Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Protecting quantum entanglement at finite temperature by the weak measurements

Wang Mei-Jiao Xia Yun-Jie

Citation:

Protecting quantum entanglement at finite temperature by the weak measurements

Wang Mei-Jiao, Xia Yun-Jie
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • According to the map of a qubit, a scheme for protecting entanglement of two-qubit by the weak measurements at finite temperature is proposed. Since the choices of the channel parameters and initial states are very different for different weak measurement strengths, two local unitary equivalent initial entangled states |ψ> and |φ> are chosen. Weak measurements are performed when two initial entangled states go through the generalized amplitude damping channel, and the analytical expressions of getting maximum concurrence entanglement Cr and weak measurement parameters m and n can be obtained by performing an overall optimization for four weak measurement parameters. What is more, the relationship between the weak measurement parameters and the channel parameters is further explored. Theoretical results show the entanglement protection project based on weak measurements can effectively enhance the entanglement and even prevent the sudden death of entanglement in some cases. When the channel parameter r is fixed, for different values of parameter p, the concurrence is centered at p = 0.5, and the weak measurement parameters of the maximum concurrence entanglement are the same as those for initial state |ψ>, while they are different for initial state |φ>. Under the condition of different values of r, for the fixed p and initial state |ψ> or |φ>, the weak measurement parameters remain constant as the entanglement reaches the maximum and the concurrence decreases with the increase of parameter r. Through the analysis of channel parameters, higher entanglement can be obtained by choosing appropriate channel parameters and initial state.
      Corresponding author: Xia Yun-Jie, yjxia@mail.qfnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61178012, 11204156, 11304179, 11247240), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20133705110001, 20123705120002), and the Natural Science Foundation of Shandong Province, China (Grant Nos. BS2013DX034, ZR2012FQ024).
    [1]

    Nielsen M, Chuang I 2000 Quantum Information and Computation (Cambridge: Cambridge University Press) pp171-593

    [2]

    Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [3]

    Song J, Xia Y, Song H S 2008 Phys. Rev. A 78 024302

    [4]

    Liu J C, Li Y H, Nie Y Y 2010 Int. J. Theor. Phys. 49 1976

    [5]

    Jennewein T, Weihs G, Pan J W, Zeilinger A 2001 Phys. Rev. Lett. 88 017903

    [6]

    Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829

    [7]

    Wang X W, Zhang D Y, Tang S Q, You K M 2010 Int. J. Theor. Phys. 49 2691

    [8]

    Wang X W, Zhang D Y, Tang S Q, Xie L J 2011 J. Phys. B: At. Mol. Opt. Phys. 44 035505

    [9]

    Murao M, Jonathan D, Plenio M B, Vedral V 1999 Phys. Rev. A 59 156

    [10]

    Yan L H, Gao Y F, Zhao J G A 2009 Int. J. Theor. Phys. 48 2445

    [11]

    Wang X W, Yang G J 2009 Phys. Rev. A 79 064306

    [12]

    Fan H, Wang Y N, Jing L, Yue J D, Shi H D, Zhang Y L, Mu L Z 2014 Phys. Rep. 544 241

    [13]

    Murao M, Vedral V 2001 Phys. Rev. Lett. 86 352

    [14]

    Wang X W, Zhang D Y, Yang G J, Tang S Q, Xie L J 2011 Phys. Rev. A 84 042310

    [15]

    Zhang Y J, Zhou Y, Xia Y J 2008 Acta Phys. Sin. 57 21 (in Chinese) [张英杰, 周原, 夏云杰 2008 57 21]

    [16]

    Xu P, Wang D, Ye L 2013 Chin. Phys. B 22 100306

    [17]

    Horodedecki R, Horodedecki P, Horodedecki M, Horodedecki K 2009 Rev. Mod. Phys. 81 865

    [18]

    Zyczkowski K, Horodedecki P, Horodedecki M, Horodedecki R 2001 Phys. Rev. A 65 012101

    [19]

    Zurek W H 2003 Rev. Mod. Phys. 75 715

    [20]

    Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404

    [21]

