搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化钨电致变色性能的研究进展

方成 汪洪 施思齐

引用本文:
Citation:

氧化钨电致变色性能的研究进展

方成, 汪洪, 施思齐

Research progress of electrochromic performances of WO3

Fang Cheng, Wang Hong, Shi Si-Qi
PDF
导出引用
  • 本文从实验和第一性原理计算研究两方面,评述了近些年来为改善氧化钨的电致变色性能所取得的各项研究进展,并深入分析了其在应用领域、性能需求、研发重点等方面所发生的转变趋势. 响应时间和循环寿命是固态无机电致变色材料在大面积建筑幕墙应用中两项最重要的性能指标. 采用纳米技术合成的具有多孔隙结构的晶态氧化钨,兼具高稳定性和高变色速率,在实验研究上备受关注. 简单立方结构的氧化钨,由于构型简易且对称性好,被广泛用作第一性原理计算模型,但从其得到的能隙和晶格常数却与实验出现了诸多的不符. 我们聚焦氧化钨嵌锂构型的特征,发现Li-O距离起到了关键性作用,并认为造成分歧的原因是模型被过度简化,即忽略了氧化钨中普遍存在的钨氧八面体倾斜畸变和由二阶姜-泰勒效应引发的钨偏离八面体体心的结构畸变. 以此为基础,提出的畸变立方结构的氧化钨模型能够很好地缩小与实验之间存在的误差. 此外,通过对当前已取得的研究结果和遇到的问题进行综合分析,指出了未来值得关注的方向,希望能为后期的深入研究提供一定的借鉴和参考.
    From the aspects of both experimental studies and first-principles calculation, we review the research progress of improving the electrochromic performances of WO3, and analyze the transformation tendency in applied field, performance requirement and research focus. Due to the low color-switching, the application field of WO3 shifts from display devices to smart windows or other energy-saving devices. According to the requirement for electrochromic performance, the concerned WO3 morphology changes from amorphous form to nanostructure. For the high desire of smart windows in large-area curtain walls, the solid state inorganic electrochromic materials with lithium ion conductors are used as substitutes for the organic electrochromic films in hydrogen ion electrolytic solution. Correspondingly, response time and cycle life are regarded as the most important performance indices. Doping and synthesizing nanostructure are considered to be the main methods to improve electrochromic performance by introducing the pores into the crystals as the ion diffusion path. Especially, the nano-crystalline WO3 attracts much attention, due to its high stability and quick color switching. In the respect of the first-principles calculation, the simple cubic WO3 is a widely used model for calculation, because of its simple structure and high symmetry. However, there always occur the underestimation of band gap and the incorrect relationship between the cell sizes of WO3 and LiWO3. In response to the problem, by analyzing the Li-intercalated WO3 configuration, it is found that the lattice parameter is closely associated with the interaction between lithium and oxygen. The large discrepancy between the experimental and calculated band gaps is primarily due to the omission of the structural distortion in the calculation, including tilting of WO6 octahedra, as well as the off-centering of W in octahedral caused by the second-order Jahn-Teller effect. According to this, we propose a distorted cubic WO3 model (Im3 space group) to better explain the relevant experimental results. In light of the achieved results and the encountered problems in recent researches, it is generally received that the industrialization of nano-crystalline WO3 and systematic calculation on the lithium diffusion in WO3 deserve the serious consideration. In addition, possessing the function of blocking near-infrared and visible light selectively is the trend for the next generation electrochromic materials. Therefore, the noteworthy development directions on the aspect of both experimental studies and first-principles calculation are pointed out to provide some valuable references for the further researches.
      Corresponding author: Wang Hong, hongwang2@cbmamail.com.cn;sqshi@shu.edu.cn ; Shi Si-Qi, hongwang2@cbmamail.com.cn;sqshi@shu.edu.cn
    • Funds: Project supported by the National High Technology Research and Development Plan of China (Grant No. 2015AA034204) and the Beijing Municipal Science and Technology Commission Special Fund, China (Grant No. Z151100001615038).
    [1]

