Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Scheme for protecting multipartite quantum entanglement

Zong Xiao-Lan Yang Ming

Citation:

Scheme for protecting multipartite quantum entanglement

Zong Xiao-Lan, Yang Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Entanglement is a vital resource for many quantum information processes. However, the unavoidable interaction between quantum system and its environment will lead to quantum decoherence. So protecting remote entanglement against decoherence is of great importance for realizing quantum information and quantum communication. In fact, there are many types of decoherences. Besides the depolarization and phase damping, amplitude damping is a typical decoherence mechanism. If we monitor the environments to guarantee that no excitation escapes from the system, the amplitude damping is modified into a weak measurement induced amplitude damping of the system. Amplitude damping decoherence can affect both single-qubit quantum states and multipartite entangled states. However, in most of previous quantum state protection schemes, the authors only pay attention to the single-qubit system or two-qubit system. Compared with bipartite entangled states, multipartite entangled states possess many advantages, but the entanglement property of multipartite entangled state is much more complicated than bipartite entanglement, so bipartite entanglement reversal (protection) scheme may not be suitable for multipartite case. Thus, in this paper, according to local pulse series and weak measurement, we propose an effective scheme for protecting two multipartite entangled states against amplitude damping, and these two multipartite states are Cluster state and Maximal slice (MS) state. Cluster state and MS state are two typical classes of multipartite entangled states, which play important roles in quantum computation and communication, respectively. These two states cannot be converted into each other with local operation and classical communication. Owing to its good operational and computable properties, here we choose negativity as a measure to quantify the multipartite entanglement. For the case of MS sate, no matter what the initial parameter is, when the local pulses are exerted on all qubits, the entanglement can be fixed around the entanglement of the initial state. Similarly, in the four-qubit cluster state case, if a series of flip operations is exerted on all qubits, it is shown that the multipartite entanglement can be recovered to the maximum 1.0. All these results show that this protocol can protect remote multipartite entanglement effectively. The physical mechanism behind this scheme is that the weak measurement combining with flip operation can balance the weight of different terms of the state, and move the entanglement toward the initial value. To summarize, our scheme is much simpler and feasible, which may warrant its experimental realization. Moreover, our scheme could be extended to protect other multipartite states.
      Corresponding author: Yang Ming, mingyang@ahu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274010) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20113401110002).
    [1]

    Xue Z Y, Zhou J, Wang Z D 2015 Phys. Rev. A 92 022320

    [2]

    Masanes L, Pironio S, Acn A 2011 Nat. Commun. 2 238

    [3]

    Bennett C H, Brassard G, Crpeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [4]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [5]

    Kim Y H, Kulik S P, Shih Y 2001 Phys. Rev. Lett. 86 1370

    [6]

    Giovannetti V, Lloyd S, Maccone L 2011 Nature Photon. 5 222

    [7]

    Xue Z Y 2010 J. Anhui Univ. 34 12

    [8]

    Steane A M 1996 Phys. Rev. Lett. 77 793

    [9]

    Lidar D A, Chuang I L, Whaley K B 1998 Phys. Rev. Lett. 81 2594

    [10]

    Kwiat P G, Berglund A J, Altepeter J B, White A G 2000 Science 290 498

    [11]

    Facchi P, Lidar D A, Pascazio S 2004 Phys. Rev. A 69 183

    [12]

    Maniscalco S, Francica F, Zaffino R L, Zaffino R L, Gullo N L, Plastina F 2008 Phys. Rev. Lett. 100 1937

    [13]

    Sun Q H, Yang M, Cao Z L 2011 J. Anhui Univ. 35 34

    [14]

    Viola L, Knill E, Lloyd S 1999 Phys. Rev. Lett. 82 2417

    [15]

    Koashi M, Ueda M 1999 Phys. Rev. Lett. 82 2598

    [16]

    Korotkov A N, Jordan A N 2006 Phys. Rev. Lett. 97 166805

    [17]

    Katz N 2008 Phys. Rev. Lett. 101 200401

    [18]

    Kim Y S, Cho Y W, Ra Y S, Kim Y H 2009 Opt. Express 17 11978

    [19]

    Sun Q, Al-Amri M, Zubairy M S 2009 Phys. Rev. A 80 033838

    [20]

    Sun Q, Al-Amri M, Davidovich L, Zubairy M S 2010 Phys. Rev. A 82 052323

    [21]

    Kim Y S, Lee J C, Kwon O, Kim Y H 2012 Nature Phys. 8 117

    [22]

    Liao X P, Fang M F, Fang J S, Zhu Q Q 2014 Chin. Phys. B 23 020304

    [23]

    Wang M J, Xia Y J 2015 Phys. Sin. 64 40303

    [24]

    Greenberger D M, Horne M A, Shimony A, Zeilinger A 1990 Am. J. Phys 58 1131

    [25]

    Dr W 2001 Phys. Rev. A 63 020303

    [26]

    Briegel H J, Raussendorf R 2001 Phys. Rev. Lett. 86 910

    [27]