    Almeida M P, de Melo F, Hor-Meyll M, Salles A, Walborn S P, Ribeiro P H S, Davidovich L 2007 Science 316 579

    [22]

    Yu T, Eberly J H 2007 Phys. Rev. Lett. 97 140403

    [23]

    Almeida M P, de Melo F, Hor-Meyll M, Salles A, Walborn S P, Ribeiro P H S, Davidovich L 2007 Science 316 579

    [24]

    Eberly J H, Yu T 2007 Science 316 555

    [25]

    Shor P W 1995 Phys. Rev. A 52 R2493

    [26]

    Steane A M 1996 Phys. Rev. Lett. 77 793

    [27]

    Lidar D A, Chuang I L, Whaley K B 1998 Phys. Rev. Lett. 81 2594

    [28]

    Kwiat P G, Berglund A J, Altepeter J B, White A G 2000 Science 290 498

    [29]

    Viola L, Knill E, Lloyd S 1999 Phys. Rev. Lett. 82 2417

    [30]

    West J R, Lidar D A, Fong B H, Gyure M F 2010 Phys. Rev. Lett. 105 230503

    [31]

    He Z, Yao C M 2014 Chin. Phys. B 23 110601

    [32]

    Han W, Zhang Y J, Yan W B, Xia Y J 2014 Chin. Phys. B 23 0110304

    [33]

    Kim Y S, Lee J C, Kwon O, Kim Y H 2011 Nat. Phys. 10 1038

    [34]

    Sun Q Q, Al-Amri M, Davidovich L, Zubairy M S 2010 Phys. Rev. A 82 052323

    [35]

    Man Z X, Xia Y J 2012 Phys. Rev. A 86 012325

    [36]

    Man Z X, Xia Y J 2012 Phys. Rev. A 86 052322

    [37]

    Liao X P, Fang M F, Fang J S, Zhu Q Q 2013 Chin. Phys. B 23 020304

    [38]

    Xiao X 2014 Phys. Scr. 89 065102

    [39]

    Wang S C, Yu Z W, Zou W J, Wang X B 2014 Phys. Rev. A 89 022318

  • [1]

    Nielsen M, Chuang I 2000 Quantum Information and Computation (Cambridge: Cambridge University Press) pp171-593

    [2]

    Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [3]

    Song J, Xia Y, Song H S 2008 Phys. Rev. A 78 024302

    [4]

    Liu J C, Li Y H, Nie Y Y 2010 Int. J. Theor. Phys. 49 1976

    [5]

    Jennewein T, Weihs G, Pan J W, Zeilinger A 2001 Phys. Rev. Lett. 88 017903

    [6]

    Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829

    [7]

    Wang X W, Zhang D Y, Tang S Q, You K M 2010 Int. J. Theor. Phys. 49 2691

    [8]

    Wang X W, Zhang D Y, Tang S Q, Xie L J 2011 J. Phys. B: At. Mol. Opt. Phys. 44 035505

    [9]

    Murao M, Jonathan D, Plenio M B, Vedral V 1999 Phys. Rev. A 59 156

    [10]

    Yan L H, Gao Y F, Zhao J G A 2009 Int. J. Theor. Phys. 48 2445

    [11]

    Wang X W, Yang G J 2009 Phys. Rev. A 79 064306

    [12]

    Fan H, Wang Y N, Jing L, Yue J D, Shi H D, Zhang Y L, Mu L Z 2014 Phys. Rep. 544 241

    [13]

    Murao M, Vedral V 2001 Phys. Rev. Lett. 86 352

    [14]

    Wang X W, Zhang D Y, Yang G J, Tang S Q, Xie L J 2011 Phys. Rev. A 84 042310

    [15]

    Zhang Y J, Zhou Y, Xia Y J 2008 Acta Phys. Sin. 57 21 (in Chinese) [张英杰, 周原, 夏云杰 2008 57 21]

    [16]

    Xu P, Wang D, Ye L 2013 Chin. Phys. B 22 100306

    [17]

    Horodedecki R, Horodedecki P, Horodedecki M, Horodedecki K 2009 Rev. Mod. Phys. 81 865

    [18]

