搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢化多孔石墨烯反渗透特性及机理分析

张忠强 于凡顺 刘珍 张福建 程广贵

引用本文:
Citation:

氢化多孔石墨烯反渗透特性及机理分析

张忠强, 于凡顺, 刘珍, 张福建, 程广贵

Reverse osmotic characteristics and mechanism of hydrogenated porous graphene

Zhang Zhong-Qiang, Yu Fan-Shun, Liu Zhen, Zhang Fu-Jian, Cheng Guang-Gui
PDF
HTML
导出引用
  • 单层石墨烯凭借超薄的厚度和优异的力学化学防污性能, 成为新一代纳滤膜材料的最佳选择之一. 本文采用经典分子动力学方法, 研究了氢化多孔石墨烯反渗透膜对盐水的反渗透特性. 结果表明, 水渗透量会随着驱动力、孔径和温度的增加而增加; 而孔径大于水合半径的条件下, 盐离子截留率会随驱动力和温度的增加而降低. 当反渗透膜和盐水存在切向运动时, 随着切向速度的增加可以有效提高盐离子截留率和减弱浓差极化现象, 但也在一定程度上牺牲了水通量. 通过分析水流沿渗透方向的能障分布、水分子的氢键分布和离子水合状态, 解释了各参数变化对盐水在氢化多孔石墨烯中反渗透特性的影响机理. 研究结果将提供基于单层多孔石墨烯反渗透特性的理论认识, 并将为纳米级反渗透膜的设计提供帮助.
    Graphene-based materials have aroused great interest for their potential applications in water desalination and purification membranes attributed to their ultrathin thickness, high mechanical strength, and anti-foiling properties. Reverse osmosis (RO) technology is currently the most progressive, energy-saving and efficient separation technology by membranes, therefore the new materials with high strength, strong pollution resistance and excellent performance are urgently needed. The ability of porous graphene to serve as a kind of novel advanced RO membrane is due to two major potential strengths of this atomically thin two-dimensional material, i.e., ultrahigh permeability and super selectivity. Thus, the reverse osmotic properties of the porous graphene membranes should be further investigated theoretically. In this paper, classical molecular dynamics method is used to investigate the reverse osmosis characteristics of brine in hydrogenated porous graphene reverse osmosis membrane. The results show that the water permeation rate increases with the driving force, pore size and temperature increasing, for the pore diameter larger than the hydration radius. The ion rejection rate decreases with the driving force and temperature increasing. Interestingly, as the porous graphene moves in the tangential direction to perform a shearing process, the interception rate of the salt ions can be effectively improved and the concentration difference polarization phenomenon can be reduced with the tangential velocity increasing, although the water flux decreases slightly. The influence mechanism of each parameter on permeability and on water flux are explored by analyzing the hydrogen bond distribution, the ionic hydration in feed solution, and the energy barrier of the water molecules in penetrating process. In order to further evaluate the effects of various parameter changes on the benefits of reverse osmosis membranes, both the selectivity and permeability are calculated to evaluate the tradeoff between permeability and selectivity, indicating that the increase of the pore diameter can obtain both high permeability and selectivity under the shearing circumstance of the membrane. The research results in this paper will provide a theoretical understanding of porous graphene-based desalination membrane and also may be helpful in designing the shearing graphene-based water filtration devices.
      通信作者: 张忠强, zhangzq@ujs.edu.cn
    • 基金项目: 国家级-国家自然科学基金(11872192;51675236)
      Corresponding author: Zhang Zhong-Qiang, zhangzq@ujs.edu.cn
    [1]

    Boretti A, Al-Zubaidy S, Vaclavikova M, Al-Abri M, Castelletto S, Mikhalovsky S 2018 npj Clean Water 1 1Google Scholar

    [2]

    Mehrdad M, Moosavi A 2019 Polymer 175 310Google Scholar

    [3]

    Kim J, Park K, Yang D R, Hong S 2019 Appl. Energy 254 113652Google Scholar

    [4]

    Greenlee L F, Lawler D F, Freeman B D, Marrot B, Moulin P 2009 Water Res. 43 2317Google Scholar

    [5]

    Cohen-Tanugi D, Grossman J C 2012 Nano Lett. 12 3602Google Scholar

    [6]

