Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Testing quantum nonlocality of two-qubit entangled states under decoherence

Hu Qiang Zeng Bai-Yun Gu Peng-Yu Jia Xin-Yan Fan Dai-He

Citation:

Testing quantum nonlocality of two-qubit entangled states under decoherence

Hu Qiang, Zeng Bai-Yun, Gu Peng-Yu, Jia Xin-Yan, Fan Dai-He
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The quantum nonlocal correlation of quantum states plays an important role in the quantum information and quantum computing protocols. However, during the transmission of entangled states in the quantum channel, they will inevitably interact with the environment, resulting in the degradation of the coherence and then weakening the quantum nonlocal correlation. Using a high probability quantum nonlocal correlation testing scheme based on Hardy-type paradox, in this paper we investigate the quantum nonlocal correlation testing of two-qubit polarization entangled states when they transmit through amplitude damping channel (ADC), phase damping channel (PDC) and depolarization damping channel (DC). The results show that DC has a great influence on the quantum nonlocal correlation testing, while PDC has little influence on the quantum nonlocal correlation testing of quantum states. Finally, this paper also gives condition for the successful quantum nonlocal correlation testing of ADC under weak measurement and quantum weak measurement reversal operation. The results show that when the intensity of weak measurement increases, the influence of ADC decoherence effect on quantum nonlocal correlation testing can be effectively reduced.
      Corresponding author: Fan Dai-He, dhfan@swjtu.edu.cn
    • Funds: Project supported by the Key Laboratory of Computational Physics of National Defense Science and Technology of China (Grant No. 6142A05180401)
    [1]

    Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777Google Scholar

    [2]

    Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895Google Scholar

    [3]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) pp17–60

    [4]

    Masanes L, Pironio S, Acin A 2011 Nat. Commun. 2 238Google Scholar

    [5]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [6]

    Bennett C H, Brassard G 2014 Theor. Comput. Sci. 560 7Google Scholar

    [7]

    王剑, 陈皇卿, 张权, 唐朝京 2007 56 673Google Scholar

    Wang J, Chen H Q, Zhang Q, Tang C J 2007 Acta Phys. Sin. 56 673Google Scholar

    [8]

    Bennett C H, Brassard G, Ekert A K 1992 Sci. Am. 267 50Google Scholar

    [9]

    Wang Q, Tan M Y, Liu Y, Zeng H S 2009 J. Phys. B:At. Mol. Opt. Phys. 42 125503Google Scholar

    [10]

    王美姣, 夏云杰 2015 64 240303Google Scholar

    Wang M J, Xia Y J 2015 Acta Phys. Sin. 64 240303Google Scholar

    [11]

    Hu M L 2011 Phys. Lett. A 375 2140Google Scholar

    [12]

    Xu K, Zhang G F, Liu W M 2019 Phys. Rev. A 100 052305Google Scholar

    [13]

    Wang Q, Xu L 2020 Laser Phys. 30 045203Google Scholar

    [14]

    Dodd P J, Halliwell J J 2004 Phys. Rev. A 69 052105Google Scholar

    [15]

    Hu M L, Hu X, Wang J, Peng Y, Zhang Y R, Fan H 2018 Phys. Rep. 762 1

    [16]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865Google Scholar

    [17]

    Salles A, de Melo F, Almeida M P, Hor-Meyll M, Walborn S P, Souto Ribeiro P H, Davidovich L 2008 Phys. Rev. A 78 022322Google Scholar

    [18]

    Kim Y S, Lee J C, Kwon O, Kim Y H 2012 Nat. Phys. 8 117Google Scholar

    [19]

    Hu M L, Fan H 2020 Sci. Chin. :Phys. Mech. Astron. 63 230322Google Scholar

    [20]

    Bell J S 1964 Physics 1 195Google Scholar

    [21]

    Clauser J F, Horne M A, Shimony A, Holt R A 1969 Phys. Rev. Lett. 23 880Google Scholar

    [22]

    Hardy L 1993 Phys. Rev. Lett. 71 1665Google Scholar

    [23]

    White A G, James D F V, Eberhard P H, Kwiat P G 1999 Phys. Rev. Lett. 83 3103Google Scholar

    [24]

    Yang M, Meng H X, Zhou J, Xu Z P, Xiao Y, Sun K, Chen J L, Xu J S, Li C F, Guo G C 2019 Phys. Rev. A 99 032103Google Scholar

    [25]

    Mermin N 1995 Ann. N. Y. Acad. Sci. 755 616Google Scholar

    [26]

    刘晋, 缪波, 贾欣燕, 樊代和 2019 68 230302Google Scholar

    Liu J, Miao B, Jia XY, Fan D H 2019 Acta Phys. Sin. 68 230302Google Scholar

    [27]

    Goldstein S 1994 Phys. Rev. Lett. 72 1951Google Scholar

    [28]

    Chen L, Romero J 2012 Opt. Express 20 21687Google Scholar

    [29]

    Fan D H, Dai M C, Guo W J, Wei L F 2017 Chin. Phys. B 26 040302Google Scholar

    [30]

    Li W J, He Z, Wang Q 2017 Int. J. Theor. Phys. 56 2813Google Scholar

    [31]

    Xiao X, Yao Y, Xie Y M, Wang X H, Li Y L 2016 Quantum Inf. Process. 15 3881Google Scholar

  • 图 1  Alice制备的信号光子(s)和闲置光子(i)通过不同阻尼类型信道D后传输给Bob, 传输后的量子态表示为$ {\boldsymbol{\rho }} _d^{\rm{A, P, D}} $

    Figure 1.  Signal photon (s) and idle photon (i) prepared by Alice are transmitted to Bob through quantum channel D with different damping types. The final quantum state after transmission can be expressed as $ {\boldsymbol{\rho }}_d^{\rm{A, P, D}} $.