    Zhang Y Z, Hu X F 2003 The 21st Century’s New Technology of Solar Energy Shanghai, October 10-12, 2003 200050 (in Chinese) [章俞之, 胡行方 2003 21世纪太阳能新技术, 上海, 10月10-12, 2003 200050]

    [2]

    Chen Y, Xu Z, Sun J L, Deng H T, Chen H T, Zhao S L 2013 J. Funct. Mater. 17 2441 (in Chinese) [陈怡, 徐征, 孙金礼, 邓恒涛, 陈海涛, 赵谡玲 2013 功能材料 17 2441]

    [3]

    Ma D Y 2013 Ph. D. Dissertation (Shanghai: Donghua University) (in Chinese) [马董云 2013 博士学位论文 (上海: 东华大学)]

    [4]

    Walkingshaw A D, Spaldin N A, Artacho E 2004 Phys. Rev. B 70 165110

    [5]

    Daniel M F, Desbat B, Lassegues J C 1987 J. Solid State Chem. 67 235

    [6]

    Chatten R, Chadwick A V, Rougier A, Lindan P J D 2005 J. Phys. Chem. B 109 3146

    [7]

    Zhong Q, Dahn J R, Colbow K 1992 Phys. Rev. B 46 2554

    [8]

    Bullett D W 1983 J. Phys. C: Solid State Phys. 16 2197

    [9]

    Kong Y Q, Sun H G, Zhao X, Gao B Y, Fan W L 2015 Appl. Catal. A: General 505 447

    [10]

    Kim W, Tachikawa T, Monllor-Satoca D, Kim H, Majima T, Choi W 2013 Energy Environ. Sci. 6 3732

    [11]

    Huang K, Zhang Q 2012 Nano Energy 1 172

    [12]

    Ponzoni A, Comini E, Sberveglieri G, Zhou J, Deng S Z, Xu N S, Ding Y, Wang Z L 2006 Appl. Phys. Lett. 88 203101

    [13]

    Qin Y X, Wang F, Shen W J, Hu M 2012 Acta Phys. Sin. 61 057301 (in Chinese) [秦玉香, 王飞, 沈万江, 胡明 2012 61 057301]

    [14]

    Ashrit P V 2001 Thin Solid Films 385 81

    [15]

    Deb S K 1969 Appl. Opt. Suppl. 3 193

    [16]

    Cai G F, Wang X L, Zhou D, Zhang J H, Xiong Q Q, Gu C D, Tu J P 2013 RSC Adv. 3 6896

    [17]

    Sun X L, Liu Z M, Cao H T 2011 Thin Solid Films 519 3032

    [18]

    Chang X T, Sun S B, Dong L H, Dong Y H, Yin Y S 2014 RSC Adv. 4 8994

    [19]

    Hepel M, Redmond H 2009 Cent. Eur. J. Chem. 7 234

    [20]

    Granqvist C G 2000 Sol. Energy Mater. Sol. Cells 60 201

    [21]

    Mitsugi F, Nakamura A, Kodama Y, Ohkubo T, Nomoto Y 2007 Thin Solid Films 515 4159

    [22]

    Hung C J, Huang Y H, Chen C H, Lin P, Tseng T Y 2014 IEEE Trans. Compon. Packag. Manuf. Technol. 4 831

    [23]

    Dai F P, L S Y, Feng B X, Jiang S R, Chen C 2003 Acta Phys. Sin. 52 1003 (in Chinese) [代富平, 吕淑媛, 冯博学, 蒋生蕊, 陈冲 2003 52 1003]

    [24]

    Granqvist C G 1995 Handbook of Inorganic Electrochromic Materials (Amsterdam: Elsevier) pp21-142

    [25]

    O-Rueda de León J M, Acosta D R, Castañeda L 2011 Electrochim. Acta 56 2599

    [26]