    Werber J R, Osuji C O, Elimelech M 2016 Nat. Rev. Mater. 1 1Google Scholar

    [7]

    Sun P, Wang K, Zhu H 2016 Adv. Mater. 28 2287Google Scholar

    [8]

    Surwade S P, Smirnov S N, Vlassiouk I V, Unocic R R, Veith G M, Dai S, Mahurin S M 2015 Nat. Nanotechnol. 10 459Google Scholar

    [9]

    Xu P T, Yang J X, Wang K S, Zhou Z, Shen P W 2012 Sci. Bull. 57 2948Google Scholar

    [10]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [11]

    Azamat J 2016 Phys. Chem. Chem. Phys. C 120 23883Google Scholar

    [12]

    Azamat J, Khataee A, Joo S W 2015 Chem. Eng. Sci. 127 28Google Scholar

    [13]

    Yu T, Xu Z, Liu S, Liu H, Yang X 2018 J. Membr. Sci. 550 510Google Scholar

    [14]

    Wang Y, He Z, Gupta K M, Shi Q, Lu R 2017 Carbon 116 120Google Scholar

    [15]

    Li Y, Xu Z, Liu S, Zhang J, Yang X 2017 Comput. Mater. Sci. 139 65Google Scholar

    [16]

    Baker R W 2012 Membrane Technology and Applications (Vol. 3) (California Newark: John Wiley & Sons) pp15–96

    [17]

    Zhang Z Q, Zhang F J, Liu Z, Cheng G G, Wang X D, Ding J N 2018 Nanomaterials (Basel) 8 805Google Scholar

    [18]

    Xu Q, Zhang W 2016 Adv. Carbon Nanostruct. 28 6391Google Scholar

    [19]

    Horn H W, Swope W C, Pitera J W, Madura J D, Dick T J, Hura G L, Teresa H G 2004 J. Chem. Phys. 120 9665Google Scholar

    [20]

    Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188Google Scholar

    [21]

    Xu H, Berne B J 2001 J. Phys. Chem. B 105 11929Google Scholar

    [22]

    Luzar A, Chandler D 1996 Phys. Rev. Lett. 76 928Google Scholar

    [23]

    Chen B, Ivanov I, Klein M L, Parrinello M 2003 Phys. Rev. Lett. 91 215503Google Scholar

    [24]

    Todorova T, Seitsonen A P, Hutter J, Kuo I F, Mundy C J 2006 J. Phys. Chem. B 110 3685Google Scholar

    [25]

    Zaidi S M J, Fadhillah F, Khan Z, Ismail A F 2015 Desalination 368 202Google Scholar

    [26]

    Zhang Z Q, Zhang H, Zheng Y, Wang L, Wang J 2008 Phys. Rev. B 78 035439Google Scholar

    [27]

    Xie M, Gray S R 2016 Sep. Purif. Technol. 167 6Google Scholar

    [28]

    Li T, Tu Q, Li S 2019 Desalination 451 182Google Scholar

    [29]

    张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁 2018 67 056102Google Scholar

    Zhang Z Q, Li C, Liu H L, Ge D J, Cheng G G, Ding J N 2018 Acta Phys. Sin. 67 056102Google Scholar

    [30]

    Pendergast M M, Hoek E M V 2011 Energy Environ. Sci. 4 1946Google Scholar

  • 图 1  (a) 压力驱动作用下以氢化多孔石墨烯为反渗透膜的反渗透分子动力学模型图 (其中灰色球为反渗透膜中的碳原子, 中间的红色、白色、紫色、绿色球分别代表盐水中的氧原子、氢原子、钠离子、氯离子, 左侧棕色球是用来提供驱动压力的单层石墨烯, 右侧粉色球是单层石墨烯挡板); (b) 氢化多孔石墨烯反渗透膜模型示意图(其中白色和黄色球分别表示带相同电量正电荷和负电荷的氢原子和碳原子, 其余灰色碳原子不带电)

    Fig. 1.  (a) Molecular dynamics model for pressure-driven reverse osmosis by a hydrogenated porous graphene. The dark gray particles are carbon atoms of grapheme. The red, white, purple, and green spheres represent the oxygen atoms, hydrogen atoms, sodium ions, and chloride ions in the brine, respectively. The monolayer graphene at the left side is used to provide driving pressure, while the one at the right side is rigid boundary to confine the solvent. (b) A hydrogenated porous graphene reverse osmosis membrane model. The white and yellow particles are hydrogen and carbon atoms with the same positive and negative charges, respec-tively.

