搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

K,Na掺杂Cu-S纳米晶的水热合成及对结构、性能的影响

万步勇 苑进社 冯庆 王奥

引用本文:
Citation:

K,Na掺杂Cu-S纳米晶的水热合成及对结构、性能的影响

万步勇, 苑进社, 冯庆, 王奥

Hydrothermal synthesis of K, Na doped Cu-S nanocrystalline and effect of doping on crystal structure and performance

Wan Bu-Yong, Yuan Jin-She, Feng Qing, Wang Ao
PDF
导出引用
  • 利用水热合成技术, 分别以CuCl22H2O, 硫粉为铜源和硫源, 以KOH或NaOH为矿化剂, 成功合成了Cu2S纳米晶体和碱金属离子掺杂的KCu7S4纳米线和NaCu5S3 微纳米球. 通过X射线衍射(XRD)、电子能谱(EDS)、扫描电镜(SEM)、透射电镜(TEM)和高分辨率透射电镜 (HRTEM) 对产物的结构和形貌进行了表征和分析. 结果显示: KOH含量低于1g或NaOH低于2g时, 产物为斜方辉铜矿Cu2S; 高碱含量 (不低于3g) 时, K或Na离子成功掺入产物结构中, K掺杂产物为纯净的四方相KCu7S4, 单晶结构, 尺寸均匀, 长度可达几十微米的纳米线; Na掺杂未改变产物的形貌, 形成六方晶系结构的NaCu5S3. 产物的形成和生长与反应温度、反应时间和矿化剂密切相关. 并讨论了Cu2S纳米晶及其掺杂纳米晶的形成机理及掺杂机理. 最后研究了碱金属离子掺杂对产物的光学性能的影响, 漫反射光谱显示Cu2S, KCu7S4和NaCu5S3纳米晶的光学带隙分别为1.21eV, 0.49eV和0.42eV, K+和Na+的掺杂, 极大的改变了产物的光学特性.
    Cuprous sulfide (Cu2S) nanocrystals and K or Na doped KCu7S4 nanowires and NaCu5S3 micro-nanospheres have been synthesized successfully by using a simple hydrothermal method, using KOH or NaOH as mineralizing agent, CuCl22H2O and S powders as copper and Sulfur sources, respectively. The structure and morphology are characterized and analyzed by X-ray diffraction (XRD), energy dispersive X-ray spectrum (EDS), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The results reveal that under conditions that the amount of KOH is below 1g or the amount of NaOH below 2 g, the product is of the orthorhombic chalcocite Cu2S, while with high alkali amount (no less than 3 g), K+ or Na+ is successfully incorporated into the Cu-S structure; KCu7S4 has the pure tetragonal single crystal structure, and its uniform nanowires can be up to several tens of micrometers in length. Na doping has no effect on the morphology of the product, which forms the hexagonal NaCu5S3. The formation and growth of the product are closely related to the reaction temperature, reaction time and mineralizing agent. And, the formation and doping mechanisms are discussed. Finally, the influence of the alkali metal ion doping on the optical properties of the product is investigated. The diffuse reflectance spectra demonstrate that the optical band gaps of Cu2S, NaCu5S3 and KCu7S4 nanocrystallines is 1.21, 0.49, 0.42 eV, respectively. And K+ or Na+ doping greatly affects the optical characteristics.
    • 基金项目: 国家自然科学基金(批准号: 61106129, 61274128);重庆市自然科学基金(批准号: cstc2012jjA50024)和重庆市教委科技项目(批准号: KJ130603)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61106129, 61274128), the Natural Science Foundation of Chongqing, China (Grant No. cstc2012jjA50024), and the Science and Technology Research Project of Chongqing Municipal Education Commission of China (Grant No. KJ130603).
    [1]

    Liu J, Zhou W C, Zhang J F 2012 Acta Phys. Sin. 61 206101 (in Chinese) [刘军, 周伟昌, 张建福 2012 61 206101]

    [2]

    Yang Y P, Feng S, Feng H, Pan X C, Wang Y Q, Wang W Z 2011 Acta Phys. Sin. 60 027802 (in Chinese) [杨玉平, 冯帅, 冯辉, 潘学聪, 王义全, 王文忠 2011 60 027802]

    [3]

    Xin M, Cao W H 2010 Acta Phys. Sin. 59 5833 (in Chinese) [新梅, 曹望和 2010 59 5833]

