搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X射线光场成像技术研究

戚俊成 刘宾 陈荣昌 夏正德 肖体乔

引用本文:
Citation:

X射线光场成像技术研究

戚俊成, 刘宾, 陈荣昌, 夏正德, 肖体乔

X-ray three-dimensional imaging based on light field imaging technology

Qi Jun-Cheng, Liu Bin, Chen Rong-Chang, Xia Zheng-De, Xiao Ti-Qiao
PDF
HTML
导出引用
  • X射线三维成像技术是目前国内外X射线成像研究领域的一个研究热点. 但针对一些特殊成像目标, 传统X射线计算层析(CT)成像模式易出现投影信息缺失等问题, 影响CT重建的图像质量, 使得CT成像的应用受到一定的限制. 本文主要研究了基于光场成像理论的X射线三维立体成像技术. 首先从同步辐射光源模型出发, 对X射线光场成像进行建模; 然后, 基于光场成像数字重聚焦理论, 对成像目标场在深度方向上进行切片重建. 结果表明: 该方法可以实现对成像目标任一视角下任一深度的内部切片重建, 但是由于光学聚焦过程中的离焦现象, 会引入较为严重的背景噪声. 当对其原始数据进行滤波后, 再进行X射线光场重聚焦, 可以有效消除重建伪影, 提高图像的重建质量. 本研究既有算法理论意义, 又可应用于工业、医疗等较复杂目标的快速检测, 具有较大的应用价值.
    X-ray three-dimensional (3D) imaging technology is a research hotspot in the field of X-ray imaging. However, for some special imaging targets, the imaging mode of the traditional computer tomography (CT) circular trajectory is prone to lack of projection information, and thus affects the quality of CT reconstruction images, which limites the application of CT imaging. Light field imaging technology, in which a microlens array is inserted between the sensor and main lens in a traditional camera, achieves four-dimensional (4D) light field data with sensor during imaging including both the two-dimensional (2D) directional information of the radiance propagation and 2D spatial distribution information of object radiation. Through computer calculation imaging, 3D imaging such as digital refocusing, slice in the depth direction, stereo imaging, and depth estimation is realized. This article focuses on the 3D X-ray imaging based on the theory of light field imaging in visible light. Based on the model of parallel X-ray of synchrotron radiation source, the data of the X-ray light field with many projection views are acquired by rotating the image sample. Then, the light passing through any voxel in the imaging target is acquired by a geometric projection method, and based on integral imaging theory of light field imaging, the gray value of the slice in depth dimension is reconstructed and the depth information of reconstructed target is acquired. The reconstruction results show that this method can be used to reconstruct the internal slices at any depth in any viewing direction of the imaging target. In the optical imaging, the scene beyond the depth of field is blurred, making the scene more prominent and the imaging effect better. However, for the X-ray imaging, the imaging mode that is completely transmissive, and the light passing through the foreground carry the information about the background. In the refocusing process, the object at the refocusing depth is focused, and other background information is defocused. Excessive background information overwhelms the real useful information, and makes the slice, especially the edge of the image, blurred. Consequently more severe background noise is introduced due to the defocusing phenomenon in the optical refocusing process. Referring to the reconstruction method of the X-ray 3D imaging and light field imaging, the S-L filter is applied to the original data in the article. After filtering the original data, the X-ray "light field refocusing" is processed. The reconstruction results shown that the method can effectively eliminate reconstruction artifacts and improve image reconstruction quality in the reconstruction depth slice. And in this paper, the light field data are collected by rotating the sample with low time resolution. For the fast imaging, according to the digital refocusing theory of the light field imaging, the array X-ray source and detector can be used. After being calibrated, the system can realize the 3D reconstruction of the light field of the target field with high time resolution. This research has not only the theoretical significance in algorithm, but also great application value in the rapid detection of more complicated targets such as industry and medical treatment.
      通信作者: 戚俊成, qijuncheng@nuc.edu.cn ; 肖体乔, tqxiao@sinap.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11375257, 61301259, U1232205)和中北大学校学科研究基金 (批准号: 2015110246)资助的课题.
      Corresponding author: Qi Jun-Cheng, qijuncheng@nuc.edu.cn ; Xiao Ti-Qiao, tqxiao@sinap.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11375257, 61301259, U1232205) and the Foundation of North University of China (Grant No. 2015110246).
    [1]

    Zhu P P, Zhang K, Wang Z L, Liu Y J, Liu X S, Wu Z Y, McDonald S A, Marone F, Stampanoni M 2010 Proc. Natl. Acad. Sci. USA 107 13576Google Scholar

    [2]

