搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯/碳化硅异质界面热学特性的分子动力学模拟

刘东静 王韶铭 杨平

引用本文:
Citation:

石墨烯/碳化硅异质界面热学特性的分子动力学模拟

刘东静, 王韶铭, 杨平

Thermal property of graphene/silicon carbide heterostructure by molecular dynamics simulation

Liu Dong-Jing, Wang Shao-Ming, Yang Ping
PDF
HTML
导出引用
  • 为了调控石墨烯/碳化硅异质界面传热特性, 采用非平衡态分子动力学方法研究温度、尺寸、材料缺陷率对界面热导的影响, 通过声子态密度和声子参与率对界面热导变化的原因进行阐述分析. 研究表明: 两种界面作用力下界面热导均随温度升高而增大, 但共价键的异质界面热导要高于范德瓦耳斯作用力下的界面热导. 异质界面的界面热导随着碳化硅层数的增加而降低, 当层数从10层增加到20层时, 界面热导下降30.5%; 4层时异质结构界面热导最低, 分析认为中低频段更多的声子从局域进入离域模式. 空位缺陷的引入可以有效地提高界面热导, 随着碳化硅和石墨烯缺陷率的增加, 界面热导均先升高再降低. 300 K时当碳化硅和石墨烯缺陷率分别为20%和35%时界面热导达到最大值, 分析认为缺陷的引入会阻碍中频声子的热输运. 研究结果揭示可以通过尺寸效应和空位缺陷来进行异质界面的改性研究, 有利于第三代半导体微纳器件的设计和热管理.
    In order to regulate thermal transfer characteristics of graphene/silicon carbide heterogeneous interface, the influence of temperature, size and material defect rate on thermal conductance of heterogeneous interface are studied by the non-equilibrium molecular dynamics method. The sandwich model of graphene/silicon carbide heterostructures with different lengths and thickness is built by Material Studio. The reasons for the change of thermal conductance are analyzed from the two aspects of phonon density of states and phonon participation rate. When the system temperature is below the Debye temperature of silicon carbide and graphene, the quantum corrections is used to calculate the thermal conductance of heterostructure in the paper. The results show that the thermal conductance increases with the increase of temperature under both interfacial forces, but the thermal conductance of heterogeneous interface under covalent bond is higher than under van der Waals force. The main reason is that the density of states of graphene in a range of 10—30 THz increases significantly with the increase of temperature. The thermal conductance of heterogeneous interface decreases with the increase of silicon carbide layers, and decreases by 30.5% when the number of silicon carbide layers increases from 10 to 20. The thermal conductance of heterostructure is the lowest in the thermal conductances of 4 layers, it is considered that more phonons are transferred from local to delocalized mode in the middle and low frequency band. The introduction of vacancy defects can effectively improve the interface thermal conductance. At different temperatures, the interfacial thermal conductance first increases and then decreases with the increase of graphene defects, and the defect rate when the interfacial thermal conductance reaches the maximum value and the degree of interfacial thermal conductance decrease after reaching the maximum value is related to temperature. When the defect rate of silicon carbide and graphene are 20% and 35% respectively at 300 K, the interface thermal conductance reaches a maximum value. When the temperature is 900 K, the thermal conductance of graphene/silicon carbide heterogeneous interface reaches a maximum value when the defect rate is 30%. It is considered that the introduction of defects will hinder the medium frequency phonons from realizing the heat transport. The results show that the size effect and vacancy defect can be utilized to modify the heterogeneous interface, which is beneficial to the design and thermal management of the third-generation semiconductor micro-nano devices.
      通信作者: 杨平, yangping1964@163.com
    • 基金项目: 广西自然科学基金(批准号: 2018GXNSFBA281126)、广西科技基地和人才专项(批准号: 桂科AD18281031)、中国博士后科学基金(批准号: 2016M601729)和广西制造系统与先进制造技术重点实验室课题(批准号: 19-050-44-002Z)资助的课题
      Corresponding author: Yang Ping, yangping1964@163.com
    • Funds: Project supported by the Natural Science Foundation of Guangxi, China (Grant No. 2018GXNSFBA281126), the Special Project for Science and Technology Bases and Talents of Guangxi, China (Grant No. AD18281031), the China Postdoctoral Science Foundation (Grant No. 2016M601729), and the Project of Guangxi Key Laboratory of Manufacturing System & Advanced Manufacturing Technology, China (Grant No. 19-050-44-002Z)
    [1]