    [4]

    Kim H S, Sung T K, Jang S Y, Myung Y, Cho Y J, Lee C W, Park J, Ahn J P, Kim J G, Kim Y 2011 Cryst. Eng. Comm. 13 2091

    [5]

    Peng M, Ma L L, Zhang Y G, Tan M, Wang J B, Yu Y 2009 Mater. Res. Bull. 44 1834

    [6]

    Zhao F, Chen X, Xu N, Lu P 2006 J. Phys. Chem. Solids 67 1786

    [7]

    Shi J Fu, Fan Y X, Xue Q, Xu G, Chen L H 2012 Acta Phys. Chim.Sin. 28 857 (in Chinese) [史继富, 樊晔, 徐雪青, 徐刚, 陈丽华 2012 物理化学学报 28 857]

    [8]

    Tang A W, Qu S C, Li K, Hou Y B, Teng F, Cao J, Wang Y S, Wang Z G 2010 Nanotechnology 21 285602

    [9]

    Nayak A, Ohno T, Tsuruoka T, Terabe K, Hasegawa T, Gimzewski J K, Aono M 2012 Adv. Funct. Mater. 22 3606

    [10]

    Boller H 2007 J. Alloys Compd. 442 3

    [11]

    Kuo Y K, Skove M J, Verebelyi D T, Li H, Mackay R, Hwu S J, Whangbo M H, Brill J W 1997 Phys. Rev. B 57 3315

    [12]

    Brown D B, Zubieta J A, Vella P A, Wrobleski J T, Watt T, Hatfield W E, Day P 1980 Inorg. Chem. 19 1945

    [13]

    Whangbo M H, Canadell E 1992 Solid State Commun. 81 895

    [14]

    Noren L, Berger R, Lidin S, Eriksson L, Huster J 1998 J. Alloys Compd. 281 186

    [15]

    Hwu S J, Li H, Mackay R, Kuo Y K, Skove M J, Mahapatro M, Bucher C K, Halladay J P, Hayes M W 1998 Chem. Mater. 10 6

    [16]

    Huang L, Liu J, Zuo Z, Liu H, Liu D, Wang J, Boughton R I 2010 J. Alloys Compd. 507 429

    [17]

    Effenberger H, Pertlik F 1985 Monatsh. Chem. 116 921

    [18]

    Liu B, Zeng H C 2005 Small 1 566

    [19]

    Purdy A P 1998 Chem. Mater. 10 692

    [20]

    Peng M, Ma L L, Zhang Y G, Tan M, Wang J B, Yu Y 2009 Mater. Res. Bull. 44 1834

    [21]

    Yuan M, Mitzi D B 2009 J. Chem. Soc. Dalton Trans. 31 6078

    [22]

    Ohtani T, Ogura J, Sakai M, Sano Y 1991 Solid State Commun. 78 913

    [23]

    Effenberger H, Pertlik F 1985 Monatshefte fr Chemie 116 921

    [24]

    Li J, Chen Z, Wang X X, Proserpio D M 1997 J. Alloys Compd. 262-263 28

    [25]

    Yang M, Yang X, Huai L, Liu W 2008 Appl. Surf. Sci. 255 1750

    [26]

    Bekenstein Y, Vinokurov K, Banin U, Millo O 2012 Nanotechnology 23 505710

    [27]

    Sun D M, Wu Q S, Ding Y P 2004 J. Inorg. Mater. 19 487 (in Chinese) [孙冬梅, 吴庆生, 丁亚平 2004 无机材料学报 19 487]

  • [1]

    Liu J, Zhou W C, Zhang J F 2012 Acta Phys. Sin. 61 206101 (in Chinese) [刘军, 周伟昌, 张建福 2012 61 206101]

    [2]

    Yang Y P, Feng S, Feng H, Pan X C, Wang Y Q, Wang W Z 2011 Acta Phys. Sin. 60 027802 (in Chinese) [杨玉平, 冯帅, 冯辉, 潘学聪, 王义全, 王文忠 2011 60 027802]

    [3]

    Xin M, Cao W H 2010 Acta Phys. Sin. 59 5833 (in Chinese) [新梅, 曹望和 2010 59 5833]

    [4]

