搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯电极弯折对2-苯基吡啶分子器件负微分电阻特性的调控和机理

邢海英 张子涵 吴文静 郭志英 茹金豆

引用本文:
Citation:

石墨烯电极弯折对2-苯基吡啶分子器件负微分电阻特性的调控和机理

邢海英, 张子涵, 吴文静, 郭志英, 茹金豆

Regulation and mechanism of graphene electrode bending on negative differential resistance of 2-phenylpyridine molecular devices

Xing Hai-Ying, Zhang Zi-Han, Wu Wen-Jing, Guo Zhi-Ying, Ru Jin-Dou
PDF
HTML
导出引用
  • 采用非平衡格林函数结合密度泛函理论探讨了以锯齿型石墨烯纳米带为电极、2-苯基吡啶分子为中心区的分子器件电子输运性质. 分析I-V特性及透射谱随偏压的变化表明, 电极弯折能够调控器件负微分电阻特性, 使器件峰值电压(Vp)减小、电流峰谷比(PVR)增大, 当电极弯折角度为15°时, 器件获得低峰值电压(0.1 V)、高电流峰谷比(12.84)的负阻特性. 平衡态下器件的透射谱、态密度、散射态实空间分布图及投影态密度解释了器件负阻特性被调控源于电极弯折使器件中心分子与电极间的波函数交叠发生变化, 导致两者间耦合减弱. 弱耦合下外加偏压后, 器件的透射系数因能级移动和偏压的变化而产生大幅波动, 使器件在低偏置电压处即出现大的透射系数, 产生峰值电流Ip, 降低了器件的Vp, 且增大了PVR值, 其所获得的低Vp、高PVR的负阻特性在低功耗分子电子领域具有潜在的应用前景.
    Combining non-equilibrium Green’s function with density functional theory, we study the electronic transport properties of the molecular devices comprised of 2-phenylpyridine and zigzag graphene nanoribbon (ZGNR) electrodes. The I-V characteristics and transmission coefficients under external voltage biases are analyzed, and the results show that the negative differential resistance (NDR) is effectively adjusted by the bending of ZGNR electrode, which reduces the peak voltage (Vp) and increases the peak-valley ratio (PVR) of the device. When the electrode bending angle is 15°, the PVR of device M2 is a maximum value of 12.84 and Vp is 0.1 V, which is low enough for practical applications. The transmission spectra, the density of states and the real-space scattering state distribution at Ef of device under zero bias explain that the weaker coupling between the molecules and the electrodes is caused by the bending of the ZGNR electrode, which might be responsible for the adjustability of NDR. The analysis shows that the bending of the electrode changes the electronic structure between the 2-phenylpyridine molecule and the ZGNR electrode, and then changes the wave functions overlap between them, the coupling between the molecule and the electrodes gets weaker. An external bias can induce the level to shift. The transmission coefficient for the weaker coupling between the molecules. The electrodes can fluctuate wildly from level to level, and large NDR effect under very low bias is obtained with the variation of external bias. Therefore, for highly symmetric molecular devices, the electronic transport properties can be effectively adjusted by changing the coupling between the central molecule and the electrodes. Our investigations indicate that the 2-phenylpyridine molecular device with ZGNR electrodes may have potential applications in the field of low-power dissipation molecules device.
      通信作者: 郭志英, zyguo@ihep.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11475212, 11505211, 61204008)资助的课题
      Corresponding author: Guo Zhi-Ying, zyguo@ihep.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11475212, 11505211, 61204008)
    [1]

    Joachim C, Gimzewski J K, Aviram A 2000 Nature 408 541Google Scholar

    [2]

    Shi X Q, Zheng X H, Dai Z X, Wang Y, Zeng Z 2005 J. Phys. Chem. B 109 3334Google Scholar

    [3]

    Wang S C, Lu W C, Zhao Q Z, Bernholc J 2006 Phys. Rev. B 74 195430Google Scholar

    [4]