    Monk P M S, Ali T, Partridge R D 1995 Solid State Ionics 80 75

    [27]

    Shen Q Y, Lu C H, Xu Z Z 2007 Mater. Rev. 21 284 (in Chinese) [沈庆月, 陆春华, 许仲梓 2007 材料导报 21 284]

    [28]

    Lampert C M 1984 Sol. Energy Mater. 11 1

    [29]

    Meenakshi M, Gowthami V, Perumal P, Sivakumar R, Sanjeeviraja C 2015 Electrochim. Acta 174 302

    [30]

    Poongodi S, Kumar P S, Masuda Y, Mangalaraj D, Ponpandian N, Viswanathan C, Ramakrishna S 2015 RSC Adv. 5 96416

    [31]

    Kondalkar V V, Mali S S, Kharade R R, Khot K V, Patil P B, Mane R M, Choudhury S, Patil P S, Hong C K, Kim J H, Bhosale P N 2015 Dalton Trans. 44 2788

    [32]

    Shen P K, Syed-Bokhari J, Tseung A C C 1991 J. Electrochem. Soc. 138 2778

    [33]

    Niu W, Wang Y, Hu W, Zheng N 2013 Guangzhou Chem. Ind. 41 1 (in Chinese) [牛微, 王玉, 胡伟, 郑楠 2013 广州化工 41 1]

    [34]

    Horwat D, Pierson J F, Billard A 2008 Ionics 14 227

    [35]

    Yoo S J, Lim J W, Sung Y E 2006 Sol. Energy Mater. Sol. Cells 90 477

    [36]

    Her Y C, Chang C C 2014 Cryst. Eng. Comm. 16 5379

    [37]

    Gracia L, García-Cañadas J, Garcia-Belmonte G, Beltrán A, Andrés J, Bisquert J 2005 Electrochem. Solid-State Lett. 8 21

    [38]

    Sallard S, Brezesinski T, Smarsly B M 2007 J. Phys. Chem. C 111 7200

    [39]

    Golestani Y M, Alsawafta M, Badilescu S, Stancovski V, Truong V V 2014 J. Electrochem. Soc. 161 909

    [40]

    Yang X S, Wang Y, Dong L, Zhang F, Qi L Z 2004 Acta Phys. Sin. 53 2724 (in Chinese) [羊新胜, 王豫, 董亮, 张锋, 齐立桢 2004 53 2724]

    [41]

    Heckner K H, Kraft A 2002 Solid State Ionics 152 899

    [42]

    Rui X H, Ding N, Liu J, Li C, Chen C H 2010 Electrochim. Acta 55 2384

    [43]

    Li W, Hu C, Zhou M, Wang K L, Li H M, Cheng S J, Jiang K 2016 Electrochim. Acta 189 231

    [44]

    Yi T F, Yang S Y, Tao M, Xie Y, Zhu Y R, Zhu R S 2014 Electrochim. Acta 134 377

    [45]

    Yang S Y, Wang X Y, Yang X K, Bai Y S, Liu Z L, Shu H B, Wei Q L 2012 Electrochim. Acta 66 88

    [46]

    Takai S, Yoshioka K, Iikura H, Matsubayashi M, Yao T, Esaka T 2014 Solid State Ionics 256 93

    [47]

    Avellaneda C O 2007 Mater. Sci. Eng. B 138 123

    [48]

    Yu P F, Cui Z H, Fan W G, Guo X X 2013 Chin. Phys. B 22 038101

    [49]

    Kondalkar V V, Mali S S, Kharade R R, Mane R M, Patil P S, Hong C K, Kim J H, Choudhury S, Bhosale P N 2015 RSC Adv. 5 26923

    [50]

    Alsawafta M, Golestani Y M, Phonemac T, Badilescu S, Stancovski V, Truong V V 2014 J. Electrochem. Soc. 161 276

    [51]

