-
核级石墨是球床模块式高温气冷堆(HTR-PM)中的一种关键材料, 在堆内用作燃料元件基体材料、结构材料和中子反射层材料. 研究核级石墨辐照和氧化行为下的缺陷演化对反应堆安全具有重要意义. 本文对IG-110石墨样品进行了一系列包含不同顺序和不同条件的离子辐照和氧化的实验, 分为仅辐照、仅氧化、辐照后氧化、氧化后辐照, 通过观察其结构、形貌、石墨化程度和点缺陷的演化, 研究离子辐照和氧化对IG-110核级石墨中点缺陷的影响. 拉曼光谱表明, 随辐照剂量的增大, 拉曼峰强比ID/IG先增大后减小, 说明离子辐照使石墨中产生了点缺陷, 且点缺陷在辐照剂量增大时进一步发生演化; 氧化后石墨化程度增大, 说明高温下的退火效应使点缺陷发生复合, 因此氧化之后点缺陷数量减少. 氧化后辐照样品的点缺陷含量低于仅辐照样品, 辐照后氧化样品的点缺陷含量高于仅氧化样品. 正电子湮灭多普勒展宽揭示了离子辐照后石墨中仅有点缺陷, 而氧化使点缺陷部分回复. 离子辐照和氧化对石墨中点缺陷的演化产生相反的影响, 即离子辐照使平均S参数增大, 平均W参数减小, 而氧化使平均S参数减小, 平均W参数增大. 对于辐照后氧化的样品, 850 ℃高温的退火效应不足以使点缺陷完全回复.
-
关键词:
- 球床模块式高温气冷堆 /
- 核级石墨 /
- 离子辐照 /
- 氧化 /
- 点缺陷
Nuclear grade graphite is a kind of key material in the high temperature gas-cooled reactor pebble-bed module (HTR-PM), where nuclear grade graphite acts as the fuel element matrix material, structural material and neutron reflector. In the reactor, the service environment of nuclear grade graphite suffers high temperature and strong neutron radiation. Both neutron radiation and the oxidation by the oxidizing impurities in HTGR coolant can cause the structure to damage and the properties to deteriorate. Therefore, it is of great significance to study the evolution of defects in nuclear grade graphite for improving the reactor safety. The effects of ion irradiation and oxidation on the point defects in IG-110 graphite are studied in this work. The 190 keV He+ implantation treatments at room temperature with fluences of 1 × 1015, 5 × 1015, 1 × 1016 and 1 × 1017 cm–2 are performed to induce 0.029, 0.14, 0.29 and 2.9 displacements per atom respectively. Oxidation treatments are performed at 850 ℃ for 10, 15, 20 and 25 min. Different sequences of He+ ion irradiation and oxidation are performed, which include irradiation only (Irr.), oxidation only (Ox.), irradiation followed by oxidation (Irr.-Ox.), and oxidation followed by irradiation (Ox.-Irr.). Raman spectrum shows that with the increase of ion irradiation dose, the intensity ratio of D peak to G peak (ID/IG) first increases and then decreases, implying that the point defects in graphite are induced by ion irradiation and the point defects evolve as dose increases; the degree of graphitization increases after oxidation, implying that the point defects are recovered by the annealing effect at high temperature, and the point defects decrease after oxidation. This makes Ox.-Irr. samples have a lower point defect content than Irr. samples, and leads Irr.-Ox. samples to possess a higher point defect content than Ox. samples. The positron annihilation Doppler broadening tests reveal that there are only point defects after ion irradiation and oxidation have partially recovered point defects. The ion irradiation and oxidation have opposite effects on the evolution of point defect in graphite. The ion irradiation increases the average S-parameter and reduces the average W-parameter, while oxidation reduces the average S-parameter and increases the average W-parameter. The annealing effect at 850 ℃ cannot completely recover the point defects in Irr.-Ox. samples.-
Keywords:
- high temperature gas-cooled reactor pebble-bed module /
- nuclear grade graphite /
- ion irradiation /
- oxidation /
- point defect
[1] Kelly B T 1982 Carbon 20 3Google Scholar
[2] Zhou Z, Bouwman W G, Schut H, Pappas C 2014 Carbon 69 17Google Scholar
[3] Marsden B J, Jones A N, Hall G, Treifi M, Mummery P 2016 Structural Materials for Generation IV Nuclear Reactors (1st Ed.) (Cambridge: Woodhead Publishing) pp495−532