    Guo C, Wang K, Zerah Harush E, Hamill J, Wang B, Dubi Y, Xu B Q 2016 Nat. Chem. 8 484Google Scholar

    [5]

    Ryu T, Lansac Y, Jang Y H 2017 Nano Lett. 17 4061Google Scholar

    [6]

    Lyo I W, Avouris P 1989 Science 245 1369Google Scholar

    [7]

    Kaneda M M, Messer K S, Ralainirina N, Li H, Leem C J, Gorjestani S, Woo G, Nguyen A V, Figueiredo C C, Foubert P, Schmid M C, Pink M, Winkler D G, Rausch M, Palombella V J, Kutok J, McGovern K, Frazer K A, Wu X, Karin M, Sasik R, Cohen E E W, Varner J A 2016 Nature 539 437Google Scholar

    [8]

    Long M Q, Chen K Q, Wang L L, Zou B S, Shuai Z 2007 Appl. Phys. Lett. 91 233512Google Scholar

    [9]

    Yuan S D, Wang S Y, Mei Q B, Ling Q D, Wang L H, Huang W 2014 J. Phys. Chem. C 118 617Google Scholar

    [10]

    Mathews R H, Sage J P, Sollner T C L G, Calawa S D, Chen C L, Mahoney L J, Maki P A, Molvar K M 1999 Proc. IEEE 87 596Google Scholar

    [11]

    Broekaert T P E, Brar B, van der Wagt J P A, Seabaugh A C, Morris F J, Moise T S, Beam E A, Frazier G A 1998 IEEE J. Solid-State Circuits 33 1342Google Scholar

    [12]

    Brown E R, Söderström J R, Parker C D, Mahoney L J, Molvar K M, McGill T C 1991 Appl. Phys. Lett. 58 2291Google Scholar

    [13]

    Chen J, Reed M A, Rawlett A M, Tour J M 1999 Science 286 1550Google Scholar

    [14]

    Li J, Duan Y, Zhou Y, Li T, Zhao Z, Yin L W, Li H 2017 RSC Adv. 7 53696Google Scholar

    [15]

    Zhang J, Qin Z, Yao K L 2017 Chem. Phys. Lett. 688 89Google Scholar

    [16]

    Wang Q, Li J W, Wang B, Nie Y H 2018 Front. Phys. 13 138501Google Scholar

    [17]

    Min Y, Zhong C G, Yang P P, Yao K L 2018 J. Phys. Chem. Solids 119 238Google Scholar

    [18]

    Yao A L, Dong Y J, Wang X F, Liu Y S 2019 Appl. Nanosci. 9 143Google Scholar

    [19]

    Yang Z X, Pan J L, Cheng X, Xiong X, Ouyang F P 2019 J. Appl. Phys. 126 104501Google Scholar

    [20]

    Berg J, Bengtsson S, Lundgren P 2000 Solid-State Electron. 44 2247Google Scholar

    [21]

    Chen W, Li H, Widawsky J R, Appayee C, Venkataraman L, Breslow R 2014 J. Am. Chem. Soc. 136 918Google Scholar

    [22]

    Mahendran A, Gopinath P, Breslow R 2015 Tetrahedron Lett. 56 4833Google Scholar

    [23]

    Xu B, Tao N J J 2003 Science 301 1221Google Scholar

    [24]

    Marmolejo-Tejada J M, Velasco-Medina J 2016 Microelectron. J. 48 18Google Scholar

    [25]

    Celis A, Nair M N, Taleb-Ibrahimi A, Conrad E H, Berger C, de Heer W A, Tejeda A 2016 J. Phys. D Appl. Phys. 49 143001Google Scholar

    [26]

    Capozzi B, Xia J, Adak O, Dell E J, Liu Z F, Taylor J C, Neaton J B, Campos L M, Venkataraman L 2015 Nat. Nanotechnol. 10 522Google Scholar

    [27]

    Van Dyck C, Geskin V, Cornil J 2014 Adv. Funct. Mater. 24 6154Google Scholar

    [28]