    Zyczkowski K, Horodedecki P, Horodedecki M, Horodedecki R 2001 Phys. Rev. A 65 012101

    [19]

    Zurek W H 2003 Rev. Mod. Phys. 75 715

    [20]

    Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404

    [21]

    Almeida M P, de Melo F, Hor-Meyll M, Salles A, Walborn S P, Ribeiro P H S, Davidovich L 2007 Science 316 579

    [22]

    Yu T, Eberly J H 2007 Phys. Rev. Lett. 97 140403

    [23]

    Almeida M P, de Melo F, Hor-Meyll M, Salles A, Walborn S P, Ribeiro P H S, Davidovich L 2007 Science 316 579

    [24]

    Eberly J H, Yu T 2007 Science 316 555

    [25]

    Shor P W 1995 Phys. Rev. A 52 R2493

    [26]

    Steane A M 1996 Phys. Rev. Lett. 77 793

    [27]

    Lidar D A, Chuang I L, Whaley K B 1998 Phys. Rev. Lett. 81 2594

    [28]

    Kwiat P G, Berglund A J, Altepeter J B, White A G 2000 Science 290 498

    [29]

    Viola L, Knill E, Lloyd S 1999 Phys. Rev. Lett. 82 2417

    [30]

    West J R, Lidar D A, Fong B H, Gyure M F 2010 Phys. Rev. Lett. 105 230503

    [31]

    He Z, Yao C M 2014 Chin. Phys. B 23 110601

    [32]

    Han W, Zhang Y J, Yan W B, Xia Y J 2014 Chin. Phys. B 23 0110304

    [33]

    Kim Y S, Lee J C, Kwon O, Kim Y H 2011 Nat. Phys. 10 1038

    [34]

    Sun Q Q, Al-Amri M, Davidovich L, Zubairy M S 2010 Phys. Rev. A 82 052323

    [35]

    Man Z X, Xia Y J 2012 Phys. Rev. A 86 012325

    [36]

    Man Z X, Xia Y J 2012 Phys. Rev. A 86 052322

    [37]

    Liao X P, Fang M F, Fang J S, Zhu Q Q 2013 Chin. Phys. B 23 020304

    [38]

    Xiao X 2014 Phys. Scr. 89 065102

    [39]