    Gao T, Yan F L, Li Y C 2008 Eur. Phys. Lett. 84 50001

    [28]

    Zhao Z, Chen Y A, Zhang A N, Yang T, Briegel H J, Pan J W 2004 Nature 430 54

    [29]

    Kempe J 1999 Phys. Rev. A 60 910

    [30]

    Wang J, Zhang Q, Tang C J 2007 Commun. Theor. Phys. 48 637

    [31]

    Menicucci N C, Loock P V, Gu M, Weedbrook C, Ralph T C, Nielsen M A 2006 Phys. Rev. Lett. 97 110501

    [32]

    Ukai R, Iwata N, Shimokawa Y, Armstrong S C, Politi A, Yoshikawa J, van Peter L, Furusawa A 2011 Phys. Rev. Lett. 106 240504

    [33]

    Vidal G, Werner R F 2002 Phys. Rev. A 65 032314

  • [1]

    Xue Z Y, Zhou J, Wang Z D 2015 Phys. Rev. A 92 022320

    [2]

    Masanes L, Pironio S, Acn A 2011 Nat. Commun. 2 238

    [3]

    Bennett C H, Brassard G, Crpeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [4]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [5]

    Kim Y H, Kulik S P, Shih Y 2001 Phys. Rev. Lett. 86 1370

    [6]

    Giovannetti V, Lloyd S, Maccone L 2011 Nature Photon. 5 222

    [7]

    Xue Z Y 2010 J. Anhui Univ. 34 12

    [8]

    Steane A M 1996 Phys. Rev. Lett. 77 793

    [9]

    Lidar D A, Chuang I L, Whaley K B 1998 Phys. Rev. Lett. 81 2594

    [10]

    Kwiat P G, Berglund A J, Altepeter J B, White A G 2000 Science 290 498

    [11]

    Facchi P, Lidar D A, Pascazio S 2004 Phys. Rev. A 69 183

    [12]

    Maniscalco S, Francica F, Zaffino R L, Zaffino R L, Gullo N L, Plastina F 2008 Phys. Rev. Lett. 100 1937

    [13]

    Sun Q H, Yang M, Cao Z L 2011 J. Anhui Univ. 35 34

    [14]

    Viola L, Knill E, Lloyd S 1999 Phys. Rev. Lett. 82 2417

    [15]

    Koashi M, Ueda M 1999 Phys. Rev. Lett. 82 2598

    [16]

    Korotkov A N, Jordan A N 2006 Phys. Rev. Lett. 97 166805

    [17]

    Katz N 2008 Phys. Rev. Lett. 101 200401

    [18]

    Kim Y S, Cho Y W, Ra Y S, Kim Y H 2009 Opt. Express 17 11978

    [19]

    Sun Q, Al-Amri M, Zubairy M S 2009 Phys. Rev. A 80 033838

    [20]

    Sun Q, Al-Amri M, Davidovich L, Zubairy M S 2010 Phys. Rev. A 82 052323

    [21]

    Kim Y S, Lee J C, Kwon O, Kim Y H 2012 Nature Phys. 8 117

    [22]

    Liao X P, Fang M F, Fang J S, Zhu Q Q 2014 Chin. Phys. B 23 020304

    [23]

    Wang M J, Xia Y J 2015 Phys. Sin. 64 40303

    [24]

    Greenberger D M, Horne M A, Shimony A, Zeilinger A 1990 Am. J. Phys 58 1131

    [25]

    Dr W 2001 Phys. Rev. A 63 020303

    [26]

    Briegel H J, Raussendorf R 2001 Phys. Rev. Lett. 86 910

    [27]

    Gao T, Yan F L, Li Y C 2008 Eur. Phys. Lett. 84 50001

    [28]

    Zhao Z, Chen Y A, Zhang A N, Yang T, Briegel H J, Pan J W 2004 Nature 430 54

    [29]

    Kempe J 1999 Phys. Rev. A 60 910

    [30]

    Wang J, Zhang Q, Tang C J 2007 Commun. Theor. Phys. 48 637

    [31]

    Menicucci N C, Loock P V, Gu M, Weedbrook C, Ralph T C, Nielsen M A 2006 Phys. Rev. Lett. 97 110501

    [32]

    Ukai R, Iwata N, Shimokawa Y, Armstrong S C, Politi A, Yoshikawa J, van Peter L, Furusawa A 2011 Phys. Rev. Lett. 106 240504

    [33]