    Li J, Li T, Zhou Y, Wu W K, Zhang L N, Li H 2016 Phys. Chem. Chem. Phys. 18 28217Google Scholar

    [29]

    Zang J, Ryu S, Pugno N, Wang Q, Tu Q, Buehler M J, Zhao X 2013 Nat. Mater. 12 321Google Scholar

    [30]

    Lee S M, Kim J H, Ahn J H 2015 Mater. Today 18 336Google Scholar

    [31]

    Xie Y, Chen Y, Wei X L, Zhong J 2012 Phys. Rev. B 86 195426Google Scholar

    [32]

    Song Q C, An M, Chen X D, Peng Z, Zang J F, Yang N 2016 Nanoscale 8 14943Google Scholar

    [33]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [34]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [35]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407Google Scholar

    [36]

    Landauer R 1970 Philos. Mag. 21 863Google Scholar

    [37]

    Büttiker M 1988 Phys. Rev. B 38 9375Google Scholar

    [38]

    Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press) pp117–174

    [39]

    Pshenichnyuk I A, Coto P B, Leitherer S, Thoss M 2013 J. Phys. Chem. Lett. 4 809Google Scholar

    [40]

    Stokbro K, Taylor J, Brandbyge M, Mozos J L, Ordejón P 2003 Comput. Mater. Sci. 27 151Google Scholar

    [41]

    Thygesen K S, Jacobsen K W 2005 Chem. Phys. 319 111Google Scholar

    [42]

    Shen L, Zeng M, Yang S W, Zhang C, Wang X, Feng Y 2010 J. Am. Chem. Soc. 132 11481Google Scholar

    [43]

    Wang S D, Sun Z Z, Cue N, Xu H Q, Wang X R 2002 Phys. Rev. B 65 125307Google Scholar

    [44]

    Jalabert R A, Stone A D, Alhassid Y 1992 Phys. Rev. Lett. 68 3468Google Scholar

  • 图 1  2-苯基吡啶分子器件结构图, 图中所示θ为石墨烯电极弯折角度

    Fig. 1.  Structure diagram of the 2-phenylpyridine molecular device, θ represented to the bending angle of the graphene electrode.

    图 2  器件M1−M4的I-V特性曲线图

    Fig. 2.  I-V characteristic curves of device M1−M4.

    图 3  器件M1—M4在偏置电压为+0.1 V, +0.2 V, +0.5 V, +0.6 V, +0.8 V和+1.0 V时的透射谱图, 红色虚线为Ef能级, 蓝色线为偏压窗区间

    Fig. 3.  Transmission spectra of M1−M4 under the bias voltage of +0.1 V, +0.2 V, +0.5 V, +0.6 V, +0.8 V and +1.0 V, the red dashed line represented to the Fermi level, the blue line represented to the bias window interval.

    图 4  平衡态下(Vb = 0)器件M1—M4的透射谱图, 红色虚线为Ef能级

    Fig. 4.  Transmission spectra of device M1−M4 under zero bias (Vb = 0), the red dotted line represented to the Fermi level.

    图 5  平衡态下(Vb = 0)器件M1—M4的态密度图(a)及Ef处的实空间散射态分布图(b)

    Fig. 5.  Density of states (a) and the real-space scattering states distribution at Ef (b) under zero bias (Vb = 0) of device M1−M4.

    表 1  器件M1−M4的Ip, Iv, PVR和Vp

    Table 1.  Ip, Iv, PVR and Vp of devices M1−M4.

    器件Ip/μAIv/μAPVRVp/V负阻特性电压区间
    M11.730.832.080.6[+0.6 V, +1.0 V]
    M21.670.1312.840.1[+0.1 V, +0.5 V]
    M31.600.315.160.2[+0.2 V, +0.6 V]
    M40.990.175.820.1[+0.1 V, +0.6 V]
    下载: 导出CSV

    表 2  平衡态下器件电极和中心分子在Ef处投影态密度值及其在总态密度降低值的贡献

    Table 2.  Projected density of states under zero bias (value and percentage in M1−M4) on electrode and 2-phenylpyridine at Ef.

