Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Growth behavior of WO3 crystal topological structure and its electrochromic properties

Shao Guang-Wei Yu Rui Fu Ting Chen Nan-Liang Liu Xiang-Yang

Citation:

Growth behavior of WO3 crystal topological structure and its electrochromic properties

Shao Guang-Wei, Yu Rui, Fu Ting, Chen Nan-Liang, Liu Xiang-Yang
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In this work, WO3 crystal structure films are deposited on conductive glass substrates by seed layer assisted hydrothermal reaction method. Through controlling the concentration of hydrochloric acid, oxalic acid, and the hydrothermal postprocessing temperature, the micro-peony, micro urchin-like, and porous petal-like WO3 crystal structures are obtained respectively. Scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and electrochemical characterization are used to study the formation mechanism of different structures and their effects on the electrochromic properties of WO3 films. The Cl in HCl has a strong promoting role towards the c axis in WO3 crystal growth and oxalic acid has a promoting effect towards an a axis. In terms of color efficiency, the CE value of micro-urchin is 42.37 cm2/C, far greater than those of two other WO3 structures, 15.21 cm2/C and 12.71 cm2/C. Owing to the cold-water quenching treatment, the CE value of WO3 micro-peony with porous surface structure is 56.95 cm2/C, quadruple CE value of the smooth surface structure, slightly better than that of the micro-urchin structure.
      Corresponding author: Yu Rui, liuxy@xmu.edu.cn ; Liu Xiang-Yang, yurui@xmu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12074322), the Fundamental Research Funds for the Central Universities, and the Graduate Student Innovation Fund of Donghua University, China (Grant No. CUSF-DH-D-2019046).
    [1]

    Sarwar S, Park S, Dao T T, Hong S, Han C-H 2021 Sol. Energy Mat. Sol. C 224 110990Google Scholar

    [2]

    He J, Zhao H, Wu H, Yang Y, Wang Z, He Z, Jiang G 2021 Phys. Chem. Chem. Phys.Google Scholar

    [3]

    汪鑫, 胡文杰, 徐耀 2021 光子学报 50 0731001

    Wang X, Hu W J, Xu Y 2021 Acta Photon. Sin. 50 0731001

    [4]

    Zhang L, Zhu T, Xia F, Cui Y, Xia H, Yang G, Gao Y 2021 Ceram. Int. 47 25854Google Scholar

    [5]

    史继超, 吴广明, 陈世文, 沈军, 周斌, 倪星元 2007 高等学校化学学报 28 1356Google Scholar

    Shi J C, Wu G M, Chen S W, Shen J, Zhou B, Ni X Y 2007 Chem. J. Chin. Uni. 28 1356Google Scholar

    [6]

    Yao M, Li T, Long Y, Shen P, Wang G, Li C, Liu J, Guo W, Wang Y, Shen L, Zhan X 2020 Sci. Bull. 65 217Google Scholar

    [7]

    刘畅, 孙依, 王晶, 唐莹, 马雪娇, 赵春山 2020 化学与黏合 42 181

    Liu C, Sun Y, Wang J, Tang Y, Ma X J, Zhao C S 2020 Chem. Adhesion 42 181

    [8]

    Karaca G Y, Eren E, Cogal G C, Uygun E, Oksuz L, Uygun Oksuz A 2019 Opt. Mater. 88 472Google Scholar

    [9]

    Yao Y, Zhao Q, Wei W, Chen Z, Zhu Y, Zhang P, Zhang Z, Gao Y 2020 Nano Energy 68 104350Google Scholar

    [10]

    Uchiyama H, Nakamura Y, Igarashi S 2021 RSC Adv. 11 7442Google Scholar

    [11]

    Li Y, Zhao J, Chen X, Wang L, Li W, Zhang X 2021 J. Inorg. Mater. 36 451Google Scholar

    [12]

    Gu H, Guo C, Zhang S, Bi L, Li T, Sun T, Liu S 2018 ACS Nano 12 559Google Scholar

