搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水热合成ZnO:Cd纳米棒的微结构及光致发光特性

王长远 杨晓红 马勇 冯媛媛 熊金龙 王维

引用本文:
Citation:

水热合成ZnO:Cd纳米棒的微结构及光致发光特性

王长远, 杨晓红, 马勇, 冯媛媛, 熊金龙, 王维

Microstructure and photoluminescence of ZnO:Cd nanorods synthesized by hydrothermal method

Wang Chang-Yuan, Yang Xiao-Hong, Ma Yong, Feng Yuan-Yuan, Xiong Jin-Long, Wang Wei
PDF
导出引用
  • 采用水热法制备了ZnO和不同掺杂浓度的ZnO:Cd纳米棒,通过SEM,XRD、拉曼光谱等的分析,研究了ZnO和ZnO:Cd的微结构并测试分析了其光致发光特性. 结果表明,ZnO和ZnO:Cd纳米棒呈六角纤锌矿结构,Cd掺杂使得纳米棒体积更小. 由于内部张应力的影响,Cd掺杂使得材料光学带隙减少. 当掺杂浓度为2%时,合成的材料光致发光谱中出现了位于2.67 eV处,由导带底和Zn空位(VZn)缺陷能级跃迁造成的蓝光发射峰,并且Cd的掺入使得位于2.90 eV附近的紫光发射峰强度增强,对于研究ZnO蓝紫发光器件具有重要的意义.
    High-quality ZnO and Cd-doped ZnO nanorods with different Cd-doping concentrations are synthesized by using the hydrothermal method. Microstructures and photoluminescence of the samples are systematically investigated by SEM, X-ray diffraction (XRD), Raman scattering spectrum and photoluminescence (PL) spectrum. Results of XRD analysis indicate that ZnO and ZnO:Cd crystallites exhibit a hexagonal wurtzite structure. SEM shows that the nanorods become smaller due to Cd doping. There is an internal tension which induces the decrease of optical band gap in Cd-doped nanorods. Cd-doping increases the intensity of violet emission peak near 2.90 eV and the blue emission peak located at 2.67 eV appears when the doping concentration is up to 2%. This study can be used for developing blue-violet-emitting devices.
    • 基金项目: 庆师范大学博士启动基金(批准号:10XLB001)和国家自然科学基金青年基金(批准号:61106129)资助的课题.
    • Funds: Project supported by the Doctoral Foundation of Chongqing Normal University, China (Grant No. 10XLB001), and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61106129).
    [1]

    Xia Y Y, Brault J, Damilano B, Chenot S, Vennegue's P, Nemoz M, Teisseire M, Leroux M, Obrecht R, Robin I C, Santailler J L, Feuillet G, Chauvea J M 2013 Appl. Phys. Express 6 0421011

    [2]

    Cheng P F, Li S T, Wang H 2013 Chin. Phys. B 22 107701

    [3]
    [4]
    [5]

    Gao H X, Hu R, Yang Y T 2012 Chin. Phys. Lett. 29 017305

    [6]
    [7]

    Nie M Zhao Y Zeng YJiang Y J 2013 Acta Phys. Sin. 62 176801 (in Chinese) [聂朦, 赵艳, 曾勇, 蒋毅坚 2013 62 176801]

    [8]
    [9]

    Lv B, Zhou X, Linghu R F, Wang X L, Yang X D 2011 Chin. Phys. B 20 036104

    [10]

    Yang C, Wang X P, Wang L J, Pang X F, Li S K, Jing L W 2013 Chin. Phys. B 22 088101

    [11]
    [12]
    [13]

    Nakahara K, Akasaka S, Yuji H, Tamura K, Fujii T, Nishimoto Y, Takamizu D, Sasaki A, Tanabe T, Takasu H, Amaike H, Onuma T, Chichibu S F, Tsukazaki A, Ohtomo A, Kawasaki M 2010 Appl. Phys. Lett. 97 013501

    [14]
    [15]

    Hosseinmardi A, Shojaee N, Keyanpour R M, Ebadzadeh T 2012 Cera. Inter. 38 1975

    [16]
    [17]

    Zhong J B, Li J Z, He X Y, Zeng J, Lu Y, Hu W, Lin K 2012 Curr. Appl. Phys. 12 998

    [18]

    Lee W, Shin S, Jung D R, Kim J, Nahm C, Moon T, Park B 2012 Curr. Appl. Phys. 12 628

    [19]
    [20]
    [21]

    Li H, Liu E T, Chan F Y F, Lu Z, Chen R 2011 Mater. Lett. 65 3440

    [22]

    Wang C Z, Chen Z, He Y, Li L Y, Zhang D 2009 Appl. Surf. Sci 255 6881

    [23]
    [24]

    Chen R Q, Zou C W, Bian J M, Sandhu A, Gao W 2011 Nanotech. 22 1057061

    [25]
    [26]