    Nguyen M H, Kwak S 2020 Electronics 9 2068Google Scholar

    [2]

    Tsunenobu K, Heiji W 2020 Appl. Phys. Exp. 13 120101Google Scholar

    [3]

    So T, Takahiro Y, Jun N, Takahisa O, Chioko K, Asuka H, Satoshi I 2018 Phys. Rev. B 97 125411Google Scholar

    [4]

    Inoue M, Kageshima H, Kangawa Y, Kakimoto K 2012 Phys. Rev. B 86 085417Google Scholar

    [5]

    Wang Z, Bi K, Guan H W, Wang J 2014 J. Mater. 2014 479808Google Scholar

    [6]

    Wang Z, Guan H W 2014 Appl. Mech. Mater. 2943 63Google Scholar

    [7]

    Wang Y W, Guo X N, Dong L L, Jin G Q, Wang Y Y, Guo X Y 2013 Int. J. Hydrogen Energy 38 12733Google Scholar

    [8]

    Lai S K, Arifin R, Jakse N 2011 Condens. Matter Phys. 14 43802Google Scholar

    [9]

    Yue Y N, Zhang J C, Wang X W 2011 Small 7 3324Google Scholar

    [10]

    Guo Z X, Ding J W, Gong X G 2012 Phys. Rev. B 85 235429Google Scholar

    [11]

    Li M, Yue Y N 2014 RSC. Adv. 4 23010Google Scholar

    [12]

    Liang T, Zhang P, Yuan P, Zhai S P, Yang D G 2019 Nano Futures. 3 15004

    [13]

    Liang T, Zhou M, Zhang P, Yuan P, Yang D G 2020 Int. J. Heat Mass Transfer 151 119395

    [14]

    Wang Y C, Zhu Y B, He Z Z, Wu H A 2020 Ceram. Int. 46 29101Google Scholar

    [15]

    Gao Y, Xu B X 2018 ASC Nano 12 11254Google Scholar

    [16]

    Gao Y, Xu B X 2018 ACS Appl. Mater. Interfaces 16 14221Google Scholar

    [17]

    Cui L, Wei G S, Li Z, Du X Z 2021 Int. J. Heat Mass Transfer 165 120685Google Scholar

    [18]

    Nguyen D T, Le M Q, Bui T L, Bui H L 2017 Acta Mech. Sin. 33 132Google Scholar

    [19]

    Hu X L, Lee J, Berman D, Martini A 2018 Carbon 137 118Google Scholar

    [20]

    Adrien A, Jiahao K, Kaustav B, Andras K 2015 Nat. Mater. 14 1195Google Scholar

    [21]

    Lin Z Y, Ji L F, Yan T Y, Xu Y B, Sun Z Y 2020 J. Mater. Res. Technol. 9 5934Google Scholar

    [22]

    杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟 2012 61 076501Google Scholar

    Yang P, Wang X L, Li P, Wang H, Zhang L Q, Xie F W 2012 Acta Phys. Sin. 61 076501Google Scholar

    [23]

    Liu D J 2020 Phys. Lett. A 384 126077

    [24]

    Li M, Zhang J C, Hu X J, Yue Y N 2015 Appl. Phys. A 119 415Google Scholar

    [25]

    Guénolé J, Nöhring W G, Vaid A, Houllé F, Xie Z C, Prakash A, Bitzek E 2020 Comput. Mater. Sci. 175 109584Google Scholar

    [26]

    Hammond K D 2020 Comput. Phys. Commun. 247 106862Google Scholar

    [27]

    Li Z, Xiong S Y, Sievers C, Hu Y, Fan Z Y, Wei N, Bao H, Chen S D, Donadio D, Ala-Nissila T 2019 J. Chem. Phys. 151 234105

    [28]

    Mao R, Kong B D, Kim K W, Jayasekera T, Calzolari A, Buongiorno M, Nardelli 2012 Appl. Phys. Lett. 101 113111Google Scholar

    [29]

    Wang H, Gong J, Pei Y, Xu Z 2013 ACS Appl. Mater.Interfaces 5 2599Google Scholar

  • 图 1  3层石墨烯与10层碳化硅构筑的异质界面模型

    Fig. 1.  Heterostructure interface model constructed with 3-layer graphene and 10-layer SiC.