    [13]

    Fang H, Zheng P, Ma R, Xu C, Yang G, Wang Q, Wang H 2018 Mater. Horiz. 5 1000Google Scholar

    [14]

    Zheng R, Wang Y, Pan J, Malik H A, Zhang H, Jia C, Weng X, Xie J, Deng L 2020 ACS Appl. Mater. Inter. 12 27526Google Scholar

    [15]

    方成, 汪洪, 施思奇 2016 65 168201Google Scholar

    Fang C, Wang H, Shi S Q 2016 Acta Phys. Sin. 65 168201Google Scholar

    [16]

    Wang J L, Lu Y R, Li H H, Liu J W, Yu S H 2017 J. Am. Chem. Soc. 139 9921Google Scholar

    [17]

    贾汉祥, 曹逊, 金平实 2020 无机材料学报 35 511Google Scholar

    Jia H X, Cao X, Jin P S 2020 J. Inorg. Mater. 35 511Google Scholar

    [18]

    Li J L, Liu X Y 2013 Soft Fibrillar Materials: Fabrication and Applications (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) pp163−182

    [19]

    Albert R, Barabasi A L 2002 Rev. Mod. Phys. 74 47Google Scholar

    [20]

    Lin N, Liu X Y 2015 Chem. Soc. Rev. 44 7881Google Scholar

    [21]

    Yang B, Barnes P R F, Zhang Y, Luca V 2007 Catal. Lett. 118 280Google Scholar

    [22]

    Miyauchi M, Shibuya M, Zhao Z G, Liu Z 2009 J. Phys. Chem. C 113 10642Google Scholar

    [23]

    Zheng H, Ou J Z, Strano M S, Kaner R B, Mitchell A, Kalantar-zadeh K 2011 Adv. Funct. Mater. 21 2175Google Scholar

    [24]

    Shibuya M, Miyauchi M 2009 Chem. Phys. Lett. 473 126Google Scholar

    [25]

    Wang J, Khoo E, Lee P S, Ma J 2009 J. Phys. Chem. C 113 9655Google Scholar

    [26]

    Adhikari S, Sarkar D 2014 RSC Adv. 4 20145Google Scholar

    [27]

    Wu Y, Hu M, Tian Y 2017 Chin. Phys. B 26 020701Google Scholar

    [28]

    Ma D, Wang H, Zhang Q, Li Y 2012 J. Mater. Chem. 22 16633Google Scholar

    [29]

    Gu Z, Ma Y, Yang W, Zhang G, Yao J 2005 Chem. Commun. (Camb) 3597

    [30]

    Liu Z, Miyauchi M, Yamazaki T, Shen Y 2009 Sensor. Actuat. B:Chem. 140 514Google Scholar

    [31]

    Ko R M, Wang S J, Tsai W C, Liou B W, Lin Y R 2009 CrystEngComm 11 1529Google Scholar

    [32]

    Su J, Feng X, Sloppy J D, Guo L, Grimes C A 2011 Nano Lett. 11 203

    [33]

    Song Y, Zhang Z, Yan L, Zhang L, Liu S, Xie S, Xu L, Du J 2019 Nanomaterials (Basel) 9 1795

  • 图 1  不同HCl浓度下生长的WO3晶体拓扑结构的SEM照片 (a) 0 mL; (b) 0.25 mL; (c) 0.50 mL; (d) 0.75 mL

    Figure 1.  SEM images of WO3 crystal topology structures with different concentration of HCl: (a) 0 mL; (b) 0.25 mL; (c) 0.50 mL; (d) 0.75 mL.

    图 2  不同草酸浓度下生长的WO3晶体拓扑结构的SEM照片 (a) 0 mol/L; (b) 0.05 mol/L; (c) 0.10 mol/L; (d) 0.15 mol/L

    Figure 2.  SEM images of WO3 crystal topology structures with different concentration of oxalic acid: (a) 0 mol/L; (b) 0.05 mol/L; (c) 0.10 mol/L; (d) 0.15 mol/L.