    图 2  不同压力、温度、速度条件下孔径为1.2 nm的盐离子截留率和水通量的关系

    Fig. 2.  Salt rejection versus water permeability for the porous grapheme with pore diameter of 1.2 nm under different pressure, temperature and shearing speed conditions.

    图 3  在盐水区距离石墨烯膜1 nm范围内盐离子占总盐离子的占比随速度的变化; (b) 当剪切速度为400 m/s时, 盐水区氢键和速度的z向分布

    Fig. 3.  (a) Proportion ratio of salt ions in the brine zone to the total salt ion in the range of 1 nm of the membrane; (b) the z-directional distribution of hydrogen bonds (HB) and velocity in brine zone when the shearing speed is 400 m/s.

    图 4  盐水区平均每个水分子氢键数和端口水分子数及其氢键平均数的z向分布关系图 (a) 在不同剪切速度下; (b) 在不同温度下

    Fig. 4.  The z-directional distribution relationship between the number of hydrogen bonds per water molecule and the number of port water molecules and their hydrogen bond average in the feed solution: (a) Different shearing speeds; (b) different temperatures.

    图 5  (a) 驱动力为200 MPa无剪切作用时, 水分子沿z轴方向转移的能障随温度的变化; (b) 驱动力为200 MPa时, 水分子沿z轴方向转移的能障随剪切速度的变化

    Fig. 5.  (a) The PMF of water molecules along the z-axis at different temperatures for the membrane without shearing; (b) the PMF of water molecules along the z-axis for different shear speeds. The driving pressure in feed solution is 200 MPa.

    图 6  (a) 不同驱动压力下, 水分子和盐离子径向分布函数G(r); (b) 不同温度下, 水分子和盐离子径向分布函数G(r)

    Fig. 6.  (a) Radial distribution function G(r) of water molecules and salt ions under different driving pressures; (b) radial distri-bution function G(r) of water molecules and salt ions at different temperatures.

    图 7  (a)不同温度和(b)不同剪切速度下的水合状态图, 其中包含第一水合层水分子平均数(黑色)、第一水合层水分子氢键平均数(红色)、第二水合层水分子平均数(蓝色)和第二水合层(紫色)水分子氢键平均数

    Fig. 7.  (a) Hydration state diagram at different temperatures; (b) hydration state diagram at different shear velocities. Black square: The number of water molecules in first hydration shell. Red square: HB in first hydration shell. Blue square: The number of water molecules in second hydration shell. Purple square: HB in second hydration shell.

    图 8  (a) 不同驱动力、温度、速度条件下, 孔径为1.6 nm的氢化多孔石墨烯盐离子截留率和水通量的关系; (b) 在温度为298 K、剪切速度为0的条件下, 孔径为0.82 nm的不同驱动力的水通量

    Fig. 8.  (a) Salt rejection versus water permeability for pore diameter of 1.6 nm under different conditions of pressure, temperature and speed; (b) water permeability as a function of driving pressure for the pore diameter of 0.82 nm at the temperature of 298 K and the shearing speed of 0.

    表 1  LJ势能参数

    Table 1.  LJ potential parameters.

    ElementsC (sp2)CCHHCHOwHwNa+Cl
    ε/kcal·mol–10.08590.0460.03010.1627500.16840117
    σ3.39972.9852.423.1643502.25895.1645
    q/e0–0.1150.115–1.04840.52521–1
    下载: 导出CSV

    表 2  孔径为1.2 nm下选择性和渗透性效益权衡

    Table 2.  Trade-offs between selectivity and permeability with pore diameter of 1.2 nm.

    τ = 200 MPa, v = 0T = 298 K, v = 0T = 298 K, τ = 200 MPa
    T/Kτ/MPav/m·s–1
    275298325350100150250300100200300400
    Q0.720.840.870.880.760.970.870.780.880.830.840.83
    下载: 导出CSV

    表 3  孔径为1.6 nm下选择性和渗透性效益权衡

    Table 3.  Trade-offs between selectivity and permeability with pore diameter of 1.6 nm.

