Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of the influence of diattenuation on optical imaging system by using the theory of vector plane wave spectrum

Zhang Min-Rui He Zheng-Quan Wang Tao Tian Jin-Shou

Citation:

Analysis of the influence of diattenuation on optical imaging system by using the theory of vector plane wave spectrum

Zhang Min-Rui, He Zheng-Quan, Wang Tao, Tian Jin-Shou
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In most of the researches of polarization aberration, the influence of diattenuation is not large enough to affect imaging quality evidently. However, the modulation transfer function decreases when optical elements with complex planar dielectric structures and low transmittance, such as beam-splitter and optical modulator, are introduced into an imaging system. In this paper, a vector optical model in Descartes coordinate system is proposed based on the concept of vector plane wave spectrum (VPWS). The results of calculation show that the VPWS model is consistent with Debye model. Compared with Debye vector diffraction integral, the VPWS method is more suitable to the description of the PA introduced by planar optical device with opaque mask, such as larger surface quantum-confined-stark-effect electro-absorption modulator, which is used to modulate the light collected by optical antenna of time-of-flight (TOF) depth system or modulating-retroreflector free-space-optical communication system. In order to simplify the calculation and obtain the conclusion of the change in imaging quality directly, the formula of optical transfer function is decomposed into three parts (TE component, TM component and the correlation of them) instead of polynomial expansion of pupil function. The influences of diattenuation on MTF is studied globally and locally in a range of cut-off frequency of optical imaging system (2NA/ ). Allowance of diattenuation is analysed by numerical calculation, and a mathematical expression is derived. The result shows that the change of diattenuation can be neglected when the spatial frequency v is less than 0.2NA/, and the range of allowance decreases with the increase of spatial frequency. According to numerical calculation shown in Fig.7 and the derived formulas (15) and (16), the ratios of reflection/transmission coefficient of s-light and p-light D should range respectively from 0.63 to 1.6(0.2NA/ v 0.8NA/) and from 0.9 to 1.11(v0.8NA/ ) when the MTF is required to be not less than 90% of the value in ideal diffraction-limited system. The range of allowance becomes larger gradually with the increase of angle n between the normal of optical interface n and the optical axis of imaging system z. If a polarization beam splitter is considered, D,n sin-1 NA should be greater than 1-3.
      Corresponding author: Zhang Min-Rui, m_rzhang@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.11274377) and the State Major Research Equipment Project, China (Grant No. ZDY2011-2).
    [1]

    Yu D Y, Dan H Y 2000 Engineering Optics (Beijing: China Machine Press) p176 (in Chinese) [郁道银, 淡恒英 2000 工程光学 (北京: 机械工业出版社) 第176页]

    [2]

    Richards B, Wolf E 1959 Proc R. Soc. Lon. Ser. A 253 358

    [3]

    Cooper1 I J, Royl M, Sheppard C J R 2005 Opt. Express 13 1066

    [4]

    Lindlein N, Quabis S, Peschel U, Leuchs G 2007 Opt. Express 15 5827

    [5]

    Pang W B, Cen Z F, Li X T, Qian W, Shang H B, Xu W C 2012 Acta Phys. Sin. 61 234202 (in Chinese) [庞武斌, 岑兆丰, 李晓彤, 钱炜, 尚红波, 徐伟才 2012 61 234202]

    [6]

    Chipman R A 1989 Proc. SPIE 861 10

    [7]

    Totzeck M, Graupner P, Heil T, Gohnermeier, Dittmann O, Krahmer D, Kamenov V, Ruoff J, Flagello D 2005 Proc. SPIE 5754 23

    [8]

    Xu X R, Huang W, Xu M F 2015 Opt. Express 23 27911

    [9]

    Xu X R, Huang W, Xu M F 2016 Opt. Express 24 4906

    [10]

    Tu Y Y, Wang X Z, Li S K, Cao Y T 2012 Opt. Lett. 37 2061

    [11]

    Shen L N, Li S K, Wang X Z, Yan G Y 2015 Acta Opt. Sin. 35 0611003 (in Chinese) [沈丽娜, 李思坤, 王向朝, 闫观勇 2015 光学学报 35 0611003]

    [12]