    Yakuphanoglu F, Ilican S, Caglar M, Caglar Y 2010 Super. Micro. 47 732

    [27]
    [28]
    [29]

    Zhang J, Zhao S Q, Zhang K, Zhou J Q, Cai Y F 2012 Nanscale Res. Lett. 7 405

    [30]
    [31]

    Vijayalakshmi S, Venkataraj S, Jayavel R 2008 J. Phys. D: Appl. Phys. 41 245403

    [32]

    Tang X, Lv H F, Ma C Y, Zhao J J, Zhang Q Y 2008 Acta. Phys. Sin 57 1066 (in Chinese) [唐鑫, 吕海峰, 马春雨, 赵纪军, 张庆瑜 2008 57 1066]

    [33]
    [34]
    [35]

    Huang Y Q, Liu M D, Li Z, Zeng Y K, Liu S B 2003 Mater. Sci. Eng. B 97 111

    [36]

    Zang H, Wang Z G, Pang L L, Wei K F, Yao C F, Shen T L, Sun J R, Ma Y Z, Gou J, Sheng Y B, Zhu Y B 2010 Acta. Phys. Sin. 59 4831 (in Chinese) [臧航, 王志光, 庞立龙, 魏孔芳, 姚存峰, 申铁龙, 孙建荣, 马艺准, 缑洁, 盛彦斌, 朱亚滨 2010 59 4831]

    [37]
    [38]

    Deng Q, Ma Y, Yang X H, Ye L J, Zhang X Z, Zhang Q, Fu H W 2012 Acta. Phys. Sin. 61 247701 (in Chinese) [邓泉, 马勇, 杨晓红, 叶利娟, 张学忠, 张起, 付宏伟 2012 61 247701]

    [39]
    [40]

    Zhang F H, Zhang Z Y, Zhang W H, Xue S Q, Yun J N, Yan J F 2008 IEEE 2 681

    [41]
    [42]
    [43]

    Jaffe J E, Snyder J A, Lin Z J, Hess A C 2000 Phys. Rev. B 62 1660

    [44]

    Bacaksiz E, Altunbas M, zc-elik S O, Oltulu O, Tomakin M, Yılmaz S 2009 Mater. Sci. Semicond. Process. 12 118

    [45]
    [46]

    Bai L N, Zheng B J, Lian J S, Jiang Q 2012 Solid. State. Sci. 14 698

    [47]
    [48]

    Lin B X, Fu Z X, Jia Y B 2001 Appl. Phys. Lett. 79 943

    [49]
    [50]
    [51]

    Vanheusden K, Seager C H, Warren W L, Tallant D R 1996 Appl. Phys. Lett. 68 403

    [52]

    Yang P D, Yan H Q, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He R R, Choi H J 2002 Adv. Funct. Mater 12 323

    [53]
    [54]
    [55]
    [56]
    [57]
    [58]
    [59]
    [60]
    [61]
    [62]
    [63]
    [64]
    [65]
    [66]
    [67]
    [68]
    [69]
    [70]
    [71]
    [72]
    [73]
    [74]
    [75]
    [76]
    [77]
    [78]
    [79]
    [80]
    [81]
    [82]
    [83]
    [84]
    [85]
    [86]
    [87]
    [88]
    [89]
    [90]
    [91]
    [92]
    [93]
    [94]
    [95]
    [96]
    [97]
    [98]
    [99]
    [100]
    [101]
    [102]
    [103]
    [104]
    [105]
  • [1]

    Xia Y Y, Brault J, Damilano B, Chenot S, Vennegue's P, Nemoz M, Teisseire M, Leroux M, Obrecht R, Robin I C, Santailler J L, Feuillet G, Chauvea J M 2013 Appl. Phys. Express 6 0421011

    [2]

    Cheng P F, Li S T, Wang H 2013 Chin. Phys. B 22 107701

    [3]
    [4]
    [5]

    Gao H X, Hu R, Yang Y T 2012 Chin. Phys. Lett. 29 017305

    [6]
    [7]

    Nie M Zhao Y Zeng YJiang Y J 2013 Acta Phys. Sin. 62 176801 (in Chinese) [聂朦, 赵艳, 曾勇, 蒋毅坚 2013 62 176801]

    [8]
    [9]

    Lv B, Zhou X, Linghu R F, Wang X L, Yang X D 2011 Chin. Phys. B 20 036104

    [10]

    Yang C, Wang X P, Wang L J, Pang X F, Li S K, Jing L W 2013 Chin. Phys. B 22 088101

    [11]
    [12]
    [13]

    Nakahara K, Akasaka S, Yuji H, Tamura K, Fujii T, Nishimoto Y, Takamizu D, Sasaki A, Tanabe T, Takasu H, Amaike H, Onuma T, Chichibu S F, Tsukazaki A, Ohtomo A, Kawasaki M 2010 Appl. Phys. Lett. 97 013501

