-
The thermal transport properties of porous graphene nanoribbons are studied by the non-equilibrium Green's function method. The results show that owing to the existence of nano-pores, the thermal conductance of porous graphene nanoribbons is much lower than that of graphene nanoribbons. At room temperature, the thermal conductance of zigzag porous graphene nanoribbons is only 12% of that of zigzag graphene nanoribbons of the same size. This is due to the phonon localization caused by the nano-pores in the porous graphene nanoribbons. In addition, the thermal conductance of porous graphene nanoribbons has remarkable anisotropy. With the same size, the thermal conductance of armchair porous graphene nanoribbons is about twice higher than that of zigzag porous graphene nanoribbons. This is because the phonon locality in the zigzag direction is stronger than that in the armchair direction, and even part of the frequency phonons are completely localized.
-
Keywords:
- porous graphene /
- phonon localization /
- thermal conductance /
- non-equilibrium Green’s function
[1] Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902
Google Scholar
[2] Xu X, Pereira L F, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Tinh Bui C, Xie R, Thong J T, Hong B H, Loh K P, Donadio D, Li B, Ozyilmaz B 2014 Nat. Commun. 5 3689
Google Scholar
[3] Gao H, Wang L, Zhao J, Ding F, Lu J 2011 J. Phys. Chem. C 115 3236
Google Scholar
[4] Sławińska J, Zasada I, Klusek Z 2010 Phys. Rev. B 81 155433
Google Scholar
[5] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722
Google Scholar
[6] Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F 2009 Nature 459 820
Google Scholar
[7] Zhou S Y, Gweon G H, Fedorov A V, First P N, de Heer W A, Lee D H, Guinea F, Castro Neto A H, Lanzara A 2007 Nat. Mater. 6 770
Google Scholar
[8] Giovannetti G, Khomyakov P A, Brocks G, Kelly P J, van den Brink J 2007 Phys. Rev. B 76 073103
Google Scholar
[9] Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951
Google Scholar
[10] Jeon K J, Lee Z, Pollak E, Moreschini L, Bostwick A, Park C M, Mendelsberg R, Radmilovic V, Kostecki R, Richardson T J, Rotenberg E 2011 ACS Nano. 5 1042
Google Scholar
[11] Kaur S, Narang S B, Randhawa D K K 2017 J. Mater. Res. 32 1149
Google Scholar
[12] Du L, Nguyen T N, Gilman A, Muniz A R, Maroudas D 2017 Phys. Rev. B 96 245422
[13] Zhao Y, Yang L, Kong L, Nai M H, Liu D, Wu J, Liu Y, Chiam S Y, Chim W K, Lim C T, Li B, Thong J T L, Hippalgaonkar K 2017 Adv. Func. Mater. 27 1702824
Google Scholar
[14] Sadeghzadeh S, Rezapour N 2016 Superlattice. Microst. 100 97
Google Scholar
[15] Nemnes G A, Visan C, Manolescu A 2017 J. Mater. Chem. C 5 4435
[16] Sadeghi H, Sangtarash S, Lambert C J 2015 Sci. Rep. 5 9514
Google Scholar
[17] Hu S, An M, Yang N, Li B 2016 Nanotechnology 27 265702
Google Scholar
[18] Baskin A, Kral P 2011 Sci. Rep. 1 36
Google Scholar
[19] Hu S, Zhang Z, Jiang P, Ren W, Yu C, Shiomi J, Chen J 2019 Nanoscale 11 11839
Google Scholar
[20] Xiao Y, Chen Q Y, Ma D K, Yang N, Hao Q 2019 arXiv preprint arXiv: 1910.04913
[21] Moreno C, Vilas-Varela M, Kretz B, Garcia-Lekue A, Costache M V, Paradinas M, Panighel M, Ceballos G, Valenzuela S O, Peña D, Mugarza A 2018 Science 360 6385
[22] Mortazavi B, Madjet M E, Shahrokhi M, Ahzi S, Zhuang X, Rabczuk T 2019 Carbon 147 377