[4] Heijna M C R, de Groot S D, Vreeling J A 2017 J. Nucl. Mater. 492 148Google Scholar
[5] [6] Zhai P F, Liu J, Zeng J, Yao H J, Duan J L, Hou M D, Sun Y M, Ewing R C 2014 Chin. Phys. B 23 126105Google Scholar
[7] Zeng J, Liu J, Zhang S X, Zhai P F, Yao H J, Duan J L, Guo H, Hou M D, Sun Y M 2015 Chin. Phys. B 24 086103
[8] 付晓刚, 李正操, 张政军 2010 原子能科学技术 44 686
Fu X G, Li Z C, Zhang Z J 2010 Atom. Energ. Sci. Tech. 44 686
[9] Burchell T D, Pappano P J, Strizak J P 2011 Carbon 49 3Google Scholar
[10] Kelly B, Marsden B, Hall K, Martin D, Harper A, Blanchard A 2000 Irradiation Damage in Graphite due to Fast Neutrons in Fission and Fusion Systems (IAEA-Tecdoc-1154) pp45−114
[11] Tang Z, Hasegawa M, Shimamura T, Nagai T, Chiba T, Kawazoe Y 1999 Phys. Rev. Lett. 82 2532Google Scholar
[12] 王鹏, 于溯源 2013 核动力工程 2013 46Google Scholar
Wang P, Yu S Y 2013 Nucl. Power Eng. 2013 46Google Scholar
[13] Chi S, Kim G 2008 J. Nucl. Mater. 381 9Google Scholar
[14] Yan R, Dong Y, Zhou Y, Sun X M, Li Z C 2017 J. Nucl. Sci. Technol. 54 1168Google Scholar
[15] 魏明辉, 孙喜明 2013 原子能科学技术 47 1620Google Scholar
Wei M H, Sun X M 2013 Atom. Energ. Sci. Technol. 47 1620Google Scholar
[16] Lee J J, Ghosh T K, Loyalka S K 2013 J. Nucl. Mater. 438 77Google Scholar
[17] 王鹏, 于溯源 2012 原子能科学技术 46 84
Wang P, Yu S Y 2012 Atom. Energ. Sci. Technol. 46 84
[18] 郑艳华, 石磊 2010 原子能科学技术 44 253
Zheng Y H, Shi L 2010 Atom. Energ. Sci. Technol. 44 253
[19] 徐伟, 郑艳华, 石磊 2017 原子能科学技术 51 694Google Scholar
Xu W, Zheng Y H, Shi L 2017 Atom. Energ. Sci. Technol. 51 694Google Scholar
[20] Richards M B, Gillespie A G, Hanson D L 1993 In-pile Corrosion of Grade H-451 Graphite by Steam in Modern Developments in Energy, Combustion and Spectroscopy (1st Ed.) (Oxford: Pergamon Press) pp87−94
[21] Liu J, Dong L, Wang C, Liang T X, Lai W S 2015 Nucl. Instrum. Meth. B 352 160Google Scholar
[22] Vavilin A I, Chernikov 1992 Atom. Energ. 73 618Google Scholar
[23] Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Meth. B 268 1818Google Scholar
[24] 王鹏 2013 博士学位论文 (北京: 清华大学) 第30−34页
Wang P 2013 Ph. D. Dissertation (Beijing: Tsinghua University) pp30−34 (in Chinese)
[25] Reich S, Thomsen C 2004 Phil. Trans. R. Soc. Lond. A 362 2271Google Scholar
[26] Childres I, Jauregui L, Park W, Cao H, Chen Y P 2013 Raman Spectroscopy of Graphene and Related Materials in New Developments in Photon and Materials Research (1st Ed.) (New York: Nova Science Publishers) pp1−20
[27] Hu Z, Li Z C, Zhou Z, Shi C Q, Schut H, Pappas K 2014 J. Phys. Conf. Ser. 505 012014Google Scholar
[28] Shi C Q, Schut H, Li Z C 2016 J. Phys. Conf. Ser. 674 012019Google Scholar
[29] MacKenzie I K, Eady J A, Gingerich R R 1970 Phys. Lett. A 33 279
[30] Schut H 1990 Ph. D. Dissertation (Delft: Delft University of Technology) pp67−102
[31] Lucchese M M, Stavale F, Martins Ferreira E H, Vilani C, Moutinho M V O, Capaz R B, Achete C A, Jorio A 2010 Carbon 48 1592Google Scholar
[32] 徐世江, 康飞宇 2010 核工程中的炭和石墨材料 (北京: 清华大学出版社) (第1版) 第140−143页
Xu S J, Kang F Y 2010 Carbon and Graphite Materials in Nuclear Engineering (1st Ed.) pp140−143 (in Chinese)
[33] Latham C D, Heggie M I, Alatalo M, Oberg S, Briddon P R 2013 J. Phys. Conden. Matter 25 135403Google Scholar
-
-
[1] Kelly B T 1982 Carbon 20 3Google Scholar
[2] Zhou Z, Bouwman W G, Schut H, Pappas C 2014 Carbon 69 17Google Scholar