    图 2  范德瓦耳斯力与共价键作用下界面热导与温度的关系

    Fig. 2.  Temperature dependence of interface thermal conductance under the van der Waals force and the covalent bond.

    图 3  共价键作用下PDOS随温度的变化 (a)石墨烯; (b)碳化硅

    Fig. 3.  Temperature dependence of PDOS under covalent bond: (a) Graphene; (b) SiC.

    图 4  范德瓦耳斯力作用下PDOS随温度的变化 (a)石墨烯; (b)碳化硅

    Fig. 4.  Temperature dependence of PDOS under van der Waals force: (a) Graphene; (b) SiC.

    图 5  界面热导随着材料层数(厚度)的变化

    Fig. 5.  Relationship between the interfacial thermal conductance and the number of layers (thickness) of the material.

    图 6  (a)碳化硅层数对PDOS的影响; (b)石墨烯层数对PDOS的影响

    Fig. 6.  (a) Effect of SiC layers on PDOS; (b) effect of graphene layers on PDOS.

    图 7  石墨烯层数为3和4层时(a)石墨烯、(b)碳化硅的PPR; 石墨烯层数为4和5层时(c)石墨烯和(d)碳化硅的PPR

    Fig. 7.  PPR of (a) graphene and (b) SiC under the condition of 3 and 4 layers of graphene; PPR of (c) graphene and (d) SiC under the condition of 4 and 5 layers of graphene.

    图 8  (a)碳化硅缺陷率对界面热导的影响; (b)不同缺陷率下对应的PDOS的变化情况

    Fig. 8.  (a) Effect of defect rate of SiC on interfacial thermal conductance; (b) change of PDOS corresponding to different defect rates.

    图 9  (a)不同温度下石墨烯缺陷对界面热导的影响; (b)不同石墨烯陷率下对应的面外方向(Z) PDOS的变化情况(温度为300 K); (c)不同石墨烯陷率下对应的面内方向(XY) PDOS的变化情况(温度为300 K); (d)缺陷率分别为20%—40%时石墨烯PPR的变化情况

    Fig. 9.  (a) Effect of graphene defects on the thermal conductance of the interface at different temperatures; (b) the change of PDOS in the out of plane direction (Z) under different graphene defects rates at the temperature of 300 K; (c) the change of PDOS in the in-plane direction (XY) under different graphene defects rates at the temperature of 300 K; (d) the change of PPR of graphene with defect rate of 20%–40%.

    Baidu
  • [1]

    Nguyen M H, Kwak S 2020 Electronics 9 2068Google Scholar

    [2]

    Tsunenobu K, Heiji W 2020 Appl. Phys. Exp. 13 120101Google Scholar

    [3]

    So T, Takahiro Y, Jun N, Takahisa O, Chioko K, Asuka H, Satoshi I 2018 Phys. Rev. B 97 125411Google Scholar

    [4]

    Inoue M, Kageshima H, Kangawa Y, Kakimoto K 2012 Phys. Rev. B 86 085417Google Scholar

    [5]

    Wang Z, Bi K, Guan H W, Wang J 2014 J. Mater. 2014 479808Google Scholar

    [6]

    Wang Z, Guan H W 2014 Appl. Mech. Mater. 2943 63Google Scholar

    [7]

    Wang Y W, Guo X N, Dong L L, Jin G Q, Wang Y Y, Guo X Y 2013 Int. J. Hydrogen Energy 38 12733Google Scholar

    [8]