Google Scholar
[23] Hu S, Zhang Z, Jiang P, Chen J, Volz S, Nomura M, Li B 2018 J. Phys. Chem. Lett. 9 3959
Google Scholar
[24] Feng T, Ruan X 2016 Carbon 101 107
Google Scholar
[25] Singh D, Shukla V, Ahuja R 2020 Phys. Rev. B 102 075444
Google Scholar
[26] 陈晓彬, 段文晖 2015 64 186302
Google Scholar
Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302
Google Scholar
[27] 吴宇, 蔡绍洪, 邓明森, 孙光宇, 刘文江 2018 67 026501
Google Scholar
Wu Y, Cai S H, Deng M S, Sun G Y, Liu W J 2018 Acta Phys. Sin. 67 026501
Google Scholar
[28] 吴宇, 蔡绍洪, 邓明森, 孙光宇, 刘文江, 岑超 2017 66 116501
Google Scholar
Wu Y, Cai S H, Deng M S, Sun G Y, Liu W J, Cen C 2017 Acta Phys. Sin. 66 116501
Google Scholar
[29] 姚海峰, 谢月娥, 欧阳滔, 陈元平 2013 62 068102
Google Scholar
Yao H F, XieY E, Ouyang T, Chen Y P 2013 Acta Phys. Sin. 62 068102
Google Scholar
[30] Zhou W X, Chen K Q 2015 Carbon 85 24
Google Scholar
[31] Qian X, Zhou J, Chen G 2021 Nat. Mater. 20 1188
Google Scholar
[32] Yamamoto T, Watanabe K 2006 Phys. Rev. Lett. 96 255503
Google Scholar
[33] Mingo N, Yang L 2003 Phys. Rev. B 68 245406
Google Scholar
[34] Sevinçli H, Sevik C, Çaın T, Cuniberti G 2013 Nature. Sci. Rep. 3 1228
[35] Peng Y N, Yu J F, Cao X H, Wu D, Jia P Z, Zhou W X, Chen K Q 2020 Physica E:Low-Dimens. Syst. Nanostruct. 122 114160
Google Scholar
[36] Gale J. D. 1997 J. Chem. Soc. , Faraday Trans. 93 629
Google Scholar
[37] Lu Y, Guo J 2012 Appl. Phys. Lett. 101 043112
Google Scholar
[38] Lindsay L, Broido D A 2010 Phys. Rev. B 81 205441
Google Scholar
[39] Khare R, Mielke S L, Paci J T, Zhang S, Ballarini R, Schatz G C, Belytschko T 2007 Phys. Rev. B 75 075412
Google Scholar
[40] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys.: Condens. Matter 14 783
Google Scholar
[41] Chen X K, Hu X Y, Jia P, Xie Z X, Liu J 2021 Int. J. Mech. Sci. 206 106576
Google Scholar
[42] Li D, Wu Y, Kim P, Shi L, Yang P, Majumdar A 2003 Appl. Phys. Lett. 83 2934
Google Scholar
-
图 2 AGNR-2和NPAGNR-2的热导和温度的关系(a), 以及对应的声子透射谱图(b); ZGNR-2和NPZGNR-2的热导和温度的关系(c), 以及对应的声子透射谱图(d)
Figure 2. (a) Thermal conductance of AGNR-2 and NPAGNR-2 with different temperatures; (b) phonon transmission spectrumof AGNR-2 and NPAGNR-2; (c) thermal conductance of ZGNR-2 and NPZGNR-2 with different temperatures; (d) phonon transmission spectrum of ZGNR-2 and NPZGNR-2.
-
[1] Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902
Google Scholar
[2] Xu X, Pereira L F, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Tinh Bui C, Xie R, Thong J T, Hong B H, Loh K P, Donadio D, Li B, Ozyilmaz B 2014 Nat. Commun. 5 3689
Google Scholar
[3] Gao H, Wang L, Zhao J, Ding F, Lu J 2011 J. Phys. Chem. C 115 3236
Google Scholar
[4] Sławińska J, Zasada I, Klusek Z 2010 Phys. Rev. B 81 155433
Google Scholar
[5] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722
Google Scholar
[6] Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F 2009 Nature 459 820
Google Scholar
[7] Zhou S Y, Gweon G H, Fedorov A V, First P N, de Heer W A, Lee D H, Guinea F, Castro Neto A H, Lanzara A 2007 Nat. Mater. 6 770
Google Scholar
[8] Giovannetti G, Khomyakov P A, Brocks G, Kelly P J, van den Brink J 2007 Phys. Rev. B 76 073103
Google Scholar
[9] Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951
Google Scholar