    图 3  淬冷处理, 多孔WO3微米花晶体结构在不同放大倍数时的SEM照片

    Figure 3.  SEM images of WO3 micro-peony crystal structures with the porous structure in different magnification.

    图 4  常温处理, 光滑WO3微米花晶体结构在不同放大倍数时的SEM照片

    Figure 4.  SEM images of WO3 micro-peony crystal structures with the smooth structure in different magnification.

    图 5  不同的微米花晶体拓扑表面结构生长示意图

    Figure 5.  Schematic illustration of the micro-peony crystal network topology growth mechanism.

    图 6  WO3大、小微米花晶体结构的XRD图谱

    Figure 6.  XRD patterns of WO3 blooming peony and small peony

    图 7  WO3微米花晶体拓扑结构的TEM照片

    Figure 7.  TEM images of WO3 micro-peony topology structure.

    图 8  WO3花朵片状晶体拓扑结构的SEM照片

    Figure 8.  SEM images of WO3 crystal network flower petals assembly process.

    图 9  WO3微米花瓣晶须的生长原理示意图

    Figure 9.  Schematic diagram of WO3 micro-peony crystal topology structure.

    图 10  花朵状WO3晶体拓扑结构的SEM照片和结构示意图

    Figure 10.  SEM image of WO3 flower-like topology structure and its simple image.

    图 11  高放大倍率下的花朵片状WO3晶体拓扑结构的SEM照片

    Figure 11.  SEM images of WO3 micro-peony topology structure with high magnification.

    图 12  不同WO3晶体拓扑结构的循环伏安曲线

    Figure 12.  CV curves of different WO3 network topologies.

    图 13  WO3样品的多电位阶跃曲线和原位光学反射率曲线

    Figure 13.  Multi-potential and reflectancecurves of WO3 sample

    图 14  3种典型的WO3晶体拓扑结构的原位光学密度和电荷密度的变化曲线

    Figure 14.  Variation curves of the in situ optical density (∆OD) vs. charge density for the typical mesoscopic WO3 crystalline patterns.

    Baidu
  • [1]

    Sarwar S, Park S, Dao T T, Hong S, Han C-H 2021 Sol. Energy Mat. Sol. C 224 110990Google Scholar

    [2]

    He J, Zhao H, Wu H, Yang Y, Wang Z, He Z, Jiang G 2021 Phys. Chem. Chem. Phys.Google Scholar

    [3]

    汪鑫, 胡文杰, 徐耀 2021 光子学报 50 0731001

    Wang X, Hu W J, Xu Y 2021 Acta Photon. Sin. 50 0731001

    [4]

    Zhang L, Zhu T, Xia F, Cui Y, Xia H, Yang G, Gao Y 2021 Ceram. Int. 47 25854Google Scholar

    [5]

    史继超, 吴广明, 陈世文, 沈军, 周斌, 倪星元 2007 高等学校化学学报 28 1356Google Scholar

    Shi J C, Wu G M, Chen S W, Shen J, Zhou B, Ni X Y 2007 Chem. J. Chin. Uni. 28 1356Google Scholar

    [6]

    Yao M, Li T, Long Y, Shen P, Wang G, Li C, Liu J, Guo W, Wang Y, Shen L, Zhan X 2020 Sci. Bull. 65 217Google Scholar

    [7]

    刘畅, 孙依, 王晶, 唐莹, 马雪娇, 赵春山 2020 化学与黏合 42 181

    Liu C, Sun Y, Wang J, Tang Y, Ma X J, Zhao C S 2020 Chem. Adhesion 42 181

    [8]

    Karaca G Y, Eren E, Cogal G C, Uygun E, Oksuz L, Uygun Oksuz A 2019 Opt. Mater. 88 472Google Scholar

    [9]

    Yao Y, Zhao Q, Wei W, Chen Z, Zhu Y, Zhang P, Zhang Z, Gao Y 2020 Nano Energy 68 104350Google Scholar

