-
Quantum nonlocality is an important phenomenon predicted by quantum mechanics. It is also one of the most important characteristics that quantum theory is different from classical theory. Therefore, it is of great significance to test the quantum nonlocality with higher successful probability. In this paper, a testing logic based on Hardy-type paradox is proposed and its applicability is proved. Such a logic can be used to test the quantum nonlocality for both the quantum mixed state and the quantum pure state with a high successful probability. It is found that, for quantum pure states, the probability of successfully testing the quantum nonlocality first increases and then decreases with the increase of entanglement degree of quantum states. The maximum successful probability of the testing the quantum pure state is over 39%. Furthermore, taking the Werner-like state, a quantum mixed state for example, the high successful probability of testing the quantum nonlocality is investigated by using the proposed logic. It is found that with the increase of the purity of the quantum mixed state, the successful probability of testing the quantum nonlocal correlation will increase. Finally, the conditions and the range of testing quantum nonlocality with high successful probability for Werner states are given. It is found that for r = 0.599997, the Werner-like quantum mixed state has a maximum range (i.e.
${\rm Tr}({{\rho}^2}) \geqslant 0.874696$ ) of successfully testing the quantum nonlocality.-
Keywords:
- quantum nonlocality /
- Hardy-type paradox /
- quantum mixed state
[1] Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777Google Scholar
[2] Bell J S 1964 Physics 1 195Google Scholar
[3] Clauser J F, HorneM A, Shimony A, Holt R A 1969 Phys. Rev. Lett. 23 880Google Scholar
[4] Aspect A, Grangier P, Roger G 1981 Phys. Rev. Lett. 47 460Google Scholar
[5] Greeberger D M, Horne M A, Shimony A, Zeilinger A 1990 Am. J. Phys. 58 1131Google Scholar
[6] Hardy L 1993 Phys. Rev. Lett. 71 1665Google Scholar
[7] Mermin N 1995 Ann. N. Y. Acad. Sci. 755 616Google Scholar
[8] Boschi D, Branca S, de Martini F, Hardy L 1997 Phys. Rev. Lett. 79 2755Google Scholar
[9] Torgerson J R, Branning D, Monken C H, Mandel L 1995 Phys. Lett. A 204 323Google Scholar
[10] Fedrizzi A, Almeida M P, Broome M A, White A G, Barbieri M 2011 Phys. Rev. Lett. 106 200402Google Scholar
[11] White A G, James D F V, Eberhard P H, Kwiat P G 1999 Phys. Rev. Lett. 83 3103Google Scholar
[12] Chen L, Romero J 2012 Opt. Express 20 21687Google Scholar
[13] Chen L X, Zhang W H, Wu Z W, Wang J K, Fickler R, Karimi E 2017 Phys. Rev. A 96 022115Google Scholar
[14] Vallone G, Gianani I, Inostroza E B, Saavedra C, Lima G, Cabello A, Mataloni P 2011 Phys. Rev. A 83 042105Google Scholar
[15] Cereceda J L 2004 Phys. Lett. A 327 433Google Scholar
[16] Jiang S H, Xu Z P, Su H Y, Pati A K, Chen J L 2018 Phys. Rev. Lett. 120 050403Google Scholar
[17] Chen J L, Cabello A, Xu Z P, Su H Y, Wu C, Kwek L C 2013 Phys.Rev. A 88 062116Google Scholar
[18] Ghirardi G, Marinatto L 2006 Phys. Rev. A 73 032102Google Scholar
[19] Ghirardi G, Marinatto L 2006 Phys. Rev. A 74 062107Google Scholar
