-
调制传递函数(modulation transfer function, MTF)检测是评价空间相机像质的重要手段. 空间相机光学系统透过率和色差、探测器量子效率均与波长相关, 采用不同光谱特征的光源所得到的MTF会出现偏差, 光源光谱特性的影响不可忽略. 针对这一问题, 提出了一种分析光源光谱特性对空间相机MTF检测结果影响的方法, 设计了空间相机光谱响应率和单色PSF标定装置及方法. 利用所提方法及标定结果, 计算了五种光源检测空间相机MTF时的理论值, 发现氙灯和其他四种光源的MTF值偏差较大. 对比卤钨灯和氙灯检测MTF时的理论值, 发现卤钨灯所得MTF在全频段内均大于氙灯所获取的MTF, 二者之间的偏差在中高频处最大, 最大偏差为0.075. 搭建了实验装置, 分别采用卤钨灯和氙灯作为光源, 利用倾斜刃边法检测MTF, 发现二者所得MTF在各个频率点处的分布特征及偏差与理论计算结果相同, 且最大偏差为0.057. 理论及实验结果表明, 本文方法能够准确评估光源光谱特性对空间相机MTF检测的影响.Modulation transfer function (MTF) measurement is a major means to evaluate the imaging quality of a space camera. The influence caused by the spectral characteristic of light source on the MTF results is not negligible, because the transmittance and color aberration of optical systems, and quantum efficiency of the space camera detectors are all spectrally related. Thus, MTF results tested by different light sources are different from each other. To address this problem, we propose a method to analyze the influence of spectral characteristics of light sources on measuring the MTF of space cameras. In addition, the devices and methods are designed to calibrate the spectral response and monochrome point spread function (PSF) of space camera. A Sigma lens (focal length: 1000mm, F number: 5.6) and a Cannon EOS 5DSR camera (pixel size: 4.14 μm) are combined into an experimental space camera, whose spectral response is calibrated with a monochromator (Omno30300, NBeT) and a spectral radiometer (FieldSpec, ASD). We calibrate the monochrome PSF of the Sigma lens with the same monochromator and a CCD (PIXIS 1024, Princeton Instruments, pixel size: 13 μm) micro-measuring system (20X objective). During the calibration of spectral response and monochrome PSF, the same collimator (focus: 5000 mm, F number: 10) is used. With using the proposed method and those calibrating data, we compute the theoretical values of the MTF of a space camera measured separately with five different light sources. The results indicate that MTF measured by a xenon lamp is greatly different from those MTFs measured by the other four light sources. Comparisons of those theoretically calculated MTFs, separately, show that the MTF measured by a tungsten halogen lamp is greater than the MTF measured by a xenon lamp at each spatial frequency. The deviation between those two lamps reaches a maximum value of 0.075 in the medium-high frequency zone. Furthermore, in order to verify those theoretical conclusions, a platform including a collimator and the previous space camera is constructed. The MTFs measured by a tungsten halogen lamp and a xenon lamp are computed with the slanted-edge method respectively. The results demonstrate that the distributions and deviations of the MTFs tested by those two lamps are identical to those theoretical results at each spatial frequency, with the maximum deviation being 0.057. The theoretical and experimental results demonstrate that the suggested method can accurately calculate the influence of spectral characteristics of light sources on measuring MTF of space cameras. The proposed method can also be adopted to investigate the influence of spectral characteristics of light sources on MTF of optical systems in the design or test stages.
