Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermal property of graphene/silicon carbide heterostructure by molecular dynamics simulation

Liu Dong-Jing Wang Shao-Ming Yang Ping

Citation:

Thermal property of graphene/silicon carbide heterostructure by molecular dynamics simulation

Liu Dong-Jing, Wang Shao-Ming, Yang Ping
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In order to regulate thermal transfer characteristics of graphene/silicon carbide heterogeneous interface, the influence of temperature, size and material defect rate on thermal conductance of heterogeneous interface are studied by the non-equilibrium molecular dynamics method. The sandwich model of graphene/silicon carbide heterostructures with different lengths and thickness is built by Material Studio. The reasons for the change of thermal conductance are analyzed from the two aspects of phonon density of states and phonon participation rate. When the system temperature is below the Debye temperature of silicon carbide and graphene, the quantum corrections is used to calculate the thermal conductance of heterostructure in the paper. The results show that the thermal conductance increases with the increase of temperature under both interfacial forces, but the thermal conductance of heterogeneous interface under covalent bond is higher than under van der Waals force. The main reason is that the density of states of graphene in a range of 10—30 THz increases significantly with the increase of temperature. The thermal conductance of heterogeneous interface decreases with the increase of silicon carbide layers, and decreases by 30.5% when the number of silicon carbide layers increases from 10 to 20. The thermal conductance of heterostructure is the lowest in the thermal conductances of 4 layers, it is considered that more phonons are transferred from local to delocalized mode in the middle and low frequency band. The introduction of vacancy defects can effectively improve the interface thermal conductance. At different temperatures, the interfacial thermal conductance first increases and then decreases with the increase of graphene defects, and the defect rate when the interfacial thermal conductance reaches the maximum value and the degree of interfacial thermal conductance decrease after reaching the maximum value is related to temperature. When the defect rate of silicon carbide and graphene are 20% and 35% respectively at 300 K, the interface thermal conductance reaches a maximum value. When the temperature is 900 K, the thermal conductance of graphene/silicon carbide heterogeneous interface reaches a maximum value when the defect rate is 30%. It is considered that the introduction of defects will hinder the medium frequency phonons from realizing the heat transport. The results show that the size effect and vacancy defect can be utilized to modify the heterogeneous interface, which is beneficial to the design and thermal management of the third-generation semiconductor micro-nano devices.
      Corresponding author: Yang Ping, yangping1964@163.com
    • Funds: Project supported by the Natural Science Foundation of Guangxi, China (Grant No. 2018GXNSFBA281126), the Special Project for Science and Technology Bases and Talents of Guangxi, China (Grant No. AD18281031), the China Postdoctoral Science Foundation (Grant No. 2016M601729), and the Project of Guangxi Key Laboratory of Manufacturing System & Advanced Manufacturing Technology, China (Grant No. 19-050-44-002Z)
    [1]

    Nguyen M H, Kwak S 2020 Electronics 9 2068Google Scholar

    [2]

    Tsunenobu K, Heiji W 2020 Appl. Phys. Exp. 13 120101Google Scholar

    [3]

    So T, Takahiro Y, Jun N, Takahisa O, Chioko K, Asuka H, Satoshi I 2018 Phys. Rev. B 97 125411Google Scholar

    [4]

    Inoue M, Kageshima H, Kangawa Y, Kakimoto K 2012 Phys. Rev. B 86 085417Google Scholar

    [5]

    Wang Z, Bi K, Guan H W, Wang J 2014 J. Mater. 2014 479808Google Scholar

    [6]

    Wang Z, Guan H W 2014 Appl. Mech. Mater. 2943 63Google Scholar

    [7]

    Wang Y W, Guo X N, Dong L L, Jin G Q, Wang Y Y, Guo X Y 2013 Int. J. Hydrogen Energy 38 12733Google Scholar

    [8]

    Lai S K, Arifin R, Jakse N 2011 Condens. Matter Phys. 14 43802Google Scholar

    [9]

    Yue Y N, Zhang J C, Wang X W 2011 Small 7 3324Google Scholar

    [10]

    Guo Z X, Ding J W, Gong X G 2012 Phys. Rev. B 85 235429Google Scholar

    [11]

    Li M, Yue Y N 2014 RSC. Adv. 4 23010Google Scholar

    [12]

    Liang T, Zhang P, Yuan P, Zhai S P, Yang D G 2019 Nano Futures. 3 15004

    [13]

    Liang T, Zhou M, Zhang P, Yuan P, Yang D G 2020 Int. J. Heat Mass Transfer 151 119395

    [14]

    Wang Y C, Zhu Y B, He Z Z, Wu H A 2020 Ceram. Int. 46 29101Google Scholar

    [15]