    [10]

    Uchiyama H, Nakamura Y, Igarashi S 2021 RSC Adv. 11 7442Google Scholar

    [11]

    Li Y, Zhao J, Chen X, Wang L, Li W, Zhang X 2021 J. Inorg. Mater. 36 451Google Scholar

    [12]

    Gu H, Guo C, Zhang S, Bi L, Li T, Sun T, Liu S 2018 ACS Nano 12 559Google Scholar

    [13]

    Fang H, Zheng P, Ma R, Xu C, Yang G, Wang Q, Wang H 2018 Mater. Horiz. 5 1000Google Scholar

    [14]

    Zheng R, Wang Y, Pan J, Malik H A, Zhang H, Jia C, Weng X, Xie J, Deng L 2020 ACS Appl. Mater. Inter. 12 27526Google Scholar

    [15]

    方成, 汪洪, 施思奇 2016 65 168201Google Scholar

    Fang C, Wang H, Shi S Q 2016 Acta Phys. Sin. 65 168201Google Scholar

    [16]

    Wang J L, Lu Y R, Li H H, Liu J W, Yu S H 2017 J. Am. Chem. Soc. 139 9921Google Scholar

    [17]

    贾汉祥, 曹逊, 金平实 2020 无机材料学报 35 511Google Scholar

    Jia H X, Cao X, Jin P S 2020 J. Inorg. Mater. 35 511Google Scholar

    [18]

    Li J L, Liu X Y 2013 Soft Fibrillar Materials: Fabrication and Applications (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) pp163−182

    [19]

    Albert R, Barabasi A L 2002 Rev. Mod. Phys. 74 47Google Scholar

    [20]

    Lin N, Liu X Y 2015 Chem. Soc. Rev. 44 7881Google Scholar

    [21]

    Yang B, Barnes P R F, Zhang Y, Luca V 2007 Catal. Lett. 118 280Google Scholar

    [22]

    Miyauchi M, Shibuya M, Zhao Z G, Liu Z 2009 J. Phys. Chem. C 113 10642Google Scholar

    [23]

    Zheng H, Ou J Z, Strano M S, Kaner R B, Mitchell A, Kalantar-zadeh K 2011 Adv. Funct. Mater. 21 2175Google Scholar

    [24]

    Shibuya M, Miyauchi M 2009 Chem. Phys. Lett. 473 126Google Scholar

    [25]

    Wang J, Khoo E, Lee P S, Ma J 2009 J. Phys. Chem. C 113 9655Google Scholar

    [26]

    Adhikari S, Sarkar D 2014 RSC Adv. 4 20145Google Scholar

    [27]

    Wu Y, Hu M, Tian Y 2017 Chin. Phys. B 26 020701Google Scholar

    [28]

    Ma D, Wang H, Zhang Q, Li Y 2012 J. Mater. Chem. 22 16633Google Scholar

    [29]

    Gu Z, Ma Y, Yang W, Zhang G, Yao J 2005 Chem. Commun. (Camb) 3597

    [30]

    Liu Z, Miyauchi M, Yamazaki T, Shen Y 2009 Sensor. Actuat. B:Chem. 140 514Google Scholar

    [31]

    Ko R M, Wang S J, Tsai W C, Liou B W, Lin Y R 2009 CrystEngComm 11 1529Google Scholar

    [32]

    Su J, Feng X, Sloppy J D, Guo L, Grimes C A 2011 Nano Lett. 11 203

    [33]

    Song Y, Zhang Z, Yan L, Zhang L, Liu S, Xie S, Xu L, Du J 2019 Nanomaterials (Basel) 9 1795

Metrics
  • Abstract views:  8334
  • PDF Downloads:  144
  • Cited By: 0
Publishing process
  • Received Date:  23 August 2021
  • Accepted Date:  24 September 2021
  • Available Online:  13 January 2022
  • Published Online:  20 January 2022

/

返回文章
返回
Baidu
map