    Li Y H, Hao X, Shi Z Y, Shuai S J, Wang L 2015 Acta Phys. Sin. 64 154214 (in Chinese) [李旸晖, 郝翔, 史召邑, 帅少杰, 王乐 2015 64 154214]

    [13]

    Park Y H, Cho Y C, You J W, Park C Y, Yoon H S, Lee S H, Kwon J O, Lee S W 2012 Proc. SPIE 8252 82520X

    [14]

    Park Y H, Cho Y C, You J W, Park C Y, Yoon H S, Lee S H, Kwon J O, Lee S W 2013 J. Micro Nanolithogr. MEMS MOEMS 12 023011

    [15]

    Rabinovich W S, Goetz P G, Mahon R, Swingen L, Murphy J, Ferraro M, Burris H R, Moore C I, Suite M, Gilbreath G C, Binari S 2007 Opt. Eng. 46 104001

    [16]

    Yamanishi M, Suemune I 1984 Jpn. J. Appl. Phys. 23 35

    [17]

    Guo H M, Chen J B, Zhuang S L 2006 Opt. Express 14 2095

    [18]

    Melamed T 2011 J. Opt. Soc. Am. A 28 401

    [19]

    Wood T H 1988 J. Lightwave Technol. 6 743

    [20]

    Kan Y, Nagai H, Yamanishi M, Suemune I 1988 IEEE J. Quantum Electron. 23 2167

    [21]

    Goodman 1968 Introduction to Fourier Optics (New York: McGraw-Hill) p98

    [22]

    Na B H, Ju G W, Choi H J, Cho Chul Yong, Park Y H, Park C Y, Lee Y T 2012 Opt. Express 20 19511

    [23]

    Na B H, Ju G W, Choi H J, Cho Y C, Park Y H, Lee Y T 2012 Opt. Express 20 6003

  • [1]

    Yu D Y, Dan H Y 2000 Engineering Optics (Beijing: China Machine Press) p176 (in Chinese) [郁道银, 淡恒英 2000 工程光学 (北京: 机械工业出版社) 第176页]

    [2]

    Richards B, Wolf E 1959 Proc R. Soc. Lon. Ser. A 253 358

    [3]

    Cooper1 I J, Royl M, Sheppard C J R 2005 Opt. Express 13 1066

    [4]

    Lindlein N, Quabis S, Peschel U, Leuchs G 2007 Opt. Express 15 5827

    [5]

    Pang W B, Cen Z F, Li X T, Qian W, Shang H B, Xu W C 2012 Acta Phys. Sin. 61 234202 (in Chinese) [庞武斌, 岑兆丰, 李晓彤, 钱炜, 尚红波, 徐伟才 2012 61 234202]

    [6]

    Chipman R A 1989 Proc. SPIE 861 10

    [7]

    Totzeck M, Graupner P, Heil T, Gohnermeier, Dittmann O, Krahmer D, Kamenov V, Ruoff J, Flagello D 2005 Proc. SPIE 5754 23

    [8]

    Xu X R, Huang W, Xu M F 2015 Opt. Express 23 27911

    [9]

    Xu X R, Huang W, Xu M F 2016 Opt. Express 24 4906

    [10]

    Tu Y Y, Wang X Z, Li S K, Cao Y T 2012 Opt. Lett. 37 2061

    [11]

    Shen L N, Li S K, Wang X Z, Yan G Y 2015 Acta Opt. Sin. 35 0611003 (in Chinese) [沈丽娜, 李思坤, 王向朝, 闫观勇 2015 光学学报 35 0611003]

    [12]

    Li Y H, Hao X, Shi Z Y, Shuai S J, Wang L 2015 Acta Phys. Sin. 64 154214 (in Chinese) [李旸晖, 郝翔, 史召邑, 帅少杰, 王乐 2015 64 154214]

    [13]

    Park Y H, Cho Y C, You J W, Park C Y, Yoon H S, Lee S H, Kwon J O, Lee S W 2012 Proc. SPIE 8252 82520X

    [14]

    Park Y H, Cho Y C, You J W, Park C Y, Yoon H S, Lee S H, Kwon J O, Lee S W 2013 J. Micro Nanolithogr. MEMS MOEMS 12 023011