    τ = 200 MPa, v = 0T = 298 K, v = 0T = 298 K, τ = 200 MPa
    T/Kτ/MPav/m·s–1
    275298325350100150250300100200300400
    Q0.650.730.700.690.960.850.660.610.630.650.600.60
    下载: 导出CSV
    Baidu
  • [1]

    Boretti A, Al-Zubaidy S, Vaclavikova M, Al-Abri M, Castelletto S, Mikhalovsky S 2018 npj Clean Water 1 1Google Scholar

    [2]

    Mehrdad M, Moosavi A 2019 Polymer 175 310Google Scholar

    [3]

    Kim J, Park K, Yang D R, Hong S 2019 Appl. Energy 254 113652Google Scholar

    [4]

    Greenlee L F, Lawler D F, Freeman B D, Marrot B, Moulin P 2009 Water Res. 43 2317Google Scholar

    [5]

    Cohen-Tanugi D, Grossman J C 2012 Nano Lett. 12 3602Google Scholar

    [6]

    Werber J R, Osuji C O, Elimelech M 2016 Nat. Rev. Mater. 1 1Google Scholar

    [7]

    Sun P, Wang K, Zhu H 2016 Adv. Mater. 28 2287Google Scholar

    [8]

    Surwade S P, Smirnov S N, Vlassiouk I V, Unocic R R, Veith G M, Dai S, Mahurin S M 2015 Nat. Nanotechnol. 10 459Google Scholar

    [9]

    Xu P T, Yang J X, Wang K S, Zhou Z, Shen P W 2012 Sci. Bull. 57 2948Google Scholar

    [10]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [11]

    Azamat J 2016 Phys. Chem. Chem. Phys. C 120 23883Google Scholar

    [12]

    Azamat J, Khataee A, Joo S W 2015 Chem. Eng. Sci. 127 28Google Scholar

    [13]

    Yu T, Xu Z, Liu S, Liu H, Yang X 2018 J. Membr. Sci. 550 510Google Scholar

    [14]

    Wang Y, He Z, Gupta K M, Shi Q, Lu R 2017 Carbon 116 120Google Scholar

    [15]

    Li Y, Xu Z, Liu S, Zhang J, Yang X 2017 Comput. Mater. Sci. 139 65Google Scholar

    [16]

    Baker R W 2012 Membrane Technology and Applications (Vol. 3) (California Newark: John Wiley & Sons) pp15–96

    [17]

    Zhang Z Q, Zhang F J, Liu Z, Cheng G G, Wang X D, Ding J N 2018 Nanomaterials (Basel) 8 805Google Scholar

    [18]

    Xu Q, Zhang W 2016 Adv. Carbon Nanostruct. 28 6391Google Scholar

    [19]

    Horn H W, Swope W C, Pitera J W, Madura J D, Dick T J, Hura G L, Teresa H G 2004 J. Chem. Phys. 120 9665Google Scholar

    [20]

    Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188Google Scholar

    [21]

    Xu H, Berne B J 2001 J. Phys. Chem. B 105 11929Google Scholar

    [22]

    Luzar A, Chandler D 1996 Phys. Rev. Lett. 76 928Google Scholar

    [23]

    Chen B, Ivanov I, Klein M L, Parrinello M 2003 Phys. Rev. Lett. 91 215503Google Scholar

    [24]

    Todorova T, Seitsonen A P, Hutter J, Kuo I F, Mundy C J 2006 J. Phys. Chem. B 110 3685Google Scholar

    [25]

    Zaidi S M J, Fadhillah F, Khan Z, Ismail A F 2015 Desalination 368 202Google Scholar

    [26]

    Zhang Z Q, Zhang H, Zheng Y, Wang L, Wang J 2008 Phys. Rev. B 78 035439Google Scholar

    [27]

    Xie M, Gray S R 2016 Sep. Purif. Technol. 167 6Google Scholar

    [28]

    Li T, Tu Q, Li S 2019 Desalination 451 182Google Scholar

    [29]

    张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁 2018 67 056102Google Scholar

    Zhang Z Q, Li C, Liu H L, Ge D J, Cheng G G, Ding J N 2018 Acta Phys. Sin. 67 056102Google Scholar

    [30]