    戚俊成, 任玉琦, 杜国浩, 陈荣昌, 王玉丹, 和友, 肖体乔 2013 光学学报 33 1034001

    Qi J C, Ren Y Q, Du G H, Chen R C, Wang Y D, He Y, Xiao T Q 2013 Acta Opt. Sin. 33 1034001

    [3]

    薛艳玲, 肖体乔, 吴立宏, 陈灿, 郭荣怡, 杜国浩, 谢红兰, 邓彪, 任玉琦, 徐洪杰 2010 59 5496Google Scholar

    Xue Y L, Xiao T Q, Wu L H, Chen C, Guo R Y, Du G H, Xie H L, Deng B, Ren Y Q, Xu H J 2010 Acta Phys. Sin. 59 5496Google Scholar

    [4]

    Zeng J, Bian F, Wang J, Li X, Wang Y, Tian F, Zhou P 2017 J. Synchrotron Radiat. 24 509Google Scholar

    [5]

    Hounsfield G N 1973 Brit. J. Radiol 46 1016Google Scholar

    [6]

    戚俊成, 陈荣昌, 刘宾, 陈平, 杜国浩, 肖体乔 2017 66 054202

    Qi J C, Chen R C, Liu B, Chen P, Du G H, Xiao T Q 2017 Acta Phys. Sin. 66 054202

    [7]

    王飞翔, 邓彪, 王玉丹, 任玉琦, 孙天希, 肖体乔 2016 光学学报 36 0834004

    Wang F X, Deng B, Wang Y D, Ren Y Q, Sun T X, Xiao T Q 2016 Acta Opt. Sin. 36 0834004

    [8]

    Mokso R, Oberta P 2015 J. Synchrotron Radiat. 22 1078Google Scholar

    [9]

    Hoshino M, Uesugi K, Pearson J, Sonobe T, Shirai M, Yagi N 2011 J. Synchrotron Radiat. 18 569Google Scholar

    [10]

    邾继贵, 李艳军, 叶声华, 唐大林, 张国全 2005 光学学报 25 943Google Scholar

    Zhu J G, Li Y J, Ye S H, Tang D L, Zhang G Q 2005 Acta Opt. Sin. 25 943Google Scholar

    [11]

    Adelson E H, Wang J Y A 1992 IEEE Trans. Pattern Anal. Mach. Intell. 14 99Google Scholar

    [12]

    Ng R, Levoy M, Bredif M, Duval G, Horowitz M, Hanrahan P 2005 Stanford Tech. Report CTSR 2005-02

    [13]

    Berry M V, Klein S 1996 J. Mod. Opt. 43 2139Google Scholar

    [14]

    You S, Lu Y, Zhang W, Yang B, Peng R, Zhuang S 2015 Opt. Commun. 355 419Google Scholar

    [15]

    Park J H, Jung S, Choi H, Kim Y, Lee B 2004 Appl. Opt. 43 4882Google Scholar

    [16]

    Wanner S, Goldluecke B 2014 IEEE Trans. Pattern Anal. Mach Intell. 36 606Google Scholar

    [17]

    Ma Z, Cen Z, Li X 2017 Opt. Lett. 56 6603

    [18]

    Lin X, Wu J M, Zheng G A, Dai Q H 2015 Biomed. Opt. Express 6 3179Google Scholar

    [19]

    Carles G, Downing J, Harvey A R 2014 Appl. Opt. 39 1889

    [20]

    Ng R 2005 ACM Trans. Graph. 24 735Google Scholar

    [21]

    杨富强, 张定华, 黄魁东, 王鹍, 徐哲 2014 63 058701

    Yang F Q, Zhang D H, Huang K D, Wang K, Xu Z 2014 Acta Phys. Sin. 63 058701

  • 图 1  光场成像原理示意图

    Fig. 1.  Schematic diagram of light field imaging principle.

    图 2  X射线光场成像系统模型示意图

    Fig. 2.  Schematic diagram of X-ray light field imaging system.

    图 3  投影数据图 (a) 随机选取的64个投影角度; (b)图(a)中所有角度下的投影图中某一排像素图像组成的正弦图

    Fig. 3.  Projection data: (a) 64 random projection angles; (b) sinogram of some pixel image of projection in Fig.(a) under all angles.

    图 4  数字重聚焦结果 (a) Shepp-Logan模型; (a)中i线(b)、ii线(c)、iii线(d)和iv线(e)所在处的深度切片

    Fig. 4.  Digital refocus result: (a) Original Shepp-Logan phantom; depth slices where i line (b), ii line (c), iii line (d) and iv line (e) are located in Fig.(a).