    Lin H, Zhou F, Liu C P, Ozoliņš V 2014 J. Mater. Chem. A 2 12280

    [52]

    Broclawik E, Góra A, Liguzinski P, Petelenz P, Slawik M 2005 Catal. Today 101 155

    [53]

    Xi Y J, Zhang Q F, Cheng H S 2014 J. Phys. Chem. C 118 494

    [54]

    Wijs G A, Boer P K, Groot R A 1999 Phys. Rev. B 59 2684

    [55]

    Lambert-Mauriat C, Oison V, Saadi L, Aguir K 2012 Surf. Sci. 606 40

    [56]

    Strømme M, Ahuja R, Niklasson G A 2004 Phys. Rev. Lett. 93 206403

    [57]

    Granqvist C G, Azens A, Isidorsson J, Kharrazi M, Kullman L, Lindström T, Niklasson G A, Ribbing C G, Rönnow D, Mattsson M S, Veszelei M 1997 J. Non-Cryst. Solids 218 273

    [58]

    Azens A, Hjelm A, Bellac D L, Granqvist C G, Barczynskab J, Pentjuss E, Gabrusenoks J, Wills J M 1996 Solid State Ionics 86 943

    [59]

    Hjelm A, Granqvist C G 1996 Phys. Rev. B 54 2436

    [60]

    Karazhanov S Z, Zhang Y, Wang L W, Mascarenhas A, Deb S 2003 Phys. Rev. B 68 233204

    [61]

    Zheng H D, Ou J Z, Strano M S, Kaner R B, Mitchell A, Kalantar-zadeh K 2011 Adv. Funct. Mater. 21 2175

    [62]

    Wiseman P J, Dickens P G 1976 J. Solid State Chem. 17 91

    [63]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [64]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [65]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [66]

    Llordés A, Garcia G, Gazquez J, Milliron D J 2013 Nature 500 323

  • [1]

    Zhang Y Z, Hu X F 2003 The 21st Century’s New Technology of Solar Energy Shanghai, October 10-12, 2003 200050 (in Chinese) [章俞之, 胡行方 2003 21世纪太阳能新技术, 上海, 10月10-12, 2003 200050]

    [2]

    Chen Y, Xu Z, Sun J L, Deng H T, Chen H T, Zhao S L 2013 J. Funct. Mater. 17 2441 (in Chinese) [陈怡, 徐征, 孙金礼, 邓恒涛, 陈海涛, 赵谡玲 2013 功能材料 17 2441]

    [3]

    Ma D Y 2013 Ph. D. Dissertation (Shanghai: Donghua University) (in Chinese) [马董云 2013 博士学位论文 (上海: 东华大学)]

    [4]

    Walkingshaw A D, Spaldin N A, Artacho E 2004 Phys. Rev. B 70 165110

    [5]

    Daniel M F, Desbat B, Lassegues J C 1987 J. Solid State Chem. 67 235

    [6]

    Chatten R, Chadwick A V, Rougier A, Lindan P J D 2005 J. Phys. Chem. B 109 3146

    [7]

    Zhong Q, Dahn J R, Colbow K 1992 Phys. Rev. B 46 2554

    [8]

    Bullett D W 1983 J. Phys. C: Solid State Phys. 16 2197

    [9]

    Kong Y Q, Sun H G, Zhao X, Gao B Y, Fan W L 2015 Appl. Catal. A: General 505 447

    [10]

    Kim W, Tachikawa T, Monllor-Satoca D, Kim H, Majima T, Choi W 2013 Energy Environ. Sci. 6 3732

    [11]

    Huang K, Zhang Q 2012 Nano Energy 1 172

    [12]

    Ponzoni A, Comini E, Sberveglieri G, Zhou J, Deng S Z, Xu N S, Ding Y, Wang Z L 2006 Appl. Phys. Lett. 88 203101

    [13]