    Kim H S, Sung T K, Jang S Y, Myung Y, Cho Y J, Lee C W, Park J, Ahn J P, Kim J G, Kim Y 2011 Cryst. Eng. Comm. 13 2091

    [5]

    Peng M, Ma L L, Zhang Y G, Tan M, Wang J B, Yu Y 2009 Mater. Res. Bull. 44 1834

    [6]

    Zhao F, Chen X, Xu N, Lu P 2006 J. Phys. Chem. Solids 67 1786

    [7]

    Shi J Fu, Fan Y X, Xue Q, Xu G, Chen L H 2012 Acta Phys. Chim.Sin. 28 857 (in Chinese) [史继富, 樊晔, 徐雪青, 徐刚, 陈丽华 2012 物理化学学报 28 857]

    [8]

    Tang A W, Qu S C, Li K, Hou Y B, Teng F, Cao J, Wang Y S, Wang Z G 2010 Nanotechnology 21 285602

    [9]

    Nayak A, Ohno T, Tsuruoka T, Terabe K, Hasegawa T, Gimzewski J K, Aono M 2012 Adv. Funct. Mater. 22 3606

    [10]

    Boller H 2007 J. Alloys Compd. 442 3

    [11]

    Kuo Y K, Skove M J, Verebelyi D T, Li H, Mackay R, Hwu S J, Whangbo M H, Brill J W 1997 Phys. Rev. B 57 3315

    [12]

    Brown D B, Zubieta J A, Vella P A, Wrobleski J T, Watt T, Hatfield W E, Day P 1980 Inorg. Chem. 19 1945

    [13]

    Whangbo M H, Canadell E 1992 Solid State Commun. 81 895

    [14]

    Noren L, Berger R, Lidin S, Eriksson L, Huster J 1998 J. Alloys Compd. 281 186

    [15]

    Hwu S J, Li H, Mackay R, Kuo Y K, Skove M J, Mahapatro M, Bucher C K, Halladay J P, Hayes M W 1998 Chem. Mater. 10 6

    [16]

    Huang L, Liu J, Zuo Z, Liu H, Liu D, Wang J, Boughton R I 2010 J. Alloys Compd. 507 429

    [17]

    Effenberger H, Pertlik F 1985 Monatsh. Chem. 116 921

    [18]

    Liu B, Zeng H C 2005 Small 1 566

    [19]

    Purdy A P 1998 Chem. Mater. 10 692

    [20]

    Peng M, Ma L L, Zhang Y G, Tan M, Wang J B, Yu Y 2009 Mater. Res. Bull. 44 1834

    [21]

    Yuan M, Mitzi D B 2009 J. Chem. Soc. Dalton Trans. 31 6078

    [22]

    Ohtani T, Ogura J, Sakai M, Sano Y 1991 Solid State Commun. 78 913

    [23]

    Effenberger H, Pertlik F 1985 Monatshefte fr Chemie 116 921

    [24]

    Li J, Chen Z, Wang X X, Proserpio D M 1997 J. Alloys Compd. 262-263 28

    [25]

    Yang M, Yang X, Huai L, Liu W 2008 Appl. Surf. Sci. 255 1750

    [26]

    Bekenstein Y, Vinokurov K, Banin U, Millo O 2012 Nanotechnology 23 505710

    [27]

    Sun D M, Wu Q S, Ding Y P 2004 J. Inorg. Mater. 19 487 (in Chinese) [孙冬梅, 吴庆生, 丁亚平 2004 无机材料学报 19 487]