    Gao Y, Xu B X 2018 ASC Nano 12 11254Google Scholar

    [16]

    Gao Y, Xu B X 2018 ACS Appl. Mater. Interfaces 16 14221Google Scholar

    [17]

    Cui L, Wei G S, Li Z, Du X Z 2021 Int. J. Heat Mass Transfer 165 120685Google Scholar

    [18]

    Nguyen D T, Le M Q, Bui T L, Bui H L 2017 Acta Mech. Sin. 33 132Google Scholar

    [19]

    Hu X L, Lee J, Berman D, Martini A 2018 Carbon 137 118Google Scholar

    [20]

    Adrien A, Jiahao K, Kaustav B, Andras K 2015 Nat. Mater. 14 1195Google Scholar

    [21]

    Lin Z Y, Ji L F, Yan T Y, Xu Y B, Sun Z Y 2020 J. Mater. Res. Technol. 9 5934Google Scholar

    [22]

    杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟 2012 61 076501Google Scholar

    Yang P, Wang X L, Li P, Wang H, Zhang L Q, Xie F W 2012 Acta Phys. Sin. 61 076501Google Scholar

    [23]

    Liu D J 2020 Phys. Lett. A 384 126077

    [24]

    Li M, Zhang J C, Hu X J, Yue Y N 2015 Appl. Phys. A 119 415Google Scholar

    [25]

    Guénolé J, Nöhring W G, Vaid A, Houllé F, Xie Z C, Prakash A, Bitzek E 2020 Comput. Mater. Sci. 175 109584Google Scholar

    [26]

    Hammond K D 2020 Comput. Phys. Commun. 247 106862Google Scholar

    [27]

    Li Z, Xiong S Y, Sievers C, Hu Y, Fan Z Y, Wei N, Bao H, Chen S D, Donadio D, Ala-Nissila T 2019 J. Chem. Phys. 151 234105

    [28]

    Mao R, Kong B D, Kim K W, Jayasekera T, Calzolari A, Buongiorno M, Nardelli 2012 Appl. Phys. Lett. 101 113111Google Scholar

    [29]

    Wang H, Gong J, Pei Y, Xu Z 2013 ACS Appl. Mater.Interfaces 5 2599Google Scholar

  • 图 1  3层石墨烯与10层碳化硅构筑的异质界面模型

    Figure 1.  Heterostructure interface model constructed with 3-layer graphene and 10-layer SiC.

    图 2  范德瓦耳斯力与共价键作用下界面热导与温度的关系

    Figure 2.  Temperature dependence of interface thermal conductance under the van der Waals force and the covalent bond.

    图 3  共价键作用下PDOS随温度的变化 (a)石墨烯; (b)碳化硅

    Figure 3.  Temperature dependence of PDOS under covalent bond: (a) Graphene; (b) SiC.

    图 4  范德瓦耳斯力作用下PDOS随温度的变化 (a)石墨烯; (b)碳化硅

    Figure 4.  Temperature dependence of PDOS under van der Waals force: (a) Graphene; (b) SiC.

    图 5  界面热导随着材料层数(厚度)的变化

    Figure 5.  Relationship between the interfacial thermal conductance and the number of layers (thickness) of the material.

    图 6  (a)碳化硅层数对PDOS的影响; (b)石墨烯层数对PDOS的影响

    Figure 6.  (a) Effect of SiC layers on PDOS; (b) effect of graphene layers on PDOS.

    图 7  石墨烯层数为3和4层时(a)石墨烯、(b)碳化硅的PPR; 石墨烯层数为4和5层时(c)石墨烯和(d)碳化硅的PPR

    Figure 7.  PPR of (a) graphene and (b) SiC under the condition of 3 and 4 layers of graphene; PPR of (c) graphene and (d) SiC under the condition of 4 and 5 layers of graphene.

    图 8  (a)碳化硅缺陷率对界面热导的影响; (b)不同缺陷率下对应的PDOS的变化情况

    Figure 8.  (a) Effect of defect rate of SiC on interfacial thermal conductance; (b) change of PDOS corresponding to different defect rates.

    图 9  (a)不同温度下石墨烯缺陷对界面热导的影响; (b)不同石墨烯陷率下对应的面外方向(Z) PDOS的变化情况(温度为300 K); (c)不同石墨烯陷率下对应的面内方向(XY) PDOS的变化情况(温度为300 K); (d)缺陷率分别为20%—40%时石墨烯PPR的变化情况

    Figure 9.  (a) Effect of graphene defects on the thermal conductance of the interface at different temperatures; (b) the change of PDOS in the out of plane direction (Z) under different graphene defects rates at the temperature of 300 K; (c) the change of PDOS in the in-plane direction (XY) under different graphene defects rates at the temperature of 300 K; (d) the change of PPR of graphene with defect rate of 20%–40%.