-
Keywords:
- optical test /
- modulation transfer function /
- space camera /
- spectral characteristic of light sources
[1] 吕乃光 2011 傅里叶光学(第2版)(北京: 机械工业出版社) 第50−52页
Lü N G 2011 Fourier Optics (2nd Ed.) (Beijing: China Machine Press) pp50−52 (in Chinese)
[2] Xie X F, Fan H D, Wang A D, Zou N Y, Zhang Y C 2018 Appl. Opt. 57 6552Google Scholar
[3] Kenichiro M 2019 Opt. Express 27 1345Google Scholar
[4] Jeffrey T O, Richard L E, Eddie L J 2007 Opt. Eng. 46 16403Google Scholar
[5] Zhou Z X, Gao F, Zhao H J, Zhang L X, Ren L Q, Li Z, Muhammad U G, Liu H 2014 Opt. Express 22 2244Google Scholar
[6] Fang Y C, Tsay H L, Huang G Y 2014 Appl. Opt. 53 195Google Scholar
[7] ISO Standard 15529 2015 Optics and Photonics-Optical Transfer Function-Principles of Measurement of Modulation Transfer Function (MTF) of Sampled Imaging Systems
[8] Glenn D B, Sidney Y 1995 Appl. Opt. 34 8050Google Scholar
[9] David N S, James S G, Regina K F 1995 Appl. Opt. 34 746Google Scholar
[10] 吕恒毅, 薛旭成, 赵运隆, 韩诚山 2015 光学精密工程 23 1484Google Scholar
Lü H Y, Xue X C, Zhao Y L, Han C S 2015 Opt. Prec. Eng. 23 1484Google Scholar
[11] 段亚轩, 刘尚阔, 陈永权, 薛勋, 赵建科, 高立民 2017 66 351Google Scholar
Duan Y X, Liu S K, Chen Y Q, Xue X, Zhao J K, Gao L M 2017 Acta Phys. Sin. 66 351Google Scholar
[12] Peter D B 2000 Proc. IS&T PICS Conf Portland, USA, January 1, 2000 p135
[13] ISO Standard 12233 2017 Photography-Electronic Still Picture Imaging-Resolution and Spatial Frequency Responses
[14] Don W, Peter D B 2014 IS&T/SPIE Electronic Imaging San Francisco, USA, February 3, 2014 p901605
[15] 周川杰, 吕政欣, 产晓冰, 李显斌 2011 航天返回与遥感 32 33Google Scholar
Zhou C J, Lü Z X, Chan X B, Li X B 2011 Spacecraft Recov. Remot. Sens. 32 33Google Scholar
[16] Alexis P T, Jonathan M M 1995 Opt. Eng. 34 1808Google Scholar
[17] Li T C, Feng H J 2009 Sixth International Symposium on Multispectral Image Processing and Pattern Recognition Yichang, China, October 30, 2009 p74981
[18] Li T C, Feng H J Xu Z H 2011 Chin. Opt. Lett. 9 031101Google Scholar
[19] 袁航飞, 郭永飞, 司国良, 李云飞, 曲立新 2015 光学学报 35 172Google Scholar
Yuan H F, Guo Y F, Si G L, Li Y F, Qu L X 2015 Acta Opt. Sin. 35 172Google Scholar
[20] Duan Y X, Xu S B, Yuan S C, Chen Y Q, Li H G, Da Z S, Gao L M 2018 Opt. Eng. 57 14103Google Scholar
[21] Xie X F, Fan H D, Wang H Y, Wang Z B, Zou N Y 2018 Appl. Opt. 57 B83Google Scholar
[22] Kenichiro M, Yamashita T, Nishida Y, Sugawara M 2014 Opt. Express 22 6040Google Scholar
[23] GB/T 30697 2014 星载大视场多光谱相机性能测试方法
GB/T 30697 2014 Test Methods of Characteristics for Spaceborne Multispectral Camera with Wide Field of View (in Chinese)
[24] 李坤, 陈永权, 赵建科, 段亚轩, 李巧玲, 潘亮, 龙江波, 张海洋 2015 光学精密工程 23 2482Google Scholar
Li K, Chen Y Q, Zhao J K, Duan Y X, Li Q L, Pan L, Long J B, Zhang H Y 2015 Opt. Prec. Eng. 23 2482Google Scholar
[25] Battula T, Georgiev T, Gille J, Sergio G 2018 J. Electron. Imaging 27 13015Google Scholar
-
表 1 卤钨灯和氙灯所得MTF理论值及其偏差
Table 1. Theoretical values and its deviation between the MTF measured with a tungsten halogen lamp and a xenon lamp.
光源 不同空间频率处的MTF ${f_c}/4$ ${f_c}/2$ $3{f_c}/4$ ${f_c}$ 卤钨灯 0.784 0.377 0.153 0.124 氙灯 0.750 0.302 0.091 0.089 卤钨灯与氙灯
间MTF偏差0.033 0.075 0.062 0.036 表 2 卤钨灯和氙灯光源所得MTF检测结果及其偏差
Table 2. Test results and its deviation between the MTF measured with slanted-edge method by using a tungsten halogen lamp and a xenon lamp.