[20] Fan D H, Dai M C, Guo W J, Wei L F 2017 Chin. Phys. B 26 040302Google Scholar
[21] 范洪义, 楼森岳, 潘孝胤, 笪诚 2014 63 190302Google Scholar
Fan H Y, Lou S Y, Pan X Y, Da C 2014 Acta Phys. Sin. 63 190302Google Scholar
[22] 石名俊, 杜江峰, 朱栋培, 阮图南 2000 49 1912
Shi M J, Du J F, Zhu D P, Ruan T N 2000 Acta Phys. Sin. 49 1912
[23] Werner R F 1989 Phys. Rev. A 40 4277Google Scholar
[24] Yang M, Meng H X, Zhou J, Xu Z P, Xiao Y, Sun K, Chen J L, Xu J S, Li C F, Guo G C 2019 Phys. Rev. A 99 032103Google Scholar
-
图 2
${\rm Tr}({\rho ^2})$ 以及${H_{\max }}$ 随t参数的变化关系 (a)$r = 0.773066$ 的情况; (b)$r = 0.599997$ 的情况; 其中蓝色实线表示${H_{\max }}$ 随t的变化关系, 对应于右边纵坐标; 黑色点化线表示${\rm Tr}({\rho ^2})$ 随t的变化关系, 对应于左边纵坐标Figure 2. Relationship between
${\rm Tr}({\rho ^2})$ and${H_{\max }}$ with t. The blue solid line means${H_{\max }}$ vs. t, using the right longitudinal coordinates. The black dot dash line means${\rm Tr}({\rho ^2})$ vs. t using the left longitudinal coordinates. Fig.2 (a) is the situation of$r = 0.773066$ and Fig.2 (b) is the situation of r = 0.599997. -
[1] Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777Google Scholar
[2] Bell J S 1964 Physics 1 195Google Scholar
[3] Clauser J F, HorneM A, Shimony A, Holt R A 1969 Phys. Rev. Lett. 23 880Google Scholar
[4] Aspect A, Grangier P, Roger G 1981 Phys. Rev. Lett. 47 460Google Scholar
[5] Greeberger D M, Horne M A, Shimony A, Zeilinger A 1990 Am. J. Phys. 58 1131Google Scholar
[6] Hardy L 1993 Phys. Rev. Lett. 71 1665Google Scholar
[7] Mermin N 1995 Ann. N. Y. Acad. Sci. 755 616Google Scholar
[8] Boschi D, Branca S, de Martini F, Hardy L 1997 Phys. Rev. Lett. 79 2755Google Scholar
[9] Torgerson J R, Branning D, Monken C H, Mandel L 1995 Phys. Lett. A 204 323Google Scholar
[10] Fedrizzi A, Almeida M P, Broome M A, White A G, Barbieri M 2011 Phys. Rev. Lett. 106 200402Google Scholar
[11] White A G, James D F V, Eberhard P H, Kwiat P G 1999 Phys. Rev. Lett. 83 3103Google Scholar
[12] Chen L, Romero J 2012 Opt. Express 20 21687Google Scholar
[13] Chen L X, Zhang W H, Wu Z W, Wang J K, Fickler R, Karimi E 2017 Phys. Rev. A 96 022115Google Scholar
[14] Vallone G, Gianani I, Inostroza E B, Saavedra C, Lima G, Cabello A, Mataloni P 2011 Phys. Rev. A 83 042105Google Scholar
[15] Cereceda J L 2004 Phys. Lett. A 327 433Google Scholar
[16] Jiang S H, Xu Z P, Su H Y, Pati A K, Chen J L 2018 Phys. Rev. Lett. 120 050403Google Scholar
[17] Chen J L, Cabello A, Xu Z P, Su H Y, Wu C, Kwek L C 2013 Phys.Rev. A 88 062116Google Scholar
[18] Ghirardi G, Marinatto L 2006 Phys. Rev. A 73 032102Google Scholar
[19] Ghirardi G, Marinatto L 2006 Phys. Rev. A 74 062107Google Scholar
[20] Fan D H, Dai M C, Guo W J, Wei L F 2017 Chin. Phys. B 26 040302Google Scholar
[21] 范洪义, 楼森岳, 潘孝胤, 笪诚 2014 63 190302Google Scholar
Fan H Y, Lou S Y, Pan X Y, Da C 2014 Acta Phys. Sin. 63 190302Google Scholar
[22] 石名俊, 杜江峰, 朱栋培, 阮图南 2000 49 1912
Shi M J, Du J F, Zhu D P, Ruan T N 2000 Acta Phys. Sin. 49 1912
[23] Werner R F 1989 Phys. Rev. A 40 4277Google Scholar
[24] Yang M, Meng H X, Zhou J, Xu Z P, Xiao Y, Sun K, Chen J L, Xu J S, Li C F, Guo G C 2019 Phys. Rev. A 99 032103Google Scholar
Catalog
Metrics
- Abstract views: 6433
- PDF Downloads: 59
- Cited By: 0