    Vidal G, Werner R F 2002 Phys. Rev. A 65 032314

  • [1] Wang Yu-Kun, Li Ze-Yang, Xu Kang, Wang Zi-Zheng. Self-testing criteria for preparing-measuring qubit system. Acta Physica Sinica, 2023, 72(10): 100303. doi: 10.7498/aps.72.20222431
    [2] Liu Ran, Wu Ze, Li Yu-Chen, Chen Yu-Quan, Peng Xin-Hua. Experimentally characterizing multiparticle entanglement based on measuring quantum Fisher information. Acta Physica Sinica, 2023, 72(11): 110305. doi: 10.7498/aps.72.20230356
    [3] Tan Wei-Han, Zhao Chao-Ying, Guo Qi-Zhi. Entanglement criterion of N qubit system. Acta Physica Sinica, 2023, 72(1): 010301. doi: 10.7498/aps.72.20221524
    [4] Hu Qiang, Zeng Bai-Yun, Gu Peng-Yu, Jia Xin-Yan, Fan Dai-He. Testing quantum nonlocality of two-qubit entangled states under decoherence. Acta Physica Sinica, 2022, 71(7): 070301. doi: 10.7498/aps.71.20211453
    [5] Zhang Jiao-Yang, Cong Shuang, Wang Chi, Sajede Harraz. Decoherence suppression for N-qubit states via weak measurement and environment-assisted measurement. Acta Physica Sinica, 2022, 71(22): 220303. doi: 10.7498/aps.71.20220760
    [6] Ding Chen, Li Tan, Zhang Shuo, Guo Chu, Huang He-Liang, Bao Wan-Su. A quantum state readout method based on a single ancilla qubit. Acta Physica Sinica, 2021, 70(21): 210303. doi: 10.7498/aps.70.20211066
    [7] Song Yue, Li Jun-Qi, Liang Jiu-Qing. Dynamics of quantum correlation for three qubits in hierarchical environment. Acta Physica Sinica, 2021, 70(10): 100301. doi: 10.7498/aps.70.20202133
    [8] Zhang Xiao-Dong, Yu Ya-Fei, Zhang Zhi-Ming. Influence of entanglement on precision of parameter estimation in quantum weak measurement. Acta Physica Sinica, 2021, 70(24): 240302. doi: 10.7498/aps.70.20210796
    [9] Gong Long-Yan, Yang Hui, Zhao Sheng-Mei. Influence of intermediated measurements on quantum statistical complexity of single driven qubit. Acta Physica Sinica, 2020, 69(23): 230301. doi: 10.7498/aps.69.20200802
    [10] Wu Ying, Li Jin-Fang, Liu Jin-Ming. Enhancement of quantum Fisher information of quantum teleportation by optimizing partial measurements. Acta Physica Sinica, 2018, 67(14): 140304. doi: 10.7498/aps.67.20180330
    [11] Huang Jiang. The protection of qudit states by weak measurement. Acta Physica Sinica, 2017, 66(1): 010301. doi: 10.7498/aps.66.010301
    [12] Wang Mei-Jiao, Xia Yun-Jie. Protecting quantum entanglement at finite temperature by the weak measurements. Acta Physica Sinica, 2015, 64(24): 240303. doi: 10.7498/aps.64.240303
    [13] Lu Dao-Ming. Entanglement properties in the system of atoms interacting with three coupled cavities which are in weak coherent states. Acta Physica Sinica, 2013, 62(3): 030302. doi: 10.7498/aps.62.030302
    [14] Lin Qing. Nearly-deterministic generation of spatial entangled qudits with weak cross-Kerr nonlinearity. Acta Physica Sinica, 2010, 59(5): 2976-2981. doi: 10.7498/aps.59.2976
    [15] Gao Xiao-Feng, Xu Zhi-Hai, Feng Hua-Jun, Li Qi. Linear prediction of exponential decaying sinusoidal superposition signal. Acta Physica Sinica, 2009, 58(10): 6719-6724. doi: 10.7498/aps.58.6719
    [16] Tang You-Liang, Liu Xiang, Zhang Xiao-Wei, Tang Xiao-Fang. Teleportation of the M-particle entangled state by using one entangled state. Acta Physica Sinica, 2008, 57(12): 7447-7451. doi: 10.7498/aps.57.7447
    [17] Li Yan-Ling, Feng Jian, Meng Xiang-Guo, Liang Bao-Long. Universal quantum teleflipping and telecloning of qubit. Acta Physica Sinica, 2007, 56(10): 5591-5596. doi: 10.7498/aps.56.5591
    [18] ZHU XIAN-FANG, SHUI JIA-PENG. ACCURATE LINEAR DAMPING CALCULATION FORMULA FOR FREE VIBRATION SYSTEM. Acta Physica Sinica, 1996, 45(6): 1010-1015. doi: 10.7498/aps.45.1010
    [19] WANG DA-CUN, LUO PING-AN, YANG HUA, WANG ZHI-DONG. MEASUREMENT OF THE MASS ATTENUATION COEFFICIENTS FOR SiH4 ANDSi. Acta Physica Sinica, 1995, 44(11): 1853-1860. doi: 10.7498/aps.44.1853
    [20] WEI YUNG-CHIO. MEASUREMENTS OF ATTENUATION OF SOUND IN FOGGY AIR AT LOW AUDIBLE FREQUENCIES. Acta Physica Sinica, 1954, 10(3): 187-208. doi: 10.7498/aps.10.187
Metrics
  • Abstract views:  6718
  • PDF Downloads:  223
  • Cited By: 0
Publishing process
  • Received Date:  09 December 2015
  • Accepted Date:  14 January 2016
  • Published Online:  05 April 2016

/

返回文章
返回
Baidu
map