    [14]
    [15]

    Hosseinmardi A, Shojaee N, Keyanpour R M, Ebadzadeh T 2012 Cera. Inter. 38 1975

    [16]
    [17]

    Zhong J B, Li J Z, He X Y, Zeng J, Lu Y, Hu W, Lin K 2012 Curr. Appl. Phys. 12 998

    [18]

    Lee W, Shin S, Jung D R, Kim J, Nahm C, Moon T, Park B 2012 Curr. Appl. Phys. 12 628

    [19]
    [20]
    [21]

    Li H, Liu E T, Chan F Y F, Lu Z, Chen R 2011 Mater. Lett. 65 3440

    [22]

    Wang C Z, Chen Z, He Y, Li L Y, Zhang D 2009 Appl. Surf. Sci 255 6881

    [23]
    [24]

    Chen R Q, Zou C W, Bian J M, Sandhu A, Gao W 2011 Nanotech. 22 1057061

    [25]
    [26]

    Yakuphanoglu F, Ilican S, Caglar M, Caglar Y 2010 Super. Micro. 47 732

    [27]
    [28]
    [29]

    Zhang J, Zhao S Q, Zhang K, Zhou J Q, Cai Y F 2012 Nanscale Res. Lett. 7 405

    [30]
    [31]

    Vijayalakshmi S, Venkataraj S, Jayavel R 2008 J. Phys. D: Appl. Phys. 41 245403

    [32]

    Tang X, Lv H F, Ma C Y, Zhao J J, Zhang Q Y 2008 Acta. Phys. Sin 57 1066 (in Chinese) [唐鑫, 吕海峰, 马春雨, 赵纪军, 张庆瑜 2008 57 1066]

    [33]
    [34]
    [35]

    Huang Y Q, Liu M D, Li Z, Zeng Y K, Liu S B 2003 Mater. Sci. Eng. B 97 111

    [36]

    Zang H, Wang Z G, Pang L L, Wei K F, Yao C F, Shen T L, Sun J R, Ma Y Z, Gou J, Sheng Y B, Zhu Y B 2010 Acta. Phys. Sin. 59 4831 (in Chinese) [臧航, 王志光, 庞立龙, 魏孔芳, 姚存峰, 申铁龙, 孙建荣, 马艺准, 缑洁, 盛彦斌, 朱亚滨 2010 59 4831]

    [37]
    [38]

    Deng Q, Ma Y, Yang X H, Ye L J, Zhang X Z, Zhang Q, Fu H W 2012 Acta. Phys. Sin. 61 247701 (in Chinese) [邓泉, 马勇, 杨晓红, 叶利娟, 张学忠, 张起, 付宏伟 2012 61 247701]

    [39]
    [40]

    Zhang F H, Zhang Z Y, Zhang W H, Xue S Q, Yun J N, Yan J F 2008 IEEE 2 681

    [41]
    [42]
    [43]

    Jaffe J E, Snyder J A, Lin Z J, Hess A C 2000 Phys. Rev. B 62 1660

    [44]

    Bacaksiz E, Altunbas M, zc-elik S O, Oltulu O, Tomakin M, Yılmaz S 2009 Mater. Sci. Semicond. Process. 12 118

    [45]
    [46]

    Bai L N, Zheng B J, Lian J S, Jiang Q 2012 Solid. State. Sci. 14 698

    [47]
    [48]

    Lin B X, Fu Z X, Jia Y B 2001 Appl. Phys. Lett. 79 943

    [49]
    [50]
    [51]

    Vanheusden K, Seager C H, Warren W L, Tallant D R 1996 Appl. Phys. Lett. 68 403

    [52]

    Yang P D, Yan H Q, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He R R, Choi H J 2002 Adv. Funct. Mater 12 323