    [15]

    Rabinovich W S, Goetz P G, Mahon R, Swingen L, Murphy J, Ferraro M, Burris H R, Moore C I, Suite M, Gilbreath G C, Binari S 2007 Opt. Eng. 46 104001

    [16]

    Yamanishi M, Suemune I 1984 Jpn. J. Appl. Phys. 23 35

    [17]

    Guo H M, Chen J B, Zhuang S L 2006 Opt. Express 14 2095

    [18]

    Melamed T 2011 J. Opt. Soc. Am. A 28 401

    [19]

    Wood T H 1988 J. Lightwave Technol. 6 743

    [20]

    Kan Y, Nagai H, Yamanishi M, Suemune I 1988 IEEE J. Quantum Electron. 23 2167

    [21]

    Goodman 1968 Introduction to Fourier Optics (New York: McGraw-Hill) p98

    [22]

    Na B H, Ju G W, Choi H J, Cho Chul Yong, Park Y H, Park C Y, Lee Y T 2012 Opt. Express 20 19511

    [23]

    Na B H, Ju G W, Choi H J, Cho Y C, Park Y H, Lee Y T 2012 Opt. Express 20 6003

  • [1] Sun Sheng, Wang Chao, Shi Hao-Dong, Fu Qiang, Li Ying-Chao. Aberration correction of aperture-divided off-axis simultaneous polarization super-resolution imaging optical system. Acta Physica Sinica, 2022, 71(21): 214201. doi: 10.7498/aps.71.20220946
    [2] Zhou La-Zhen, Xia Wen-Jing, Xu Qian-Qian, Chen Zan, Li Fang-Zuo, Liu Zhi-Guo, Sun Tian-Xi. Micro cone-beam CT scanner based on X-ray polycapillary optics. Acta Physica Sinica, 2022, 71(9): 090701. doi: 10.7498/aps.71.20212195
    [3] Deng Wen-Juan, Zhu Bin, Wang Zhuang-Fei, Peng Xin-Cun, Zou Ji-Jun. Resolution characteristics of varying doping and varying composition AlxGa1–xAs/GaAs reflective photocathodes. Acta Physica Sinica, 2022, 71(15): 157901. doi: 10.7498/aps.71.20220244
    [4] Liu Shang-Kuo, Wang Tao, Li Kun, Cao Kun, Zhang Xi-Bin, Zhou Yan, Zhao Jian-Ke, Yao Bao-Li. Influence of spectral characteristics of light sources on measuring space camera modulation transfer function. Acta Physica Sinica, 2021, 70(13): 134208. doi: 10.7498/aps.70.20201575
    [5] Zhang Mei, Li Kui-Nian, Li Yang, Sheng Liang, Zhang Yan-Hong. Spatial resolution of novel liquid scintillating capillary array. Acta Physica Sinica, 2020, 69(6): 062801. doi: 10.7498/aps.69.20191545
    [6] Hao Wei-Qian, Liang Zhong-Cheng, Liu Xiao-Yao, Zhao Rui, Kong Mei-Mei, Guan Jian-Fei, Zhang Yue. Imaging performance of fractal structuresparse aperture arrays. Acta Physica Sinica, 2019, 68(19): 199501. doi: 10.7498/aps.68.20190818
    [7] Zheng Xin, Wu Peng-Fei, Rao Rui-Zhong. Image quality analysis method under background radiation in turbid atmosphere. Acta Physica Sinica, 2018, 67(8): 088701. doi: 10.7498/aps.67.20172625
    [8] Li Chun-Yan, Lu Wei-Guo, Qiao Lin. Analysis and research of polarization aberration in rapid space angle measuring system. Acta Physica Sinica, 2018, 67(3): 030703. doi: 10.7498/aps.67.20171702
    [9] Duan Ya-Xuan, Liu Shang-Kuo, Chen Yong-Quan, Xue Xun, Zhao Jian-Ke, Gao Li-Min. A method to measure the modulation transfer function of Bayer filter color camera. Acta Physica Sinica, 2017, 66(7): 074204. doi: 10.7498/aps.66.074204