[10] Jeon K J, Lee Z, Pollak E, Moreschini L, Bostwick A, Park C M, Mendelsberg R, Radmilovic V, Kostecki R, Richardson T J, Rotenberg E 2011 ACS Nano. 5 1042
Google Scholar
[11] Kaur S, Narang S B, Randhawa D K K 2017 J. Mater. Res. 32 1149
Google Scholar
[12] Du L, Nguyen T N, Gilman A, Muniz A R, Maroudas D 2017 Phys. Rev. B 96 245422
[13] Zhao Y, Yang L, Kong L, Nai M H, Liu D, Wu J, Liu Y, Chiam S Y, Chim W K, Lim C T, Li B, Thong J T L, Hippalgaonkar K 2017 Adv. Func. Mater. 27 1702824
Google Scholar
[14] Sadeghzadeh S, Rezapour N 2016 Superlattice. Microst. 100 97
Google Scholar
[15] Nemnes G A, Visan C, Manolescu A 2017 J. Mater. Chem. C 5 4435
[16] Sadeghi H, Sangtarash S, Lambert C J 2015 Sci. Rep. 5 9514
Google Scholar
[17] Hu S, An M, Yang N, Li B 2016 Nanotechnology 27 265702
Google Scholar
[18] Baskin A, Kral P 2011 Sci. Rep. 1 36
Google Scholar
[19] Hu S, Zhang Z, Jiang P, Ren W, Yu C, Shiomi J, Chen J 2019 Nanoscale 11 11839
Google Scholar
[20] Xiao Y, Chen Q Y, Ma D K, Yang N, Hao Q 2019 arXiv preprint arXiv: 1910.04913
[21] Moreno C, Vilas-Varela M, Kretz B, Garcia-Lekue A, Costache M V, Paradinas M, Panighel M, Ceballos G, Valenzuela S O, Peña D, Mugarza A 2018 Science 360 6385
[22] Mortazavi B, Madjet M E, Shahrokhi M, Ahzi S, Zhuang X, Rabczuk T 2019 Carbon 147 377
Google Scholar
[23] Hu S, Zhang Z, Jiang P, Chen J, Volz S, Nomura M, Li B 2018 J. Phys. Chem. Lett. 9 3959
Google Scholar
[24] Feng T, Ruan X 2016 Carbon 101 107
Google Scholar
[25] Singh D, Shukla V, Ahuja R 2020 Phys. Rev. B 102 075444
Google Scholar
[26] 陈晓彬, 段文晖 2015 64 186302
Google Scholar
Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302
Google Scholar
[27] 吴宇, 蔡绍洪, 邓明森, 孙光宇, 刘文江 2018 67 026501
Google Scholar
Wu Y, Cai S H, Deng M S, Sun G Y, Liu W J 2018 Acta Phys. Sin. 67 026501
Google Scholar
[28] 吴宇, 蔡绍洪, 邓明森, 孙光宇, 刘文江, 岑超 2017 66 116501
Google Scholar
Wu Y, Cai S H, Deng M S, Sun G Y, Liu W J, Cen C 2017 Acta Phys. Sin. 66 116501
Google Scholar
[29] 姚海峰, 谢月娥, 欧阳滔, 陈元平 2013 62 068102
Google Scholar
Yao H F, XieY E, Ouyang T, Chen Y P 2013 Acta Phys. Sin. 62 068102
Google Scholar
[30] Zhou W X, Chen K Q 2015 Carbon 85 24
Google Scholar
[31] Qian X, Zhou J, Chen G 2021 Nat. Mater. 20 1188
Google Scholar
[32] Yamamoto T, Watanabe K 2006 Phys. Rev. Lett. 96 255503
Google Scholar
[33] Mingo N, Yang L 2003 Phys. Rev. B 68 245406
Google Scholar
[34] Sevinçli H, Sevik C, Çaın T, Cuniberti G 2013 Nature. Sci. Rep. 3 1228
[35] Peng Y N, Yu J F, Cao X H, Wu D, Jia P Z, Zhou W X, Chen K Q 2020 Physica E:Low-Dimens. Syst. Nanostruct. 122 114160
Google Scholar
[36] Gale J. D. 1997 J. Chem. Soc. , Faraday Trans. 93 629
Google Scholar
[37] Lu Y, Guo J 2012 Appl. Phys. Lett. 101 043112
Google Scholar
[38] Lindsay L, Broido D A 2010 Phys. Rev. B 81 205441
Google Scholar
[39] Khare R, Mielke S L, Paci J T, Zhang S, Ballarini R, Schatz G C, Belytschko T 2007 Phys. Rev. B 75 075412
Google Scholar
[40] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys.: Condens. Matter 14 783
Google Scholar
[41] Chen X K, Hu X Y, Jia P, Xie Z X, Liu J 2021 Int. J. Mech. Sci. 206 106576
Google Scholar
[42] Li D, Wu Y, Kim P, Shi L, Yang P, Majumdar A 2003 Appl. Phys. Lett. 83 2934
Google Scholar
Catalog
Metrics
- Abstract views: 5804
- PDF Downloads: 109
- Cited By: 0