    [53]
    [54]
    [55]
    [56]
    [57]
    [58]
    [59]
    [60]
    [61]
    [62]
    [63]
    [64]
    [65]
    [66]
    [67]
    [68]
    [69]
    [70]
    [71]
    [72]
    [73]
    [74]
    [75]
    [76]
    [77]
    [78]
    [79]
    [80]
    [81]
    [82]
    [83]
    [84]
    [85]
    [86]
    [87]
    [88]
    [89]
    [90]
    [91]
    [92]
    [93]
    [94]
    [95]
    [96]
    [97]
    [98]
    [99]
    [100]
    [101]
    [102]
    [103]
    [104]
    [105]
  • [1] 陈隆, 陈成克, 李晓, 胡晓君. 氧化对单颗粒层纳米金刚石薄膜硅空位发光和微结构的影响.  , 2019, 68(16): 168101. doi: 10.7498/aps.68.20190422
    [2] 周小红, 杨卿, 邹军涛, 梁淑华. 生长条件对Ga掺杂ZnO薄膜微观结构及光致发光性能的影响.  , 2015, 64(8): 087803. doi: 10.7498/aps.64.087803
    [3] 傅重源, 邢淞, 沈涛, 邰博, 董前民, 舒海波, 梁培. 水热法合成纳米花状二硫化钼及其微观结构表征.  , 2015, 64(1): 016102. doi: 10.7498/aps.64.016102
    [4] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能.  , 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [5] 李屹同, 沈谅平, 王浩, 汪汉斌. 水基ZnO纳米流体电导和热导性能研究 .  , 2013, 62(12): 124401. doi: 10.7498/aps.62.124401
    [6] 陈先梅, 王晓霞, 郜小勇, 赵显伟, 刘红涛, 张飒. 掺银氧化锌纳米棒的水热法制备研究.  , 2013, 62(5): 056104. doi: 10.7498/aps.62.056104
    [7] 陈先梅, 郜小勇, 张飒, 刘红涛. 醋酸锌热解温度对ZnO纳米棒的结构及光学性质的影响.  , 2013, 62(4): 049102. doi: 10.7498/aps.62.049102
    [8] 万步勇, 苑进社, 冯庆, 王奥. K,Na掺杂Cu-S纳米晶的水热合成及对结构、性能的影响.  , 2013, 62(17): 178102. doi: 10.7498/aps.62.178102
    [9] 王世伟, 朱明原, 钟民, 刘聪, 李瑛, 胡业旻, 金红明. 脉冲磁场对水热法制备Mn掺杂ZnO稀磁半导体的影响.  , 2012, 61(19): 198103. doi: 10.7498/aps.61.198103
    [10] 刘佳, 徐玲玲, 张海霖, 吕威, 朱琳, 高红, 张喜田. 一步水热法在Al掺杂ZnO纳米盘上可控自组装合成ZnO纳米棒阵列.  , 2012, 61(2): 027802. doi: 10.7498/aps.61.027802
    [11] 周传仓, 刘发民, 丁芃, 钟文武, 蔡鲁刚, 曾乐贵. 钪钇石型β-Mn2V2O7的水热合成、结构表征与反铁磁性.  , 2011, 60(7): 077504. doi: 10.7498/aps.60.077504
    [12] 孙家跃, 曹纯, 杜海燕. NaLa(MoO4)2∶Eu3+的水热调控合成与发光特性研究.  , 2011, 60(12): 127801. doi: 10.7498/aps.60.127801
    [13] 吴艳南, 徐明, 吴定才, 董成军, 张佩佩, 纪红萱, 何林. Co,Sn共掺ZnO薄膜结构与光致发光的研究.  , 2011, 60(7): 077505. doi: 10.7498/aps.60.077505
    [14] 黄金昭, 李世帅, 冯秀鹏. ZnO纳米棒的低温溶液法制备、光电特性研究及其在有机/无机复合电致发光中的应用.  , 2010, 59(8): 5839-5844. doi: 10.7498/aps.59.5839
    [15] 新梅, 曹望和. 水热法制备ZnS:Cu,Tm超细X射线发光粉.  , 2010, 59(8): 5833-5838. doi: 10.7498/aps.59.5833
    [16] 张爱平, 张进治. 水热法制备不同形貌和结构的BiVO4粉末.  , 2009, 58(4): 2336-2344. doi: 10.7498/aps.58.2336
    [17] 于 威, 李亚超, 丁文革, 张江勇, 杨彦斌, 傅广生. 氮化硅薄膜中纳米非晶硅颗粒的键合结构及光致发光.  , 2008, 57(6): 3661-3665. doi: 10.7498/aps.57.3661
    [18] 马海林, 苏 庆, 兰 伟, 刘雪芹. 氧流量对热蒸发CVD法生长β-Ga2O3纳米材料的结构及发光特性的影响.  , 2008, 57(11): 7322-7326. doi: 10.7498/aps.57.7322
    [19] 姚志涛, 孙新瑞, 许海军, 姜卫粉, 肖顺华, 李新建. 氧化锌/硅纳米孔柱阵列的结构和光致发光特性研究.  , 2007, 56(10): 6098-6103. doi: 10.7498/aps.56.6098
    [20] 王永谦, 陈维德, 陈长勇, 刁宏伟, 张世斌, 徐艳月, 孔光临, 廖显伯. 快速热退火和氢等离子体处理对富硅氧化硅薄膜微结构与发光的影响.  , 2002, 51(7): 1564-1570. doi: 10.7498/aps.51.1564
计量
  • 文章访问数:  6373
  • PDF下载量:  623
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-11
  • 修回日期:  2014-04-08
  • 刊出日期:  2014-08-05

/

返回文章
返回
Baidu
map