    Qin Y X, Wang F, Shen W J, Hu M 2012 Acta Phys. Sin. 61 057301 (in Chinese) [秦玉香, 王飞, 沈万江, 胡明 2012 61 057301]

    [14]

    Ashrit P V 2001 Thin Solid Films 385 81

    [15]

    Deb S K 1969 Appl. Opt. Suppl. 3 193

    [16]

    Cai G F, Wang X L, Zhou D, Zhang J H, Xiong Q Q, Gu C D, Tu J P 2013 RSC Adv. 3 6896

    [17]

    Sun X L, Liu Z M, Cao H T 2011 Thin Solid Films 519 3032

    [18]

    Chang X T, Sun S B, Dong L H, Dong Y H, Yin Y S 2014 RSC Adv. 4 8994

    [19]

    Hepel M, Redmond H 2009 Cent. Eur. J. Chem. 7 234

    [20]

    Granqvist C G 2000 Sol. Energy Mater. Sol. Cells 60 201

    [21]

    Mitsugi F, Nakamura A, Kodama Y, Ohkubo T, Nomoto Y 2007 Thin Solid Films 515 4159

    [22]

    Hung C J, Huang Y H, Chen C H, Lin P, Tseng T Y 2014 IEEE Trans. Compon. Packag. Manuf. Technol. 4 831

    [23]

    Dai F P, L S Y, Feng B X, Jiang S R, Chen C 2003 Acta Phys. Sin. 52 1003 (in Chinese) [代富平, 吕淑媛, 冯博学, 蒋生蕊, 陈冲 2003 52 1003]

    [24]

    Granqvist C G 1995 Handbook of Inorganic Electrochromic Materials (Amsterdam: Elsevier) pp21-142

    [25]

    O-Rueda de León J M, Acosta D R, Castañeda L 2011 Electrochim. Acta 56 2599

    [26]

    Monk P M S, Ali T, Partridge R D 1995 Solid State Ionics 80 75

    [27]

    Shen Q Y, Lu C H, Xu Z Z 2007 Mater. Rev. 21 284 (in Chinese) [沈庆月, 陆春华, 许仲梓 2007 材料导报 21 284]

    [28]

    Lampert C M 1984 Sol. Energy Mater. 11 1

    [29]

    Meenakshi M, Gowthami V, Perumal P, Sivakumar R, Sanjeeviraja C 2015 Electrochim. Acta 174 302

    [30]

    Poongodi S, Kumar P S, Masuda Y, Mangalaraj D, Ponpandian N, Viswanathan C, Ramakrishna S 2015 RSC Adv. 5 96416

    [31]

    Kondalkar V V, Mali S S, Kharade R R, Khot K V, Patil P B, Mane R M, Choudhury S, Patil P S, Hong C K, Kim J H, Bhosale P N 2015 Dalton Trans. 44 2788

    [32]

    Shen P K, Syed-Bokhari J, Tseung A C C 1991 J. Electrochem. Soc. 138 2778

    [33]

    Niu W, Wang Y, Hu W, Zheng N 2013 Guangzhou Chem. Ind. 41 1 (in Chinese) [牛微, 王玉, 胡伟, 郑楠 2013 广州化工 41 1]

    [34]

    Horwat D, Pierson J F, Billard A 2008 Ionics 14 227

    [35]

    Yoo S J, Lim J W, Sung Y E 2006 Sol. Energy Mater. Sol. Cells 90 477

    [36]

    Her Y C, Chang C C 2014 Cryst. Eng. Comm. 16 5379

    [37]

    Gracia L, García-Cañadas J, Garcia-Belmonte G, Beltrán A, Andrés J, Bisquert J 2005 Electrochem. Solid-State Lett. 8 21

    [38]

    Sallard S, Brezesinski T, Smarsly B M 2007 J. Phys. Chem. C 111 7200

    [39]

    Golestani Y M, Alsawafta M, Badilescu S, Stancovski V, Truong V V 2014 J. Electrochem. Soc. 161 909

    [40]

