirski R F 1978 Appl. Opt. 17 3915

    [8]

    Kopeika N S 1982 J. Opt. Soc. Am. 72 548

    [9]

    Sadot D, Kopeika N S 1993 J. Opt. Soc. Am. A 10 172

    [10]

    Wells W H 1969 J. Opt. Soc. Am. 59 686

    [11]

    Kuga Y, Ishimaru A 1986 Appl. Opt. 25 4382

    [12]

    Rao R Z 2012 Chin. Opt. Lett. 10 020101

    [13]

    Wu P F 2013 Ph. D. Dissertation (Beijing:University of Chinese Academy of Sciences) (in Chinese)[武鹏飞 2013 博士学位论文(北京:中国科学院大学)]

    [14]

    Henyey L G, Greenstein J L 1941 Astrophys. J. 93 70

    [15]

    Narasimhan S G, Nayar S K 2003 IEEE Trans. PAMI 25 713

    [16]

    Norman S K 1998 A System Engineering Approach to Imaging (Washington:SPIE Press) pp517-541

    [17]

    Gerald C H (translated by Yan J X, Yu X, Xie T B, Yao H J) 2015 Electro-Optical Imaging System Performance (Fourth Edition)(Beijing:National Defense Industry Press) pp121-141 (in Chinese)[Gerald C H (阎吉祥, 俞信, 解天宝, 姚和军 译) 2015 光电成像系统性能(第四版)(北京:国防工业出版社)第121141页]

    [18]

    He K M, Sun J, Tang X O 2009 IEEE Trans. PAMI 33 2341

    [19]

    He K M, Sun J, Tang X O 2013 IEEE Trans. PAMI 35 1397

    [20]

    Gonzalez R C, Woods R E 2002 Digital Image Processing (Second Edition)(New Jersey:Prentice Hall) pp261-265

  • [1]

    Eismann M T 2012 Hyperspectral Remote Sensing (Washington:SPIE Press) pp1-81

    [2]

    Wang Z, Alan C B 2006 Modern Image Quality Assessment (USA:Morgan Claypool Publishers) pp33-36

    [3]

    Xiong X H 2004 Sci. Survey. Map. 29 1 (in Chinese)[熊兴华 2004 测绘科学 29 1]

    [4]

    Rao R Z 2012 Modern Atmospheric Optics (Beijing:Science Press) pp514-543 (in Chinese)[饶瑞中 2012 现代大气光学 (北京:科学出版社) 第514543页]

    [5]

    LeMaster D A, Esimann M T 2012 Proc. SPIE 8355 1

    [6]

    Esimann M T, LeMaster D A 2013 Opt. Eng. 52 046201

    [7]

    Lutomirski R F 1978 Appl. Opt. 17 3915

    [8]

    Kopeika N S 1982 J. Opt. Soc. Am. 72 548

    [9]

    Sadot D, Kopeika N S 1993 J. Opt. Soc. Am. A 10 172

    [10]

    Wells W H 1969 J. Opt. Soc. Am. 59 686

    [11]

    Kuga Y, Ishimaru A 1986 Appl. Opt. 25 4382

    [12]

    Rao R Z 2012 Chin. Opt. Lett. 10 020101

    [13]

    Wu P F 2013 Ph. D. Dissertation (Beijing:University of Chinese Academy of Sciences) (in Chinese)[武鹏飞 2013 博士学位论文(北京:中国科学院大学)]

    [14]

    Henyey L G, Greenstein J L 1941 Astrophys. J. 93 70

    [15]

    Narasimhan S G, Nayar S K 2003 IEEE Trans. PAMI 25 713

    [16]

    Norman S K 1998 A System Engineering Approach to Imaging (Washington:SPIE Press) pp517-541

    [17]

    Gerald C H (translated by Yan J X, Yu X, Xie T B, Yao H J) 2015 Electro-Optical Imaging System Performance (Fourth Edition)(Beijing:National Defense Industry Press) pp121-141 (in Chinese)[Gerald C H (阎吉祥, 俞信, 解天宝, 姚和军 译) 2015 光电成像系统性能(第四版)(北京:国防工业出版社)第121141页]

    [18]

    He K M, Sun J, Tang X O 2009 IEEE Trans. PAMI 33 2341

    [19]

    He K M, Sun J, Tang X O 2013 IEEE Trans. PAMI 35 1397

    [20]

    Gonzalez R C, Woods R E 2002 Digital Image Processing (Second Edition)(New Jersey:Prentice Hall) pp261-265