    Pendergast M M, Hoek E M V 2011 Energy Environ. Sci. 4 1946Google Scholar

  • [1] 陈晶晶, 赵洪坡, 王葵, 占慧敏, 罗泽宇. SiC基底覆多层石墨烯力学强化性能分子动力学模拟.  , 2024, 73(10): 109601. doi: 10.7498/aps.73.20232031
    [2] 吴成伟, 任雪, 周五星, 谢国锋. 多孔石墨烯纳米带各向异性和超低热导的理论研究.  , 2022, 71(2): 027803. doi: 10.7498/aps.71.20211477
    [3] 王孟妮, 刘珍, 顾浩, 张福建, 张忠强, 丁建宁. 多孔石墨烯时间维度反渗透滤盐机理研究.  , 2022, 71(13): 138201. doi: 10.7498/aps.71.20212283
    [4] 秦晓玲, 朱栩量, 曹靖雯, 王浩诚, 张鹏. 冰的氢键振动研究.  , 2021, 70(14): 146301. doi: 10.7498/aps.70.20210013
    [5] 吴成伟, 任雪, 周五星, 谢国锋. 多孔石墨烯纳米带各向异性和超低热导的理论研究.  , 2021, (): . doi: 10.7498/aps.70.20211477
    [6] 朱智, 闫韶健, 段铜川, 赵妍, 孙庭钰, 李阳梅. 太赫兹电磁波调控甲烷水合物分解.  , 2021, 70(24): 248705. doi: 10.7498/aps.70.20211779
    [7] 段铜川, 闫韶健, 赵妍, 孙庭钰, 李阳梅, 朱智. 水的氢键网络动力学与其太赫兹频谱的关系.  , 2021, 70(24): 248702. doi: 10.7498/aps.70.20211731
    [8] 杨刚, 郑庭, 程启昊, 张会臣. 非牛顿流体剪切稀化特性的分子动力学模拟.  , 2021, 70(12): 124701. doi: 10.7498/aps.70.20202116
    [9] 张泽程, 刘珍, 王孟妮, 张福建, 张忠强. 柱状石墨烯膜反渗透滤盐特性及机理.  , 2021, 70(9): 098201. doi: 10.7498/aps.70.20201764
    [10] 白清顺, 窦昱昊, 何欣, 张爱民, 郭永博. 基于分子动力学模拟的铜晶面石墨烯沉积生长机理.  , 2020, 69(22): 226102. doi: 10.7498/aps.69.20200781
    [11] 元丽华, 巩纪军, 王道斌, 张材荣, 张梅玲, 苏俊燕, 康龙. 碱金属修饰的多孔石墨烯的储氢性能.  , 2020, 69(6): 068802. doi: 10.7498/aps.69.20190694
    [12] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟.  , 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [13] 张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁. 石墨烯碳纳米管复合结构渗透特性的分子动力学研究.  , 2018, 67(5): 056102. doi: 10.7498/aps.67.20172424
    [14] 兰生, 李焜, 高新昀. 基于分子动力学的石墨炔纳米带空位缺陷的导热特性.  , 2017, 66(13): 136801. doi: 10.7498/aps.66.136801
    [15] 李瑞, 密俊霞. 界面接枝羟基对碳纳米管运动和摩擦行为影响的分子动力学模拟.  , 2017, 66(4): 046101. doi: 10.7498/aps.66.046101
    [16] 惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉. 硅功能化石墨烯热导率的分子动力学模拟.  , 2014, 63(7): 074401. doi: 10.7498/aps.63.074401
    [17] 常旭. 多层石墨烯的表面起伏的分子动力学模拟.  , 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [18] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究.  , 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [19] 陈明, 闵锐, 周俊明, 胡浩, 林波, 缪灵, 江建军. 碳纳米胶囊中水分子的分子动力学研究.  , 2010, 59(7): 5148-5153. doi: 10.7498/aps.59.5148
    [20] 张兆慧, 韩 奎, 李海鹏, 唐 刚, 吴玉喜, 王洪涛, 白 磊. Langmuir-Blodgett膜摩擦分子动力学模拟和机理研究.  , 2008, 57(5): 3160-3165. doi: 10.7498/aps.57.3160
计量
  • 文章访问数:  6879
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-18
  • 修回日期:  2020-02-18
  • 刊出日期:  2020-05-05

/

返回文章
返回
Baidu
map