    器件总态密度ZGNR电极态密度吡啶分子态密度态密度降低值的贡献
    原值较M1降低值原值较M1降低值原值较M1降低值ZGNR电极吡啶分子
    M11520.76661423.892396.8743
    M2 (M1-M2)998.2693522.4973933.4124490.4799

    64.856932.017493.9%6.12%
    M3 (M1-M3)830.7494690.0172771.0848652.807559.664637.209794.6%5.39%
    M4 (M1-M4)763.5156757.251702.3966721.495761.11935.755395.2%4.72%
    下载: 导出CSV

    表 3  器件M1—M4在零偏压、+0.1 V, +0.2 V, +0.6 V和+1.0 V下散射态实空间分布图, 色坐标参考图5(b)

    Table 3.  Real-space scattering state distribution of devices M1−M4 under zero bias, +0.1 V, +0.2 V, +0.6 V and +1.0 V, all the figures share the same color bar given in Fig. 5(b).

    器件Vb = 0 VVb = 0.1 VVb = 0.2 VVb = 0.5 V(M2)
    Vb = 0.6 V
    (M1, M3, M4)
    Vb = 1.0 V
    M1
    M2
    M3
    M4
    下载: 导出CSV
    Baidu
  • [1]

    Joachim C, Gimzewski J K, Aviram A 2000 Nature 408 541Google Scholar

    [2]

    Shi X Q, Zheng X H, Dai Z X, Wang Y, Zeng Z 2005 J. Phys. Chem. B 109 3334Google Scholar

    [3]

    Wang S C, Lu W C, Zhao Q Z, Bernholc J 2006 Phys. Rev. B 74 195430Google Scholar

    [4]

    Guo C, Wang K, Zerah Harush E, Hamill J, Wang B, Dubi Y, Xu B Q 2016 Nat. Chem. 8 484Google Scholar

    [5]

    Ryu T, Lansac Y, Jang Y H 2017 Nano Lett. 17 4061Google Scholar

    [6]

    Lyo I W, Avouris P 1989 Science 245 1369Google Scholar

    [7]

    Kaneda M M, Messer K S, Ralainirina N, Li H, Leem C J, Gorjestani S, Woo G, Nguyen A V, Figueiredo C C, Foubert P, Schmid M C, Pink M, Winkler D G, Rausch M, Palombella V J, Kutok J, McGovern K, Frazer K A, Wu X, Karin M, Sasik R, Cohen E E W, Varner J A 2016 Nature 539 437Google Scholar

    [8]

    Long M Q, Chen K Q, Wang L L, Zou B S, Shuai Z 2007 Appl. Phys. Lett. 91 233512Google Scholar

    [9]

    Yuan S D, Wang S Y, Mei Q B, Ling Q D, Wang L H, Huang W 2014 J. Phys. Chem. C 118 617Google Scholar

    [10]

    Mathews R H, Sage J P, Sollner T C L G, Calawa S D, Chen C L, Mahoney L J, Maki P A, Molvar K M 1999 Proc. IEEE 87 596Google Scholar

    [11]

    Broekaert T P E, Brar B, van der Wagt J P A, Seabaugh A C, Morris F J, Moise T S, Beam E A, Frazier G A 1998 IEEE J. Solid-State Circuits 33 1342Google Scholar

    [12]

    Brown E R, Söderström J R, Parker C D, Mahoney L J, Molvar K M, McGill T C 1991 Appl. Phys. Lett. 58 2291Google Scholar

    [13]

    Chen J, Reed M A, Rawlett A M, Tour J M 1999 Science 286 1550Google Scholar

    [14]

    Li J, Duan Y, Zhou Y, Li T, Zhao Z, Yin L W, Li H 2017 RSC Adv. 7 53696Google Scholar

    [15]

    Zhang J, Qin Z, Yao K L 2017 Chem. Phys. Lett. 688 89Google Scholar

    [16]

