-
几何量子失协 (geometrical quantum discord, GQD)是目前度量量子体系中量子关联的一种行之有效的方法, 本文利用几何量子失协考察了有阻尼存在的Jaynes-Cumming (J-C)模型中两原子的量子关联动力学. 给出了几何量子失协在原子和光场发生共振和非共振耦合两种情况下的动力学演化行为, 尤其揭示了阻尼耗散对几何量子失协的影响.
-
关键词:
- 阻尼Jaynes-Cummings(J-C) 模型 /
- 量子关联 /
- 几何量子失协 (GQD)
The geometrical quantum discord (GQD) is an effective measure of quantum correlation in quantum systems. We investigate the dynamics of quantum correlation between two atoms in a damping Jaynes-Cummings (J-C) model according to the geometrical quantum discord. The evolutional characteristics of GQD are given for both the resonant and non-resonant cases; moreover, the effect of damping on GQD is revealed.[1] Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777
[2] Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865
[3] Henderson L, Vedral V 2001 J. Phys. A Math. Gen. 34 6899
[4] Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901
[5] Datta A, Shaji A, Caves C M 2008 Phys. Rev. Lett. 100 050502
[6] Lanyon B P, Barbieri M, Almeida M P, White A G 2008 Phys. Rev. Lett. 101 200501
[7] Pellizzari T, Gardiner S A, Cirac J I, Zoller P 1995 Phys.Rev.Lett. 75 3788
[8] Cirac J I, Zoller P 1995 Phys. Rev. Lett. 74 4091
[9] Cory D G, Fahmy A F, Havel T F 1997 Proc. Nat1. Acad. Sci. U.S.A. 94 1634
[10] Imamoglu A, Awschalom D D, Burkard G, Divincenzo D P, Loss D, Sherwin M, Small A 1999 Phys. Rev. Lett. 83 4204
[11] Wang H X, Yin W, Wang F W 2010 Acta Phys. Sin. 59 5241 (in Chinese) [王海霞, 殷雯, 王芳卫 2010 59 5241]
[12] Shnirman A, Schon G, Hermon Z 1997 Phys. Rev. Lett. 79 2371
[13] Pan H Z, Kuang L M 2004 Chin. Phys. Lett. 21 424
[14] Pellizzari T, Gardiner S, Cirac J, Zoller P 1995 Phys. Rev. Lett. 75 3788
[15] Lu D M 2011 Acta Phys. Sin. 60 120303 (in Chinese) [卢道明 2011 60 120303]
[16] Groisman B, Popescu S, Winter A 2005 Phys. Rev. A 72 032317
[17] Dakic B, Vedral V, Brukner C 2010 Phys. Rev. Lett. 105 190502
[18] Zhang G F, Xie X C 2010 Eur. Phys. J. D 60 423
-
[1] Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777
[2] Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865
[3] Henderson L, Vedral V 2001 J. Phys. A Math. Gen. 34 6899
[4] Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901
[5] Datta A, Shaji A, Caves C M 2008 Phys. Rev. Lett. 100 050502
[6] Lanyon B P, Barbieri M, Almeida M P, White A G 2008 Phys. Rev. Lett. 101 200501
[7] Pellizzari T, Gardiner S A, Cirac J I, Zoller P 1995 Phys.Rev.Lett. 75 3788
[8] Cirac J I, Zoller P 1995 Phys. Rev. Lett. 74 4091
[9] Cory D G, Fahmy A F, Havel T F 1997 Proc. Nat1. Acad. Sci. U.S.A. 94 1634
[10] Imamoglu A, Awschalom D D, Burkard G, Divincenzo D P, Loss D, Sherwin M, Small A 1999 Phys. Rev. Lett. 83 4204
[11] Wang H X, Yin W, Wang F W 2010 Acta Phys. Sin. 59 5241 (in Chinese) [王海霞, 殷雯, 王芳卫 2010 59 5241]
[12] Shnirman A, Schon G, Hermon Z 1997 Phys. Rev. Lett. 79 2371
[13] Pan H Z, Kuang L M 2004 Chin. Phys. Lett. 21 424
[14] Pellizzari T, Gardiner S, Cirac J, Zoller P 1995 Phys. Rev. Lett. 75 3788
[15] Lu D M 2011 Acta Phys. Sin. 60 120303 (in Chinese) [卢道明 2011 60 120303]
[16] Groisman B, Popescu S, Winter A 2005 Phys. Rev. A 72 032317
[17] Dakic B, Vedral V, Brukner C 2010 Phys. Rev. Lett. 105 190502
[18] Zhang G F, Xie X C 2010 Eur. Phys. J. D 60 423
计量
- 文章访问数: 6681
- PDF下载量: 749
- 被引次数: 0