    Yang X S, Wang Y, Dong L, Zhang F, Qi L Z 2004 Acta Phys. Sin. 53 2724 (in Chinese) [羊新胜, 王豫, 董亮, 张锋, 齐立桢 2004 53 2724]

    [41]

    Heckner K H, Kraft A 2002 Solid State Ionics 152 899

    [42]

    Rui X H, Ding N, Liu J, Li C, Chen C H 2010 Electrochim. Acta 55 2384

    [43]

    Li W, Hu C, Zhou M, Wang K L, Li H M, Cheng S J, Jiang K 2016 Electrochim. Acta 189 231

    [44]

    Yi T F, Yang S Y, Tao M, Xie Y, Zhu Y R, Zhu R S 2014 Electrochim. Acta 134 377

    [45]

    Yang S Y, Wang X Y, Yang X K, Bai Y S, Liu Z L, Shu H B, Wei Q L 2012 Electrochim. Acta 66 88

    [46]

    Takai S, Yoshioka K, Iikura H, Matsubayashi M, Yao T, Esaka T 2014 Solid State Ionics 256 93

    [47]

    Avellaneda C O 2007 Mater. Sci. Eng. B 138 123

    [48]

    Yu P F, Cui Z H, Fan W G, Guo X X 2013 Chin. Phys. B 22 038101

    [49]

    Kondalkar V V, Mali S S, Kharade R R, Mane R M, Patil P S, Hong C K, Kim J H, Choudhury S, Bhosale P N 2015 RSC Adv. 5 26923

    [50]

    Alsawafta M, Golestani Y M, Phonemac T, Badilescu S, Stancovski V, Truong V V 2014 J. Electrochem. Soc. 161 276

    [51]

    Lin H, Zhou F, Liu C P, Ozoliņš V 2014 J. Mater. Chem. A 2 12280

    [52]

    Broclawik E, Góra A, Liguzinski P, Petelenz P, Slawik M 2005 Catal. Today 101 155

    [53]

    Xi Y J, Zhang Q F, Cheng H S 2014 J. Phys. Chem. C 118 494

    [54]

    Wijs G A, Boer P K, Groot R A 1999 Phys. Rev. B 59 2684

    [55]

    Lambert-Mauriat C, Oison V, Saadi L, Aguir K 2012 Surf. Sci. 606 40

    [56]

    Strømme M, Ahuja R, Niklasson G A 2004 Phys. Rev. Lett. 93 206403

    [57]

    Granqvist C G, Azens A, Isidorsson J, Kharrazi M, Kullman L, Lindström T, Niklasson G A, Ribbing C G, Rönnow D, Mattsson M S, Veszelei M 1997 J. Non-Cryst. Solids 218 273

    [58]

    Azens A, Hjelm A, Bellac D L, Granqvist C G, Barczynskab J, Pentjuss E, Gabrusenoks J, Wills J M 1996 Solid State Ionics 86 943

    [59]

    Hjelm A, Granqvist C G 1996 Phys. Rev. B 54 2436

    [60]

    Karazhanov S Z, Zhang Y, Wang L W, Mascarenhas A, Deb S 2003 Phys. Rev. B 68 233204

    [61]

    Zheng H D, Ou J Z, Strano M S, Kaner R B, Mitchell A, Kalantar-zadeh K 2011 Adv. Funct. Mater. 21 2175

    [62]

    Wiseman P J, Dickens P G 1976 J. Solid State Chem. 17 91

    [63]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [64]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [65]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [66]