    Wang Q, Li J W, Wang B, Nie Y H 2018 Front. Phys. 13 138501Google Scholar

    [17]

    Min Y, Zhong C G, Yang P P, Yao K L 2018 J. Phys. Chem. Solids 119 238Google Scholar

    [18]

    Yao A L, Dong Y J, Wang X F, Liu Y S 2019 Appl. Nanosci. 9 143Google Scholar

    [19]

    Yang Z X, Pan J L, Cheng X, Xiong X, Ouyang F P 2019 J. Appl. Phys. 126 104501Google Scholar

    [20]

    Berg J, Bengtsson S, Lundgren P 2000 Solid-State Electron. 44 2247Google Scholar

    [21]

    Chen W, Li H, Widawsky J R, Appayee C, Venkataraman L, Breslow R 2014 J. Am. Chem. Soc. 136 918Google Scholar

    [22]

    Mahendran A, Gopinath P, Breslow R 2015 Tetrahedron Lett. 56 4833Google Scholar

    [23]

    Xu B, Tao N J J 2003 Science 301 1221Google Scholar

    [24]

    Marmolejo-Tejada J M, Velasco-Medina J 2016 Microelectron. J. 48 18Google Scholar

    [25]

    Celis A, Nair M N, Taleb-Ibrahimi A, Conrad E H, Berger C, de Heer W A, Tejeda A 2016 J. Phys. D Appl. Phys. 49 143001Google Scholar

    [26]

    Capozzi B, Xia J, Adak O, Dell E J, Liu Z F, Taylor J C, Neaton J B, Campos L M, Venkataraman L 2015 Nat. Nanotechnol. 10 522Google Scholar

    [27]

    Van Dyck C, Geskin V, Cornil J 2014 Adv. Funct. Mater. 24 6154Google Scholar

    [28]

    Li J, Li T, Zhou Y, Wu W K, Zhang L N, Li H 2016 Phys. Chem. Chem. Phys. 18 28217Google Scholar

    [29]

    Zang J, Ryu S, Pugno N, Wang Q, Tu Q, Buehler M J, Zhao X 2013 Nat. Mater. 12 321Google Scholar

    [30]

    Lee S M, Kim J H, Ahn J H 2015 Mater. Today 18 336Google Scholar

    [31]

    Xie Y, Chen Y, Wei X L, Zhong J 2012 Phys. Rev. B 86 195426Google Scholar

    [32]

    Song Q C, An M, Chen X D, Peng Z, Zang J F, Yang N 2016 Nanoscale 8 14943Google Scholar

    [33]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [34]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [35]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407Google Scholar

    [36]

    Landauer R 1970 Philos. Mag. 21 863Google Scholar

    [37]

    Büttiker M 1988 Phys. Rev. B 38 9375Google Scholar

    [38]

    Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press) pp117–174

    [39]

    Pshenichnyuk I A, Coto P B, Leitherer S, Thoss M 2013 J. Phys. Chem. Lett. 4 809Google Scholar

    [40]

    Stokbro K, Taylor J, Brandbyge M, Mozos J L, Ordejón P 2003 Comput. Mater. Sci. 27 151Google Scholar

    [41]

    Thygesen K S, Jacobsen K W 2005 Chem. Phys. 319 111Google Scholar

    [42]

    Shen L, Zeng M, Yang S W, Zhang C, Wang X, Feng Y 2010 J. Am. Chem. Soc. 132 11481Google Scholar

    [43]

    Wang S D, Sun Z Z, Cue N, Xu H Q, Wang X R 2002 Phys. Rev. B 65 125307Google Scholar

    [44]