光源 不同空间频率处的MTF ${f_c}/4$ ${f_c}/2$ $3{f_c}/4$ ${f_c}$ 卤钨灯 0.460 0.248 0.091 0.053 氙灯 0.428 0.191 0.058 0.020 卤钨灯与氙灯
间MTF偏差0.032 0.057 0.033 0.033 -
[1] 吕乃光 2011 傅里叶光学(第2版)(北京: 机械工业出版社) 第50−52页
Lü N G 2011 Fourier Optics (2nd Ed.) (Beijing: China Machine Press) pp50−52 (in Chinese)
[2] Xie X F, Fan H D, Wang A D, Zou N Y, Zhang Y C 2018 Appl. Opt. 57 6552Google Scholar
[3] Kenichiro M 2019 Opt. Express 27 1345Google Scholar
[4] Jeffrey T O, Richard L E, Eddie L J 2007 Opt. Eng. 46 16403Google Scholar
[5] Zhou Z X, Gao F, Zhao H J, Zhang L X, Ren L Q, Li Z, Muhammad U G, Liu H 2014 Opt. Express 22 2244Google Scholar
[6] Fang Y C, Tsay H L, Huang G Y 2014 Appl. Opt. 53 195Google Scholar
[7] ISO Standard 15529 2015 Optics and Photonics-Optical Transfer Function-Principles of Measurement of Modulation Transfer Function (MTF) of Sampled Imaging Systems
[8] Glenn D B, Sidney Y 1995 Appl. Opt. 34 8050Google Scholar
[9] David N S, James S G, Regina K F 1995 Appl. Opt. 34 746Google Scholar
[10] 吕恒毅, 薛旭成, 赵运隆, 韩诚山 2015 光学精密工程 23 1484Google Scholar
Lü H Y, Xue X C, Zhao Y L, Han C S 2015 Opt. Prec. Eng. 23 1484Google Scholar
[11] 段亚轩, 刘尚阔, 陈永权, 薛勋, 赵建科, 高立民 2017 66 351Google Scholar
Duan Y X, Liu S K, Chen Y Q, Xue X, Zhao J K, Gao L M 2017 Acta Phys. Sin. 66 351Google Scholar
[12] Peter D B 2000 Proc. IS&T PICS Conf Portland, USA, January 1, 2000 p135
[13] ISO Standard 12233 2017 Photography-Electronic Still Picture Imaging-Resolution and Spatial Frequency Responses
[14] Don W, Peter D B 2014 IS&T/SPIE Electronic Imaging San Francisco, USA, February 3, 2014 p901605
[15] 周川杰, 吕政欣, 产晓冰, 李显斌 2011 航天返回与遥感 32 33Google Scholar
Zhou C J, Lü Z X, Chan X B, Li X B 2011 Spacecraft Recov. Remot. Sens. 32 33Google Scholar
[16] Alexis P T, Jonathan M M 1995 Opt. Eng. 34 1808Google Scholar
[17] Li T C, Feng H J 2009 Sixth International Symposium on Multispectral Image Processing and Pattern Recognition Yichang, China, October 30, 2009 p74981
[18] Li T C, Feng H J Xu Z H 2011 Chin. Opt. Lett. 9 031101Google Scholar
[19] 袁航飞, 郭永飞, 司国良, 李云飞, 曲立新 2015 光学学报 35 172Google Scholar
Yuan H F, Guo Y F, Si G L, Li Y F, Qu L X 2015 Acta Opt. Sin. 35 172Google Scholar
[20] Duan Y X, Xu S B, Yuan S C, Chen Y Q, Li H G, Da Z S, Gao L M 2018 Opt. Eng. 57 14103Google Scholar
[21] Xie X F, Fan H D, Wang H Y, Wang Z B, Zou N Y 2018 Appl. Opt. 57 B83Google Scholar
[22] Kenichiro M, Yamashita T, Nishida Y, Sugawara M 2014 Opt. Express 22 6040Google Scholar
[23] GB/T 30697 2014 星载大视场多光谱相机性能测试方法
GB/T 30697 2014 Test Methods of Characteristics for Spaceborne Multispectral Camera with Wide Field of View (in Chinese)
[24] 李坤, 陈永权, 赵建科, 段亚轩, 李巧玲, 潘亮, 龙江波, 张海洋 2015 光学精密工程 23 2482Google Scholar
Li K, Chen Y Q, Zhao J K, Duan Y X, Li Q L, Pan L, Long J B, Zhang H Y 2015 Opt. Prec. Eng. 23 2482Google Scholar
[25] Battula T, Georgiev T, Gille J, Sergio G 2018 J. Electron. Imaging 27 13015Google Scholar
计量
- 文章访问数: 4588
- PDF下载量: 61
- 被引次数: 0