    图 5  经R-L滤波器滤波后的数字重聚焦结果 (a) Shepp-Logan模型; (a)中i线(b)、ii线(c)、iii线(d)和iv线(e)所在处的深度切片

    Fig. 5.  Digital refocus result after filtering by R-L filter: (a) Original Shepp-Logan phantom; depth slices where i line (b), ii line (c), iii line (d) and iv line (e) are located in Fig.(a).

    Baidu
  • [1]

    Zhu P P, Zhang K, Wang Z L, Liu Y J, Liu X S, Wu Z Y, McDonald S A, Marone F, Stampanoni M 2010 Proc. Natl. Acad. Sci. USA 107 13576Google Scholar

    [2]

    戚俊成, 任玉琦, 杜国浩, 陈荣昌, 王玉丹, 和友, 肖体乔 2013 光学学报 33 1034001

    Qi J C, Ren Y Q, Du G H, Chen R C, Wang Y D, He Y, Xiao T Q 2013 Acta Opt. Sin. 33 1034001

    [3]

    薛艳玲, 肖体乔, 吴立宏, 陈灿, 郭荣怡, 杜国浩, 谢红兰, 邓彪, 任玉琦, 徐洪杰 2010 59 5496Google Scholar

    Xue Y L, Xiao T Q, Wu L H, Chen C, Guo R Y, Du G H, Xie H L, Deng B, Ren Y Q, Xu H J 2010 Acta Phys. Sin. 59 5496Google Scholar

    [4]

    Zeng J, Bian F, Wang J, Li X, Wang Y, Tian F, Zhou P 2017 J. Synchrotron Radiat. 24 509Google Scholar

    [5]

    Hounsfield G N 1973 Brit. J. Radiol 46 1016Google Scholar

    [6]

    戚俊成, 陈荣昌, 刘宾, 陈平, 杜国浩, 肖体乔 2017 66 054202

    Qi J C, Chen R C, Liu B, Chen P, Du G H, Xiao T Q 2017 Acta Phys. Sin. 66 054202

    [7]

    王飞翔, 邓彪, 王玉丹, 任玉琦, 孙天希, 肖体乔 2016 光学学报 36 0834004

    Wang F X, Deng B, Wang Y D, Ren Y Q, Sun T X, Xiao T Q 2016 Acta Opt. Sin. 36 0834004

    [8]

    Mokso R, Oberta P 2015 J. Synchrotron Radiat. 22 1078Google Scholar

    [9]

    Hoshino M, Uesugi K, Pearson J, Sonobe T, Shirai M, Yagi N 2011 J. Synchrotron Radiat. 18 569Google Scholar

    [10]

    邾继贵, 李艳军, 叶声华, 唐大林, 张国全 2005 光学学报 25 943Google Scholar

    Zhu J G, Li Y J, Ye S H, Tang D L, Zhang G Q 2005 Acta Opt. Sin. 25 943Google Scholar

    [11]

    Adelson E H, Wang J Y A 1992 IEEE Trans. Pattern Anal. Mach. Intell. 14 99Google Scholar

    [12]

    Ng R, Levoy M, Bredif M, Duval G, Horowitz M, Hanrahan P 2005 Stanford Tech. Report CTSR 2005-02

    [13]

    Berry M V, Klein S 1996 J. Mod. Opt. 43 2139Google Scholar

    [14]

    You S, Lu Y, Zhang W, Yang B, Peng R, Zhuang S 2015 Opt. Commun. 355 419Google Scholar

    [15]

    Park J H, Jung S, Choi H, Kim Y, Lee B 2004 Appl. Opt. 43 4882Google Scholar

    [16]

    Wanner S, Goldluecke B 2014 IEEE Trans. Pattern Anal. Mach Intell. 36 606Google Scholar

    [17]

    Ma Z, Cen Z, Li X 2017 Opt. Lett. 56 6603

    [18]

    Lin X, Wu J M, Zheng G A, Dai Q H 2015 Biomed. Opt. Express 6 3179Google Scholar

    [19]

    Carles G, Downing J, Harvey A R 2014 Appl. Opt. 39 1889

    [20]

    Ng R 2005 ACM Trans. Graph. 24 735Google Scholar

    [21]