    Lai S K, Arifin R, Jakse N 2011 Condens. Matter Phys. 14 43802Google Scholar

    [9]

    Yue Y N, Zhang J C, Wang X W 2011 Small 7 3324Google Scholar

    [10]

    Guo Z X, Ding J W, Gong X G 2012 Phys. Rev. B 85 235429Google Scholar

    [11]

    Li M, Yue Y N 2014 RSC. Adv. 4 23010Google Scholar

    [12]

    Liang T, Zhang P, Yuan P, Zhai S P, Yang D G 2019 Nano Futures. 3 15004

    [13]

    Liang T, Zhou M, Zhang P, Yuan P, Yang D G 2020 Int. J. Heat Mass Transfer 151 119395

    [14]

    Wang Y C, Zhu Y B, He Z Z, Wu H A 2020 Ceram. Int. 46 29101Google Scholar

    [15]

    Gao Y, Xu B X 2018 ASC Nano 12 11254Google Scholar

    [16]

    Gao Y, Xu B X 2018 ACS Appl. Mater. Interfaces 16 14221Google Scholar

    [17]

    Cui L, Wei G S, Li Z, Du X Z 2021 Int. J. Heat Mass Transfer 165 120685Google Scholar

    [18]

    Nguyen D T, Le M Q, Bui T L, Bui H L 2017 Acta Mech. Sin. 33 132Google Scholar

    [19]

    Hu X L, Lee J, Berman D, Martini A 2018 Carbon 137 118Google Scholar

    [20]

    Adrien A, Jiahao K, Kaustav B, Andras K 2015 Nat. Mater. 14 1195Google Scholar

    [21]

    Lin Z Y, Ji L F, Yan T Y, Xu Y B, Sun Z Y 2020 J. Mater. Res. Technol. 9 5934Google Scholar

    [22]

    杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟 2012 61 076501Google Scholar

    Yang P, Wang X L, Li P, Wang H, Zhang L Q, Xie F W 2012 Acta Phys. Sin. 61 076501Google Scholar

    [23]

    Liu D J 2020 Phys. Lett. A 384 126077

    [24]

    Li M, Zhang J C, Hu X J, Yue Y N 2015 Appl. Phys. A 119 415Google Scholar

    [25]

    Guénolé J, Nöhring W G, Vaid A, Houllé F, Xie Z C, Prakash A, Bitzek E 2020 Comput. Mater. Sci. 175 109584Google Scholar

    [26]

    Hammond K D 2020 Comput. Phys. Commun. 247 106862Google Scholar

    [27]

    Li Z, Xiong S Y, Sievers C, Hu Y, Fan Z Y, Wei N, Bao H, Chen S D, Donadio D, Ala-Nissila T 2019 J. Chem. Phys. 151 234105

    [28]

    Mao R, Kong B D, Kim K W, Jayasekera T, Calzolari A, Buongiorno M, Nardelli 2012 Appl. Phys. Lett. 101 113111Google Scholar

    [29]