  • [1] 张冷, 张鹏展, 刘飞, 李方政, 罗毅, 侯纪伟, 吴孔平. 基于形变势理论的掺杂计算Sb2Se3空穴迁移率.  , 2024, 73(4): 047101. doi: 10.7498/aps.73.20231406
    [2] 张小娅, 宋佳讯, 王鑫豪, 王金斌, 钟向丽. In掺杂h-LuFeO3光吸收及极化性能的第一性原理计算.  , 2021, 70(3): 037101. doi: 10.7498/aps.70.20201287
    [3] 颜俊, 王子毅, 曾若生, 邹炳锁. 零维Sb3+掺杂Rb7Bi3Cl16金属卤化物的三重态自陷激子发射.  , 2021, 70(24): 247801. doi: 10.7498/aps.70.20211024
    [4] 李文宇, 霍格, 黄岩, 董丽娟, 卢学刚. 空心Fe3O4纳米微球的制备及超顺磁性.  , 2018, 67(17): 177501. doi: 10.7498/aps.67.20180579
    [5] 阮璐风, 王磊, 孙得彦. Sr掺杂对La1-xSrxMnO3/LaAlO3/SrTiO3界面电子结构的影响.  , 2017, 66(18): 187301. doi: 10.7498/aps.66.187301
    [6]
    1. 翟顺成, 郭平, 郑继明, 赵普举, 索兵兵, 万云, 
    第一性原理研究O和S掺杂的石墨相氮化碳(g-C3N4)6量子点电子结构和光吸收性质.  , 2017, 66(18): 187102. doi: 10.7498/aps.66.187102
    [7] 嘉明珍, 王红艳, 陈元正, 马存良, 王辉. Al, Fe, Mg掺杂Li2MnSiO4的电子结构和电化学性能的第一性原理研究.  , 2015, 64(8): 087101. doi: 10.7498/aps.64.087101
    [8] 程超群, 李刚, 张文栋, 李朋伟, 胡杰, 桑胜波, 邓霄. B, P掺杂β-Si3N4的电子结构和光学性质研究.  , 2015, 64(6): 067102. doi: 10.7498/aps.64.067102
    [9] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究.  , 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [10] 朱明原, 刘聪, 薄伟强, 舒佳武, 胡业旻, 金红明, 王世伟, 李瑛. 脉冲磁场下水热法制备Cr掺杂ZnO稀磁半导体晶体.  , 2012, 61(7): 078106. doi: 10.7498/aps.61.078106
    [11] 王世伟, 朱明原, 钟民, 刘聪, 李瑛, 胡业旻, 金红明. 脉冲磁场对水热法制备Mn掺杂ZnO稀磁半导体的影响.  , 2012, 61(19): 198103. doi: 10.7498/aps.61.198103
    [12] 刘佳, 徐玲玲, 张海霖, 吕威, 朱琳, 高红, 张喜田. 一步水热法在Al掺杂ZnO纳米盘上可控自组装合成ZnO纳米棒阵列.  , 2012, 61(2): 027802. doi: 10.7498/aps.61.027802
    [13] 周传仓, 刘发民, 丁芃, 钟文武, 蔡鲁刚, 曾乐贵. 钪钇石型β-Mn2V2O7的水热合成、结构表征与反铁磁性.  , 2011, 60(7): 077504. doi: 10.7498/aps.60.077504
    [14] 孙家跃, 曹纯, 杜海燕. NaLa(MoO4)2∶Eu3+的水热调控合成与发光特性研究.  , 2011, 60(12): 127801. doi: 10.7498/aps.60.127801
    [15] 张云, 邵晓红, 王治强. 3C-SiC材料p型掺杂的第一性原理研究.  , 2010, 59(8): 5652-5660. doi: 10.7498/aps.59.5652
    [16] 徐新发, 邵晓红. Y掺杂SrTiO3晶体材料的电子结构计算.  , 2009, 58(3): 1908-1916. doi: 10.7498/aps.58.1908
    [17] 张爱平, 张进治. 水热法制备不同形貌和结构的BiVO4粉末.  , 2009, 58(4): 2336-2344. doi: 10.7498/aps.58.2336
    [18] 杜丽萍, 陈抱雪, 孙 蓓, 陈 直, 邹林儿, 浜中广见, 矶 守. 掺杂As2S8非晶态薄膜波导的光阻断效应.  , 2008, 57(6): 3593-3599. doi: 10.7498/aps.57.3593
    [19] 张加宏, 马 荣, 刘 甦, 刘 楣. 掺杂MgCNi3超导电性和磁性的第一性原理研究.  , 2006, 55(9): 4816-4821. doi: 10.7498/aps.55.4816
    [20] 初宝进, 李国荣, 殷庆瑞, 张望重, 陈大任. 非化学计量和掺杂对(Na1/2Bi1/2)0.92Ba0.08TiO3陶瓷电性能的影响.  , 2001, 50(10): 2012-2016. doi: 10.7498/aps.50.2012
计量
  • 文章访问数:  7923
  • PDF下载量:  1112
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-12
  • 修回日期:  2013-05-07
  • 刊出日期:  2013-09-05

/

返回文章
返回
Baidu
map