    [10] Yuan Zheng, Dong Jian-Jun, Li Jin, Chen Tao, Zhang Wen-Hai, Cao Zhu-Rong, Yang Zhi-Wen, Wang Jing, Zhao Yang, Liu Shen-Ye, Yang Jia-Min, Jiang Shao-En. Calibration of the dynamic spatial resolution of framing image-converter. Acta Physica Sinica, 2016, 65(9): 095202. doi: 10.7498/aps.65.095202
    [11] Li Yang-Hui, Hao Xiang, Shi Zhao-Yi, Shuai Shao-Jie, Wang Le. Effect of coating-induced polarization aberrations on the focusing properties in high numerical aperture optical system. Acta Physica Sinica, 2015, 64(15): 154214. doi: 10.7498/aps.64.154214
    [12] Deng Wen-Juan, Peng Xin-Cun, Zou Ji-Jun, Jiang Shao-Tao, Guo Dong, Zhang Yi-Jun, Chang Ben-Kang. Resolution characteristic of graded band-gap AlGaAs/GaAs transmission-mode photocathodes. Acta Physica Sinica, 2014, 63(16): 167902. doi: 10.7498/aps.63.167902
    [13] Xiao Xiao, Zhang Zhi-You, Xiao Zhi-Gang, Xu De-Fu, Deng Chi. The study on optical transfer function of silver superlens. Acta Physica Sinica, 2012, 61(11): 114201. doi: 10.7498/aps.61.114201
    [14] Yuan Yong-Teng, Hao Yi-Dan, Hou Li-Fei, Tu Shao-Yong, Deng Bo, Hu Xin, Yi Rong-Qing, Cao Zhu-Rong, Jiang Shao-En, Liu Shen-Ye, Ding Yong-Kun, Miao Wen-Yong. The study of hydrodynamic instability growth measurement. Acta Physica Sinica, 2012, 61(11): 115203. doi: 10.7498/aps.61.115203
    [15] Zhang Rong-Fu, Wang Tao, Pan Chao, Wang Liang-Liang, Zhuang Song-Lin. Extension characteristics of the depth of field for wavefront coding system. Acta Physica Sinica, 2011, 60(11): 114204. doi: 10.7498/aps.60.114204
    [16] Zou Ji-Jun, Chang Ben-Kang, Yang Zhi, Zhang Yi-Jun, Qiao Jian-Liang. Resolution characteristic of exponential-doping GaAs photocathodes. Acta Physica Sinica, 2009, 58(8): 5842-5846. doi: 10.7498/aps.58.5842
    [17] Qi Xun-Jun, Lin Bin, Cao Xiang-Qun, Chen Yu-Qing. Study of modular transfer function-based optieal low-pass filter evaluation model and experiment. Acta Physica Sinica, 2008, 57(5): 2854-2859. doi: 10.7498/aps.57.2854
    [18] Tian Jin-Shou, Zhao Bao-Sheng, Wu Jian-Jun, Zhao Wei, Liu Yun-Quan, Zhang Jie. Theoretical calculation of the modulation transfer function in a femoto-second electron diffraction system. Acta Physica Sinica, 2006, 55(7): 3368-3374. doi: 10.7498/aps.55.3368
    [19] HUANG JING, LIANG RUI-SHENG, SITU DA, ZHANG KUN-MING, TANG ZHI-LIE. THE OPTICAL TRANSFER FUNCTION OF CONFOCAL SCANNING LASER MICROSCOPY WITH GAUSS SOURCE. Acta Physica Sinica, 1998, 47(8): 1289-1295. doi: 10.7498/aps.47.1289
    [20] XIMEN JI-YE, YAN JI-WEN, HUANG XU. ON ELECTRON OPTICAL TRANSFER FUNCTION AND IMPULSE RESPONSE IN THE PRESENCE OF SPHERICAL ABERRATION AND DEFOCUS. Acta Physica Sinica, 1985, 34(3): 348-358. doi: 10.7498/aps.34.348
Metrics
  • Abstract views:  7478
  • PDF Downloads:  203
  • Cited By: 0
Publishing process
  • Received Date:  12 October 2016
  • Accepted Date:  18 January 2017
  • Published Online:  05 April 2017

/

返回文章
返回
Baidu
map