    Jalabert R A, Stone A D, Alhassid Y 1992 Phys. Rev. Lett. 68 3468Google Scholar

  • [1] 吴成伟, 任雪, 周五星, 谢国锋. 多孔石墨烯纳米带各向异性和超低热导的理论研究.  , 2022, 71(2): 027803. doi: 10.7498/aps.71.20211477
    [2] 吴成伟, 任雪, 周五星, 谢国锋. 多孔石墨烯纳米带各向异性和超低热导的理论研究.  , 2021, (): . doi: 10.7498/aps.70.20211477
    [3] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 张婷婷, 刘洋, 胡振洋, 唐小洁. 基于石墨烯电极的蒽醌分子器件开关特性.  , 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [4] 许易, 许小言, 张薇, 欧阳滔, 唐超. 多晶石墨烯纳米带热电性能的理论研究.  , 2019, 68(24): 247202. doi: 10.7498/aps.68.20191276
    [5] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 陈爱民, 杨爱云, 张婷婷, 刘洋. 基于石墨烯电极的齐聚苯乙炔分子器件的整流特性.  , 2018, 67(11): 118501. doi: 10.7498/aps.67.20180088
    [6] 俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营. 以石墨烯为电极的有机噻吩分子整流器的设计及电输运特性研究.  , 2017, 66(9): 098501. doi: 10.7498/aps.66.098501
    [7] 卿前军, 周欣, 谢芳, 陈丽群, 王新军, 谭仕华, 彭小芳. 多通道石墨纳米带中弹性声学声子输运和热导特性.  , 2016, 65(8): 086301. doi: 10.7498/aps.65.086301
    [8] 柳福提, 张淑华, 程艳, 陈向荣, 程晓洪. (GaAs)n(n=1-4)原子链电子输运性质的理论计算.  , 2016, 65(10): 106201. doi: 10.7498/aps.65.106201
    [9] 陈晓彬, 段文晖. 低维纳米材料量子热输运与自旋热电性质 ——非平衡格林函数方法的应用.  , 2015, 64(18): 186302. doi: 10.7498/aps.64.186302
    [10] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响.  , 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [11] 柳福提, 程艳, 陈向荣, 程晓洪, 曾志强. Au-Si60-Au分子结电子输运性质的理论计算.  , 2014, 63(17): 177304. doi: 10.7498/aps.63.177304
    [12] 柳福提, 程艳, 羊富彬, 程晓洪, 陈向荣. Si4团簇电子输运性质的第一性原理计算.  , 2013, 62(14): 140504. doi: 10.7498/aps.62.140504
    [13] 柳福提, 程艳, 羊富彬, 程晓洪, 陈向荣. Au-Si-Au结点电子输运性质的第一性原理计算.  , 2013, 62(10): 107401. doi: 10.7498/aps.62.107401
    [14] 黄耀清, 郝成红, 郑继明, 任兆玉. 硅团簇自旋电子器件的理论研究.  , 2013, 62(8): 083601. doi: 10.7498/aps.62.083601
    [15] 范志强, 谢芳. 硼氮原子取代掺杂对分子器件负微分电阻效应的影响.  , 2012, 61(7): 077303. doi: 10.7498/aps.61.077303
    [16] 琚鑫, 郭健宏. 点间耦合强度对三耦合量子点系统微分电导的影响.  , 2011, 60(5): 057302. doi: 10.7498/aps.60.057302
    [17] 潘金波, 张振华, 邱明, 郭超. 分子整流器整流特性的键桥调控效应.  , 2011, 60(3): 037302. doi: 10.7498/aps.60.037302
    [18] 郭超, 张振华, 潘金波, 张俊俊. D-B-A分子整流特性的端基效应.  , 2011, 60(11): 117303. doi: 10.7498/aps.60.117303
    [19] 邱明, 张振华, 邓小清. 碳链输运对基团吸附的敏感性分析.  , 2010, 59(6): 4162-4169. doi: 10.7498/aps.59.4162
    [20] 郑新亮, 郑继明, 任兆玉, 郭平, 田进寿, 白晋涛. 钽硅团簇电子输运性质的第一性原理研究.  , 2009, 58(8): 5709-5715. doi: 10.7498/aps.58.5709
计量
  • 文章访问数:  3581
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-20
  • 修回日期:  2022-10-14
  • 上网日期:  2022-12-09
  • 刊出日期:  2023-02-05

/

返回文章
返回
Baidu
map