    Baidu
  • [1]

    Nguyen M H, Kwak S 2020 Electronics 9 2068Google Scholar

    [2]

    Tsunenobu K, Heiji W 2020 Appl. Phys. Exp. 13 120101Google Scholar

    [3]

    So T, Takahiro Y, Jun N, Takahisa O, Chioko K, Asuka H, Satoshi I 2018 Phys. Rev. B 97 125411Google Scholar

    [4]

    Inoue M, Kageshima H, Kangawa Y, Kakimoto K 2012 Phys. Rev. B 86 085417Google Scholar

    [5]

    Wang Z, Bi K, Guan H W, Wang J 2014 J. Mater. 2014 479808Google Scholar

    [6]

    Wang Z, Guan H W 2014 Appl. Mech. Mater. 2943 63Google Scholar

    [7]

    Wang Y W, Guo X N, Dong L L, Jin G Q, Wang Y Y, Guo X Y 2013 Int. J. Hydrogen Energy 38 12733Google Scholar

    [8]

    Lai S K, Arifin R, Jakse N 2011 Condens. Matter Phys. 14 43802Google Scholar

    [9]

    Yue Y N, Zhang J C, Wang X W 2011 Small 7 3324Google Scholar

    [10]

    Guo Z X, Ding J W, Gong X G 2012 Phys. Rev. B 85 235429Google Scholar

    [11]

    Li M, Yue Y N 2014 RSC. Adv. 4 23010Google Scholar

    [12]

    Liang T, Zhang P, Yuan P, Zhai S P, Yang D G 2019 Nano Futures. 3 15004

    [13]

    Liang T, Zhou M, Zhang P, Yuan P, Yang D G 2020 Int. J. Heat Mass Transfer 151 119395

    [14]

    Wang Y C, Zhu Y B, He Z Z, Wu H A 2020 Ceram. Int. 46 29101Google Scholar

    [15]

    Gao Y, Xu B X 2018 ASC Nano 12 11254Google Scholar

    [16]

    Gao Y, Xu B X 2018 ACS Appl. Mater. Interfaces 16 14221Google Scholar

    [17]

    Cui L, Wei G S, Li Z, Du X Z 2021 Int. J. Heat Mass Transfer 165 120685Google Scholar

    [18]

    Nguyen D T, Le M Q, Bui T L, Bui H L 2017 Acta Mech. Sin. 33 132Google Scholar

    [19]

    Hu X L, Lee J, Berman D, Martini A 2018 Carbon 137 118Google Scholar

    [20]

    Adrien A, Jiahao K, Kaustav B, Andras K 2015 Nat. Mater. 14 1195Google Scholar

    [21]

    Lin Z Y, Ji L F, Yan T Y, Xu Y B, Sun Z Y 2020 J. Mater. Res. Technol. 9 5934Google Scholar

    [22]

    杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟 2012 61 076501Google Scholar

    Yang P, Wang X L, Li P, Wang H, Zhang L Q, Xie F W 2012 Acta Phys. Sin. 61 076501Google Scholar

    [23]

    Liu D J 2020 Phys. Lett. A 384 126077

    [24]

    Li M, Zhang J C, Hu X J, Yue Y N 2015 Appl. Phys. A 119 415Google Scholar

    [25]

    Guénolé J, Nöhring W G, Vaid A, Houllé F, Xie Z C, Prakash A, Bitzek E 2020 Comput. Mater. Sci. 175 109584Google Scholar

    [26]

    Hammond K D 2020 Comput. Phys. Commun. 247 106862Google Scholar

    [27]

    Li Z, Xiong S Y, Sievers C, Hu Y, Fan Z Y, Wei N, Bao H, Chen S D, Donadio D, Ala-Nissila T 2019 J. Chem. Phys. 151 234105

    [28]

    Mao R, Kong B D, Kim K W, Jayasekera T, Calzolari A, Buongiorno M, Nardelli 2012 Appl. Phys. Lett. 101 113111Google Scholar

    [29]

    Wang H, Gong J, Pei Y, Xu Z 2013 ACS Appl. Mater.Interfaces 5 2599Google Scholar

Metrics
  • Abstract views:  8864
  • PDF Downloads:  435
  • Cited By: 0
Publishing process
  • Received Date:  01 April 2021
  • Accepted Date:  26 April 2021
  • Available Online:  07 June 2021
  • Published Online:  20 September 2021

/

返回文章
返回
Baidu
map