    Llordés A, Garcia G, Gazquez J, Milliron D J 2013 Nature 500 323

  • [1] 王宇枭, 成泽帅, 江可扬, 魏琳扬, 历秀明. 基于辐射制冷与电致变色的可调节多层膜性能研究.  , 2024, 73(21): 214401. doi: 10.7498/aps.73.20240863
    [2] 史晓红, 侯滨朋, 李祗烁, 陈京金, 师小文, 朱梓忠. 锂离子电池富锂锰基三元材料中氧空位簇的形成: 第一原理计算.  , 2023, 72(7): 078201. doi: 10.7498/aps.72.20222300
    [3] 丁莉洁, 张笑天, 郭欣宜, 薛阳, 林常青, 黄丹. SrSnO3作为透明导电氧化物的第一性原理研究.  , 2023, 72(1): 013101. doi: 10.7498/aps.72.20221544
    [4] 杨海林, 陈琦丽, 顾星, 林宁. 氧原子在氟化石墨烯上扩散的第一性原理计算.  , 2023, 72(1): 016801. doi: 10.7498/aps.72.20221630
    [5] 邵光伟, 于瑞, 傅婷, 陈南梁, 刘向阳. 三氧化钨晶体拓扑结构生长行为及其电致变色性能.  , 2022, 71(2): 028201. doi: 10.7498/aps.71.20211555
    [6] 王志青, 姚晓萍, 沈杰, 周静, 陈文, 吴智. 锆钛酸铅薄膜的铁电疲劳微观机理及其耐疲劳性增强.  , 2021, 70(14): 146302. doi: 10.7498/aps.70.20202196
    [7] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究.  , 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [8] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究.  , 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [9] 赵博硕, 强晓永, 秦岳, 胡明. 氧化钨纳米线气敏传感器的制备及其室温NO2敏感特性.  , 2018, 67(5): 058101. doi: 10.7498/aps.67.20172236
    [10] 邵梓桥, 毕恒昌, 谢骁, 万能, 孙立涛. 三氧化钨/氧化银复合材料的水热法合成及其光催化降解性能研究.  , 2018, 67(16): 167802. doi: 10.7498/aps.67.20180663
    [11] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究.  , 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [12] 孟凡一, 段书凯, 王丽丹, 胡小方, 董哲康. 一种改进的WOx忆阻器模型及其突触特性分析.  , 2015, 64(14): 148501. doi: 10.7498/aps.64.148501
    [13] 王平, 郭立新, 杨银堂, 张志勇. 铝氮共掺杂氧化锌纳米管电子结构的第一性原理研究.  , 2013, 62(5): 056105. doi: 10.7498/aps.62.056105
    [14] 李雪梅, 韩会磊, 何光普. LiNH2 的晶格动力学、介电性质和热力学性质第一性原理研究.  , 2011, 60(8): 087104. doi: 10.7498/aps.60.087104
    [15] 于松楠, 吴汉华, 陈根余, 袁鑫, 李乐. Al(OH)3溶胶浓度对TC4钛合金微弧氧化膜特性的影响.  , 2011, 60(2): 028104. doi: 10.7498/aps.60.028104
    [16] 宋庆功, 姜恩永. 快离子导体AgxTiS2中Ag+离子-空位的二维基态结构与能量性质研究.  , 2008, 57(3): 1823-1828. doi: 10.7498/aps.57.1823
    [17] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英. 插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究.  , 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
    [18] 羊新胜, 王 豫, 董 亮, 张 锋, 齐立桢. 纳米WO3块体材料的电致变色效应.  , 2004, 53(8): 2724-2727. doi: 10.7498/aps.53.2724
    [19] 代富平, 吕淑媛, 冯博学, 蒋生蕊, 陈 冲. 非晶态WO3薄膜电致变色特性的研究.  , 2003, 52(4): 1003-1008. doi: 10.7498/aps.52.1003
    [20] 冯博学, 谢 亮, 王 君, 蒋生蕊, 陈光华. 射频溅射微晶NiOxHy膜电致变色性能及其机理研究.  , 2000, 49(10): 2066-2071. doi: 10.7498/aps.49.2066
计量
  • 文章访问数:  11080
  • PDF下载量:  1035
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-25
  • 修回日期:  2016-06-05
  • 刊出日期:  2016-08-05

/

返回文章
返回
Baidu
map