    图 2  量子态经过ADC后的量子非局域关联检验情况  (a) 在不同D参数下, Hr的变化关系曲线; (b) ${D_{\max}}$Hr的变化关系曲线

    Figure 2.  Quantum nonlocal correlation test when the quantum state transmitted through ADC: (a) The relationship H vs r under different D parameters; (b) the relationship ${D_{\max}}$ and H vs r.

    图 3  量子态经过PDC和DC阻尼信道时, 进行量子非局域关联检验的情况 (a) 量子态经过PDC后, ${D_{\max}}$Hr的变化关系曲线; (b) 量子态经过DC后, ${D_{\max}}$Hr的变化关系曲线

    Figure 3.  Quantum nonlocal correlation test when the quantum state transmitted through PDC and DC: (a) The relationship ${D_{\max}}$ and H vs r when the quantum state transmitted through PDC. (b) the relationship ${D_{\max}}$ and H vs r when the quantum state transmitted through DC.

    图 4  $r = 0.5931$时, 量子态经过ADC, PDC 和 DC传输信道后的量子非局域关联检验情况

    Figure 4.  The quantum nonlocal correlation test when the quantum state passes through ADC, PDC and DC transmission channels.

    图 5  不同弱测量强度下, 量子非局域关联检验概率随D的变化关系

    Figure 5.  Relationship between H and D with different weak measurement intensity.

    Baidu
  • [1]

    Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777Google Scholar

    [2]

    Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895Google Scholar

    [3]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) pp17–60

    [4]

    Masanes L, Pironio S, Acin A 2011 Nat. Commun. 2 238Google Scholar

    [5]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [6]

    Bennett C H, Brassard G 2014 Theor. Comput. Sci. 560 7Google Scholar

    [7]

    王剑, 陈皇卿, 张权, 唐朝京 2007 56 673Google Scholar

    Wang J, Chen H Q, Zhang Q, Tang C J 2007 Acta Phys. Sin. 56 673Google Scholar

    [8]

    Bennett C H, Brassard G, Ekert A K 1992 Sci. Am. 267 50Google Scholar

    [9]

    Wang Q, Tan M Y, Liu Y, Zeng H S 2009 J. Phys. B:At. Mol. Opt. Phys. 42 125503Google Scholar

    [10]

    王美姣, 夏云杰 2015 64 240303Google Scholar

    Wang M J, Xia Y J 2015 Acta Phys. Sin. 64 240303Google Scholar

    [11]

    Hu M L 2011 Phys. Lett. A 375 2140Google Scholar

    [12]

    Xu K, Zhang G F, Liu W M 2019 Phys. Rev. A 100 052305Google Scholar

    [13]

    Wang Q, Xu L 2020 Laser Phys. 30 045203Google Scholar

    [14]

    Dodd P J, Halliwell J J 2004 Phys. Rev. A 69 052105Google Scholar

    [15]

    Hu M L, Hu X, Wang J, Peng Y, Zhang Y R, Fan H 2018 Phys. Rep. 762 1

    [16]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865Google Scholar

    [17]

    Salles A, de Melo F, Almeida M P, Hor-Meyll M, Walborn S P, Souto Ribeiro P H, Davidovich L 2008 Phys. Rev. A 78 022322Google Scholar

    [18]

    Kim Y S, Lee J C, Kwon O, Kim Y H 2012 Nat. Phys. 8 117Google Scholar

    [19]

    Hu M L, Fan H 2020 Sci. Chin. :Phys. Mech. Astron. 63 230322Google Scholar

    [20]

    Bell J S 1964 Physics 1 195Google Scholar

    [21]

    Clauser J F, Horne M A, Shimony A, Holt R A 1969 Phys. Rev. Lett. 23 880Google Scholar

    [22]

    Hardy L 1993 Phys. Rev. Lett. 71 1665Google Scholar

    [23]

    White A G, James D F V, Eberhard P H, Kwiat P G 1999 Phys. Rev. Lett. 83 3103Google Scholar

    [24]

    Yang M, Meng H X, Zhou J, Xu Z P, Xiao Y, Sun K, Chen J L, Xu J S, Li C F, Guo G C 2019 Phys. Rev. A 99 032103Google Scholar

    [25]

    Mermin N 1995 Ann. N. Y. Acad. Sci. 755 616Google Scholar

    [26]

    刘晋, 缪波, 贾欣燕, 樊代和 2019 68 230302Google Scholar

    Liu J, Miao B, Jia XY, Fan D H 2019 Acta Phys. Sin. 68 230302Google Scholar

    [27]

    Goldstein S 1994 Phys. Rev. Lett. 72 1951Google Scholar

    [28]

    Chen L, Romero J 2012 Opt. Express 20 21687Google Scholar

    [29]

    Fan D H, Dai M C, Guo W J, Wei L F 2017 Chin. Phys. B 26 040302Google Scholar

    [30]

    Li W J, He Z, Wang Q 2017 Int. J. Theor. Phys. 56 2813Google Scholar

    [31]

    Xiao X, Yao Y, Xie Y M, Wang X H, Li Y L 2016 Quantum Inf. Process. 15 3881Google Scholar

Metrics
  • Abstract views:  5033
  • PDF Downloads:  102
  • Cited By: 0
Publishing process
  • Received Date:  07 August 2021
  • Accepted Date:  05 December 2021
  • Available Online:  26 January 2022
  • Published Online:  05 April 2022

/

返回文章
返回
Baidu
map