    Wang S C, Yu Z W, Zou W J, Wang X B 2014 Phys. Rev. A 89 022318

  • [1] Hu Qiang, Zeng Bai-Yun, Gu Peng-Yu, Jia Xin-Yan, Fan Dai-He. Testing quantum nonlocality of two-qubit entangled states under decoherence. Acta Physica Sinica, 2022, 71(7): 070301. doi: 10.7498/aps.71.20211453
    [2] Zhang Jiao-Yang, Cong Shuang, Wang Chi, Sajede Harraz. Decoherence suppression for N-qubit states via weak measurement and environment-assisted measurement. Acta Physica Sinica, 2022, 71(22): 220303. doi: 10.7498/aps.71.20220760
    [3] Song Yue, Li Jun-Qi, Liang Jiu-Qing. Dynamics of quantum correlation for three qubits in hierarchical environment. Acta Physica Sinica, 2021, 70(10): 100301. doi: 10.7498/aps.70.20202133
    [4] Zhang Xiao-Dong, Yu Ya-Fei, Zhang Zhi-Ming. Influence of entanglement on precision of parameter estimation in quantum weak measurement. Acta Physica Sinica, 2021, 70(24): 240302. doi: 10.7498/aps.70.20210796
    [5] Zhao Jun-Long, Zhang Yi-Dan, Yang Ming. Influence of noice on tripartite quantum probe state. Acta Physica Sinica, 2018, 67(14): 140302. doi: 10.7498/aps.67.20180040
    [6] Wu Ying, Li Jin-Fang, Liu Jin-Ming. Enhancement of quantum Fisher information of quantum teleportation by optimizing partial measurements. Acta Physica Sinica, 2018, 67(14): 140304. doi: 10.7498/aps.67.20180330
    [7] Zhang Qin-Rong, Wang Bin-Bin, Zhang Meng-Long, Yan Dong. Two-body entanglement in a dilute gas of Rydberg atoms. Acta Physica Sinica, 2018, 67(3): 034202. doi: 10.7498/aps.67.20172052
    [8] Huang Jiang. The protection of qudit states by weak measurement. Acta Physica Sinica, 2017, 66(1): 010301. doi: 10.7498/aps.66.010301
    [9] Wu Cheng-Feng, Du Ya-Nan, Wang Jin-Dong, Wei Zheng-Jun, Qin Xiao-Juan, Zhao Feng, Zhang Zhi-Ming. Analysis on performance optimization in measurement-device-independent quantum key distribution using weak coherent states. Acta Physica Sinica, 2016, 65(10): 100302. doi: 10.7498/aps.65.100302
    [10] Zong Xiao-Lan, Yang Ming. Scheme for protecting multipartite quantum entanglement. Acta Physica Sinica, 2016, 65(8): 080303. doi: 10.7498/aps.65.080303
    [11] Du Ya-Nan, Xie Wen-Zhong, Jin Xuan, Wang Jin-Dong, Wei Zheng-Jun, Qin Xiao-Juan, Zhao Feng, Zhang Zhi-Ming. Analysis on quantum bit error rate in measurement-device-independent quantum key distribution using weak coherent states. Acta Physica Sinica, 2015, 64(11): 110301. doi: 10.7498/aps.64.110301
    [12] Wang Zhong-Qing, Zhao Xiao-Qi, Zhou Xian-Ju. Entanglement properties of two atoms interacting with weak coherent states trapped in two distant cavities connected by an optical fiber. Acta Physica Sinica, 2013, 62(22): 220302. doi: 10.7498/aps.62.220302
    [13] Lu Dao-Ming. Entanglement properties in the system of atoms interacting with three coupled cavities which are in weak coherent states. Acta Physica Sinica, 2013, 62(3): 030302. doi: 10.7498/aps.62.030302
    [14] Zhao Jia-Qiang, Cao Lian-Zhen, Lu Huai-Xin, Wang Xiao-Qin. Bell-type inequality and tripartite nonlocality in three-qubit GHZ-class states. Acta Physica Sinica, 2013, 62(12): 120301. doi: 10.7498/aps.62.120301
    [15] Han Wei, Cui Wen-Kai, Zhang Ying-Jie, Xia Yun-Jie. Comparison of entanglement decay between Bell-like states under different environmental models. Acta Physica Sinica, 2012, 61(23): 230302. doi: 10.7498/aps.61.230302
    [16] Guo Zhen, Yan Lian-Shan, Pan Wei, Luo Bin, Xu Ming-Feng. Influence of decoherence of entanglement on deterministic remote state preparation. Acta Physica Sinica, 2011, 60(6): 060301. doi: 10.7498/aps.60.060301
    [17] Yin Ji-Wen, Xiao Jing-Lin, Yu Yi-Fu, Wang Zi-Wu. The effect of Coulomb potential to the decoherence of the parabolic quantum dot qubit. Acta Physica Sinica, 2008, 57(5): 2695-2698. doi: 10.7498/aps.57.2695
    [18] Zhang Deng-Yu, Guo Ping, Gao Feng. Fidelity of two-level atoms’ quantum states in a strong thermal radiation field. Acta Physica Sinica, 2007, 56(4): 1906-1910. doi: 10.7498/aps.56.1906
    [19] Xiang Shao-Hua, Song Ke-Hui. Entanglement decoherence of two-particle entangled states in a noisy environment. Acta Physica Sinica, 2006, 55(2): 529-534. doi: 10.7498/aps.55.529
    [20] Huang Yan-Xia, Zhao Peng-Yi, Huang Xi, Zhan Ming-Sheng. Entanglement and disentanglement in the nonlinear interaction between squeezing vacuum state field and atom. Acta Physica Sinica, 2004, 53(1): 75-81. doi: 10.7498/aps.53.75
Metrics
  • Abstract views:  5892
  • PDF Downloads:  296
  • Cited By: 0
Publishing process
  • Received Date:  22 July 2015
  • Accepted Date:  02 September 2015
  • Published Online:  05 December 2015

/

返回文章
返回
Baidu
map