[3] Marsden B J, Jones A N, Hall G, Treifi M, Mummery P 2016 Structural Materials for Generation IV Nuclear Reactors (1st Ed.) (Cambridge: Woodhead Publishing) pp495−532
[4] Heijna M C R, de Groot S D, Vreeling J A 2017 J. Nucl. Mater. 492 148Google Scholar
[5] [6] Zhai P F, Liu J, Zeng J, Yao H J, Duan J L, Hou M D, Sun Y M, Ewing R C 2014 Chin. Phys. B 23 126105Google Scholar
[7] Zeng J, Liu J, Zhang S X, Zhai P F, Yao H J, Duan J L, Guo H, Hou M D, Sun Y M 2015 Chin. Phys. B 24 086103
[8] 付晓刚, 李正操, 张政军 2010 原子能科学技术 44 686
Fu X G, Li Z C, Zhang Z J 2010 Atom. Energ. Sci. Tech. 44 686
[9] Burchell T D, Pappano P J, Strizak J P 2011 Carbon 49 3Google Scholar
[10] Kelly B, Marsden B, Hall K, Martin D, Harper A, Blanchard A 2000 Irradiation Damage in Graphite due to Fast Neutrons in Fission and Fusion Systems (IAEA-Tecdoc-1154) pp45−114
[11] Tang Z, Hasegawa M, Shimamura T, Nagai T, Chiba T, Kawazoe Y 1999 Phys. Rev. Lett. 82 2532Google Scholar
[12] 王鹏, 于溯源 2013 核动力工程 2013 46Google Scholar
Wang P, Yu S Y 2013 Nucl. Power Eng. 2013 46Google Scholar
[13] Chi S, Kim G 2008 J. Nucl. Mater. 381 9Google Scholar
[14] Yan R, Dong Y, Zhou Y, Sun X M, Li Z C 2017 J. Nucl. Sci. Technol. 54 1168Google Scholar
[15] 魏明辉, 孙喜明 2013 原子能科学技术 47 1620Google Scholar
Wei M H, Sun X M 2013 Atom. Energ. Sci. Technol. 47 1620Google Scholar
[16] Lee J J, Ghosh T K, Loyalka S K 2013 J. Nucl. Mater. 438 77Google Scholar
[17] 王鹏, 于溯源 2012 原子能科学技术 46 84
Wang P, Yu S Y 2012 Atom. Energ. Sci. Technol. 46 84
[18] 郑艳华, 石磊 2010 原子能科学技术 44 253
Zheng Y H, Shi L 2010 Atom. Energ. Sci. Technol. 44 253
[19] 徐伟, 郑艳华, 石磊 2017 原子能科学技术 51 694Google Scholar
Xu W, Zheng Y H, Shi L 2017 Atom. Energ. Sci. Technol. 51 694Google Scholar
[20] Richards M B, Gillespie A G, Hanson D L 1993 In-pile Corrosion of Grade H-451 Graphite by Steam in Modern Developments in Energy, Combustion and Spectroscopy (1st Ed.) (Oxford: Pergamon Press) pp87−94
[21] Liu J, Dong L, Wang C, Liang T X, Lai W S 2015 Nucl. Instrum. Meth. B 352 160Google Scholar
[22] Vavilin A I, Chernikov 1992 Atom. Energ. 73 618Google Scholar
[23] Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Meth. B 268 1818Google Scholar
[24] 王鹏 2013 博士学位论文 (北京: 清华大学) 第30−34页
Wang P 2013 Ph. D. Dissertation (Beijing: Tsinghua University) pp30−34 (in Chinese)
[25] Reich S, Thomsen C 2004 Phil. Trans. R. Soc. Lond. A 362 2271Google Scholar
[26] Childres I, Jauregui L, Park W, Cao H, Chen Y P 2013 Raman Spectroscopy of Graphene and Related Materials in New Developments in Photon and Materials Research (1st Ed.) (New York: Nova Science Publishers) pp1−20
[27] Hu Z, Li Z C, Zhou Z, Shi C Q, Schut H, Pappas K 2014 J. Phys. Conf. Ser. 505 012014Google Scholar
[28] Shi C Q, Schut H, Li Z C 2016 J. Phys. Conf. Ser. 674 012019Google Scholar
[29] MacKenzie I K, Eady J A, Gingerich R R 1970 Phys. Lett. A 33 279
[30] Schut H 1990 Ph. D. Dissertation (Delft: Delft University of Technology) pp67−102
[31] Lucchese M M, Stavale F, Martins Ferreira E H, Vilani C, Moutinho M V O, Capaz R B, Achete C A, Jorio A 2010 Carbon 48 1592Google Scholar
[32] 徐世江, 康飞宇 2010 核工程中的炭和石墨材料 (北京: 清华大学出版社) (第1版) 第140−143页
Xu S J, Kang F Y 2010 Carbon and Graphite Materials in Nuclear Engineering (1st Ed.) pp140−143 (in Chinese)
[33] Latham C D, Heggie M I, Alatalo M, Oberg S, Briddon P R 2013 J. Phys. Conden. Matter 25 135403Google Scholar
计量
- 文章访问数: 8574
- PDF下载量: 88
- 被引次数: 0