    Wang H, Gong J, Pei Y, Xu Z 2013 ACS Appl. Mater.Interfaces 5 2599Google Scholar

  • [1] 杨静, 冯少蓉, 张涛, 牛旭平, 王荣, 李敏, 于润升, 曹兴忠, 王宝义. B位空位补偿型钐掺杂PZT(54/46)陶瓷中的缺陷分析及其对压电性能的影响.  , 2024, 73(7): 077701. doi: 10.7498/aps.73.20231872
    [2] 张建威, 牛莹, 闫润圻, 张荣奇, 曹猛, 李永东, 刘纯亮, 张嘉伟. 体空位缺陷对氧化铝二次电子发射特性的影响分析.  , 2024, 73(15): 157902. doi: 10.7498/aps.73.20240577
    [3] 桑丽霞, 李志康. Au-TiO2光电极界面声子热输运特性的分子动力学模拟.  , 2024, 73(10): 103105. doi: 10.7498/aps.73.20240026
    [4] 刘子怡, 褚福强, 魏俊俊, 冯妍卉. 金刚石/碳纳米管异质界面热导及声子热输运特性.  , 2024, 73(13): 138102. doi: 10.7498/aps.73.20240323
    [5] 刘东静, 周福, 胡志亮, 黄家强. 石墨烯/GaN异质结构界面热输运性质的分子动力学研究.  , 2024, 73(13): 137901. doi: 10.7498/aps.73.20240021
    [6] 刘东静, 胡志亮, 周福, 王鹏博, 王振东, 李涛. 基于分子动力学的氮化镓/石墨烯/金刚石界面热导研究.  , 2024, 73(15): 150202. doi: 10.7498/aps.73.20240515
    [7] 邱钰珺, 李亨宣, 李亚涛, 黄春朴, 李卫华, 张旭涛, 刘英光. 基于纳米点嵌入的界面导热性能优化.  , 2023, 72(11): 113102. doi: 10.7498/aps.72.20230314
    [8] 王权杰, 邓宇戈, 王仁宗, 刘向军. 界面工程调控GaN基异质结界面热传导性能研究.  , 2023, 72(22): 226301. doi: 10.7498/aps.72.20230791
    [9] 宗志成, 潘东楷, 邓世琛, 万骁, 杨哩娜, 马登科, 杨诺. 混合失配模型预测金属/半导体界面热导.  , 2023, 72(3): 034401. doi: 10.7498/aps.72.20221981
    [10] 刘东静, 周福, 陈帅阳, 胡志亮. 氮化镓/石墨烯/碳化硅异质界面热输运特性的分子动力学研究.  , 2023, 72(15): 157901. doi: 10.7498/aps.72.20230537
    [11] 张龙艳, 徐进良, 雷俊鹏. 尺寸效应对微通道内固液界面温度边界的影响.  , 2019, 68(2): 020201. doi: 10.7498/aps.68.20181876
    [12] 兰生, 李焜, 高新昀. 基于分子动力学的石墨炔纳米带空位缺陷的导热特性.  , 2017, 66(13): 136801. doi: 10.7498/aps.66.136801
    [13] 颜送灵, 唐黎明, 赵宇清. 不同组分厚度比的LaMnO3/SrTiO3异质界面电子结构和磁性的第一性原理研究.  , 2016, 65(7): 077301. doi: 10.7498/aps.65.077301
    [14] 彭亚晶, 蒋艳雪. 分子空位缺陷对环三亚甲基三硝胺含能材料几何结构、电子结构及振动特性的影响.  , 2015, 64(24): 243102. doi: 10.7498/aps.64.243102
    [15] 羊梦诗, 李鑫, 叶志鹏, 陈亮, 徐灿, 储修祥. 丝素氨基酸寡肽链生长过程中的尺寸效应.  , 2013, 62(23): 236101. doi: 10.7498/aps.62.236101
    [16] 周国荣, 滕新营, 王艳, 耿浩然, 许甫宁. 尺寸效应对Al纳米线凝固行为的影响.  , 2012, 61(6): 066101. doi: 10.7498/aps.61.066101
    [17] 周静, 刘存金, 李儒, 陈文. 异质界面对Ca(Mg1/3Nb2/3)O3/CaTiO3叠层薄膜结构和介电性能的影响.  , 2012, 61(6): 067401. doi: 10.7498/aps.61.067401
    [18] 周志东, 张春祖, 张颖. 外延铁电薄膜相变温度的尺寸效应.  , 2010, 59(9): 6620-6625. doi: 10.7498/aps.59.6620
    [19] 袁剑辉, 程玉民, 张振华. 空位结构缺陷对C纳米管弹性性质的影响.  , 2009, 58(4): 2578-2584. doi: 10.7498/aps.58.2578
    [20] 戴永兵, 沈荷生, 张志明, 何贤昶, 胡晓君, 孙方宏, 莘海维. 金刚石/硅(001)异质界面的分子动力学模拟研究.  , 2001, 50(2): 244-250. doi: 10.7498/aps.50.244
计量
  • 文章访问数:  7779
  • PDF下载量:  414
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-01
  • 修回日期:  2021-04-26
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-20

/

返回文章
返回
Baidu
map