    杨富强, 张定华, 黄魁东, 王鹍, 徐哲 2014 63 058701

    Yang F Q, Zhang D H, Huang K D, Wang K, Xu Z 2014 Acta Phys. Sin. 63 058701

  • [1] 廖可梁, 何其利, 宋杨, 李荣刚, 宋茂华, 李盼云, 赵海峰, 刘鹏, 朱佩平. 基于实验室光源的透射X射线纳米分辨显微镜研制.  , 2024, 73(17): 178701. doi: 10.7498/aps.73.20240727
    [2] 陈子涵, 宋梦齐, 陈恒, 王志立. 双三角形相位光栅X射线干涉仪的条纹可见度.  , 2023, 72(14): 148701. doi: 10.7498/aps.72.20230461
    [3] 麻永俊, 李睿晅, 李逵, 张光银, 钮津, 麻云凤, 柯长军, 鲍捷, 陈英爽, 吕春, 李捷, 樊仲维, 张晓世. 基于高次谐波X射线光源的三维纳米相干衍射成像技术.  , 2022, 71(16): 164205. doi: 10.7498/aps.71.20220976
    [4] 周腊珍, 夏文静, 许倩倩, 陈赞, 李坊佐, 刘志国, 孙天希. 一种基于毛细管X光透镜的微型锥束CT扫描仪.  , 2022, 71(9): 090701. doi: 10.7498/aps.71.20212195
    [5] 鞠晓璐, 李可, 余福成, 许明伟, 邓彪, 李宾, 肖体乔. 电解池电化学反应过程的运动衬度X射线成像.  , 2022, 71(14): 144101. doi: 10.7498/aps.71.20220339
    [6] 李双双, 赵全堂, 曹树春, 冉朝晖, 申晓康, 赵书俊, 张子民. 高能电子三维成像技术实验研究.  , 2021, 70(18): 184204. doi: 10.7498/aps.70.20210686
    [7] 荣锋, 谢艳娜, 邰雪凤, 耿磊. 双能X射线光栅相衬成像的研究.  , 2017, 66(1): 018701. doi: 10.7498/aps.66.018701
    [8] 戚俊成, 陈荣昌, 刘宾, 陈平, 杜国浩, 肖体乔. 基于迭代重建算法的X射线光栅相位CT成像.  , 2017, 66(5): 054202. doi: 10.7498/aps.66.054202
    [9] 杜杨, 刘鑫, 雷耀虎, 黄建衡, 赵志刚, 林丹樱, 郭金川, 李冀, 牛憨笨. X射线光栅微分相衬成像视场分析.  , 2016, 65(5): 058701. doi: 10.7498/aps.65.058701
    [10] 刘鑫, 易明皓, 郭金川. 线焦斑X射线源成像.  , 2016, 65(21): 219501. doi: 10.7498/aps.65.219501
    [11] 张宇, 唐志列, 吴泳波, 束刚. 基于声透镜的三维光声成像技术.  , 2015, 64(24): 240701. doi: 10.7498/aps.64.240701
    [12] 黄建衡, 杜杨, 雷耀虎, 刘鑫, 郭金川, 牛憨笨. 硬X射线微分相衬成像的噪声特性分析.  , 2014, 63(16): 168702. doi: 10.7498/aps.63.168702
    [13] 李洪伟, 周云龙, 王世勇, 孙斌. 小通道氮气-水两相流三谱切片波动特性及其流型表征.  , 2013, 62(14): 140505. doi: 10.7498/aps.62.140505
    [14] 陈晓虎, 王晓方, 张巍巍, 汪文慧. 相位型波带板应用于大尺度X射线源成像的分析与模拟.  , 2013, 62(1): 015208. doi: 10.7498/aps.62.015208
    [15] 周光照, 王玉丹, 任玉琦, 陈灿, 叶琳琳, 肖体乔. 相干X射线衍射成像三维重建的数字模拟研究.  , 2012, 61(1): 018701. doi: 10.7498/aps.61.018701
    [16] 刘冬, 严建华, 王飞, 黄群星, 池涌, 岑可法. 火焰烟黑三维温度场和浓度场同时重建实验研究.  , 2011, 60(6): 060701. doi: 10.7498/aps.60.060701
    [17] 程冠晓, 胡超. X射线相衬成像光子筛.  , 2011, 60(8): 080703. doi: 10.7498/aps.60.080703
    [18] 王晓方, 王晶宇. 菲涅耳波带板应用于聚变靶的高分辨X射线成像分析.  , 2011, 60(2): 025212. doi: 10.7498/aps.60.025212
    [19] 陈 博, 朱佩平, 刘宜晋, 王寯越, 袁清习, 黄万霞, 明 海, 吴自玉. X射线光栅相位成像的理论和方法.  , 2008, 57(3): 1576-1581. doi: 10.7498/aps.57.1576
    [20] 于 斌, 彭 翔, 田劲东, 牛憨笨. 硬x射线同轴相衬成像的相位恢复.  , 2005, 54(5): 2034-2037. doi: 10.7498/aps.54.2034
计量
  • 文章访问数:  9084
  • PDF下载量:  169
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-18
  • 修回日期:  2018-10-15
  • 上网日期:  2019-01-01
  • 刊出日期:  2019-01-20

/

返回文章
返回
Baidu
map