  • [1] Huo Yong-Gang, Yan Jiang-Yu, Zhang Quan-Hu. Image quality evaluation of multimodal imaging of muon. Acta Physica Sinica, 2022, 71(2): 021401. doi: 10.7498/aps.71.20211083
    [2] Zhou La-Zhen, Xia Wen-Jing, Xu Qian-Qian, Chen Zan, Li Fang-Zuo, Liu Zhi-Guo, Sun Tian-Xi. Micro cone-beam CT scanner based on X-ray polycapillary optics. Acta Physica Sinica, 2022, 71(9): 090701. doi: 10.7498/aps.71.20212195
    [3] Deng Wen-Juan, Zhu Bin, Wang Zhuang-Fei, Peng Xin-Cun, Zou Ji-Jun. Resolution characteristics of varying doping and varying composition AlxGa1–xAs/GaAs reflective photocathodes. Acta Physica Sinica, 2022, 71(15): 157901. doi: 10.7498/aps.71.20220244
    [4] Image Quality Evaluation of Multi-modal Imaging of Muon. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211083
    [5] Liu Shang-Kuo, Wang Tao, Li Kun, Cao Kun, Zhang Xi-Bin, Zhou Yan, Zhao Jian-Ke, Yao Bao-Li. Influence of spectral characteristics of light sources on measuring space camera modulation transfer function. Acta Physica Sinica, 2021, 70(13): 134208. doi: 10.7498/aps.70.20201575
    [6] Zhang Mei, Li Kui-Nian, Li Yang, Sheng Liang, Zhang Yan-Hong. Spatial resolution of novel liquid scintillating capillary array. Acta Physica Sinica, 2020, 69(6): 062801. doi: 10.7498/aps.69.20191545
    [7] Hao Wei-Qian, Liang Zhong-Cheng, Liu Xiao-Yao, Zhao Rui, Kong Mei-Mei, Guan Jian-Fei, Zhang Yue. Imaging performance of fractal structuresparse aperture arrays. Acta Physica Sinica, 2019, 68(19): 199501. doi: 10.7498/aps.68.20190818
    [8] Zhang Min-Rui, He Zheng-Quan, Wang Tao, Tian Jin-Shou. Analysis of the influence of diattenuation on optical imaging system by using the theory of vector plane wave spectrum. Acta Physica Sinica, 2017, 66(8): 084202. doi: 10.7498/aps.66.084202
    [9] Duan Ya-Xuan, Liu Shang-Kuo, Chen Yong-Quan, Xue Xun, Zhao Jian-Ke, Gao Li-Min. A method to measure the modulation transfer function of Bayer filter color camera. Acta Physica Sinica, 2017, 66(7): 074204. doi: 10.7498/aps.66.074204
    [10] Yuan Zheng, Dong Jian-Jun, Li Jin, Chen Tao, Zhang Wen-Hai, Cao Zhu-Rong, Yang Zhi-Wen, Wang Jing, Zhao Yang, Liu Shen-Ye, Yang Jia-Min, Jiang Shao-En. Calibration of the dynamic spatial resolution of framing image-converter. Acta Physica Sinica, 2016, 65(9): 095202. doi: 10.7498/aps.65.095202
    [11] Zhang Yu, Liu Bing-Qi, Yan Zong-Qun, Hua Wen-Shen, Li Gang. Influence of background radiation on the precision of passive ranging. Acta Physica Sinica, 2015, 64(3): 034216. doi: 10.7498/aps.64.034216
    [12] Deng Wen-Juan, Peng Xin-Cun, Zou Ji-Jun, Jiang Shao-Tao, Guo Dong, Zhang Yi-Jun, Chang Ben-Kang. Resolution characteristic of graded band-gap AlGaAs/GaAs transmission-mode photocathodes. Acta Physica Sinica, 2014, 63(16): 167902. doi: 10.7498/aps.63.167902
    [13] Xiao Xiao, Zhang Zhi-You, Xiao Zhi-Gang, Xu De-Fu, Deng Chi. The study on optical transfer function of silver superlens. Acta Physica Sinica, 2012, 61(11): 114201. doi: 10.7498/aps.61.114201
    [14] Yuan Yong-Teng, Hao Yi-Dan, Hou Li-Fei, Tu Shao-Yong, Deng Bo, Hu Xin, Yi Rong-Qing, Cao Zhu-Rong, Jiang Shao-En, Liu Shen-Ye, Ding Yong-Kun, Miao Wen-Yong. The study of hydrodynamic instability growth measurement. Acta Physica Sinica, 2012, 61(11): 115203. doi: 10.7498/aps.61.115203
    [15] Zhang Rong-Fu, Wang Tao, Pan Chao, Wang Liang-Liang, Zhuang Song-Lin. Extension characteristics of the depth of field for wavefront coding system. Acta Physica Sinica, 2011, 60(11): 114204. doi: 10.7498/aps.60.114204
    [16] Xiangli Bin, Yuan Yan, Lü Qun-Bo. Spectral transfer function of the Fourier transform spectral imager. Acta Physica Sinica, 2009, 58(8): 5399-5405. doi: 10.7498/aps.58.5399
    [17] Zou Ji-Jun, Chang Ben-Kang, Yang Zhi, Zhang Yi-Jun, Qiao Jian-Liang. Resolution characteristic of exponential-doping GaAs photocathodes. Acta Physica Sinica, 2009, 58(8): 5842-5846. doi: 10.7498/aps.58.5842
    [18] Qi Xun-Jun, Lin Bin, Cao Xiang-Qun, Chen Yu-Qing. Study of modular transfer function-based optieal low-pass filter evaluation model and experiment. Acta Physica Sinica, 2008, 57(5): 2854-2859. doi: 10.7498/aps.57.2854
    [19] Tian Jin-Shou, Zhao Bao-Sheng, Wu Jian-Jun, Zhao Wei, Liu Yun-Quan, Zhang Jie. Theoretical calculation of the modulation transfer function in a femoto-second electron diffraction system. Acta Physica Sinica, 2006, 55(7): 3368-3374. doi: 10.7498/aps.55.3368
    [20] XIANG JI-YING, WU ZHEN, ZENG SHAO-QUN, LUO QING-MING, ZHANG PING, HUANG DE-XIU. ANALYSIS OF 3D TRANSFER FUNCTIONS OF OPTICAL COHERENCE TOMOGRAPHY. Acta Physica Sinica, 1999, 48(10): 1831-1838. doi: 10.7498/aps.48.1831
Metrics
  • Abstract views:  6140
  • PDF Downloads:  146
  • Cited By: 0
Publishing process
  • Received Date:  10 December 2017
  • Accepted Date:  08 February 2018
  • Published Online:  20 April 2019

/

返回文章
返回
Baidu
map