搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

在有限温度下运用弱测量保护量子纠缠

王美姣 夏云杰

引用本文:
Citation:

在有限温度下运用弱测量保护量子纠缠

王美姣, 夏云杰

Protecting quantum entanglement at finite temperature by the weak measurements

Wang Mei-Jiao, Xia Yun-Jie
PDF
导出引用
  • 根据单量子比特的映射, 提出一个在有限温度下运用弱测量保护两量子比特纠缠的方案. 在两个可通过局域幺正变化实现的等价的初始纠缠进入广义振幅阻尼信道前后, 对其分别进行弱测量, 并对四个弱测量的参数做全面的优化, 获取最大共生纠缠Cr 和弱测量参数m, n的解析表达式, 然后再进一步研究弱测量参数与信道参数的关系. 发现这种基于弱测量的纠缠保护方法在某些情况下可以有效地提高纠缠, 甚至可以避免纠缠的突然死亡. 当信道参数r一定时, 对不同的参数p,初始态|ψ>纠缠达到最大值时对应的弱测量参数m的取值一样, 共生纠缠关于p=0.5对称, 而初始态|φ>对应的参数m的取值不同; 在参数p一定、参数r不同、初始态|ψ>或|φ>的情况下, 当纠缠度取最大值时, 弱测量参数m的取值不变, 且随着r的增加, 纠缠度减少. 通过对信道参数的分析, 发现可以选择合适的信道参数和初始态来获得较大的纠缠.
    According to the map of a qubit, a scheme for protecting entanglement of two-qubit by the weak measurements at finite temperature is proposed. Since the choices of the channel parameters and initial states are very different for different weak measurement strengths, two local unitary equivalent initial entangled states |ψ> and |φ> are chosen. Weak measurements are performed when two initial entangled states go through the generalized amplitude damping channel, and the analytical expressions of getting maximum concurrence entanglement Cr and weak measurement parameters m and n can be obtained by performing an overall optimization for four weak measurement parameters. What is more, the relationship between the weak measurement parameters and the channel parameters is further explored. Theoretical results show the entanglement protection project based on weak measurements can effectively enhance the entanglement and even prevent the sudden death of entanglement in some cases. When the channel parameter r is fixed, for different values of parameter p, the concurrence is centered at p = 0.5, and the weak measurement parameters of the maximum concurrence entanglement are the same as those for initial state |ψ>, while they are different for initial state |φ>. Under the condition of different values of r, for the fixed p and initial state |ψ> or |φ>, the weak measurement parameters remain constant as the entanglement reaches the maximum and the concurrence decreases with the increase of parameter r. Through the analysis of channel parameters, higher entanglement can be obtained by choosing appropriate channel parameters and initial state.
      通信作者: 夏云杰, yjxia@mail.qfnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61178012, 11204156, 11304179, 11247240)、教育部博士点专项科研基金(批准号: 20133705110001, 20123705120002)和山东省自然科学基金(批准号: BS2013DX034, ZR2012FQ024)资助的课题.
      Corresponding author: Xia Yun-Jie, yjxia@mail.qfnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61178012, 11204156, 11304179, 11247240), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20133705110001, 20123705120002), and the Natural Science Foundation of Shandong Province, China (Grant Nos. BS2013DX034, ZR2012FQ024).
    [1]

    Nielsen M, Chuang I 2000 Quantum Information and Computation (Cambridge: Cambridge University Press) pp171-593

    [2]

    Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [3]

    Song J, Xia Y, Song H S 2008 Phys. Rev. A 78 024302

    [4]

    Liu J C, Li Y H, Nie Y Y 2010 Int. J. Theor. Phys. 49 1976

    [5]

    Jennewein T, Weihs G, Pan J W, Zeilinger A 2001 Phys. Rev. Lett. 88 017903

    [6]

    Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829

    [7]

    Wang X W, Zhang D Y, Tang S Q, You K M 2010 Int. J. Theor. Phys. 49 2691

    [8]

    Wang X W, Zhang D Y, Tang S Q, Xie L J 2011 J. Phys. B: At. Mol. Opt. Phys. 44 035505

    [9]

    Murao M, Jonathan D, Plenio M B, Vedral V 1999 Phys. Rev. A 59 156

    [10]

    Yan L H, Gao Y F, Zhao J G A 2009 Int. J. Theor. Phys. 48 2445

    [11]

    Wang X W, Yang G J 2009 Phys. Rev. A 79 064306

    [12]

    Fan H, Wang Y N, Jing L, Yue J D, Shi H D, Zhang Y L, Mu L Z 2014 Phys. Rep. 544 241

    [13]

    Murao M, Vedral V 2001 Phys. Rev. Lett. 86 352

    [14]

    Wang X W, Zhang D Y, Yang G J, Tang S Q, Xie L J 2011 Phys. Rev. A 84 042310

    [15]

    Zhang Y J, Zhou Y, Xia Y J 2008 Acta Phys. Sin. 57 21 (in Chinese) [张英杰, 周原, 夏云杰 2008 57 21]

    [16]

    Xu P, Wang D, Ye L 2013 Chin. Phys. B 22 100306

    [17]

    Horodedecki R, Horodedecki P, Horodedecki M, Horodedecki K 2009 Rev. Mod. Phys. 81 865

    [18]

    Zyczkowski K, Horodedecki P, Horodedecki M, Horodedecki R 2001 Phys. Rev. A 65 012101

    [19]

    Zurek W H 2003 Rev. Mod. Phys. 75 715

    [20]

    Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404

    [21]

    Almeida M P, de Melo F, Hor-Meyll M, Salles A, Walborn S P, Ribeiro P H S, Davidovich L 2007 Science 316 579

    [22]

    Yu T, Eberly J H 2007 Phys. Rev. Lett. 97 140403

    [23]

    Almeida M P, de Melo F, Hor-Meyll M, Salles A, Walborn S P, Ribeiro P H S, Davidovich L 2007 Science 316 579

    [24]

    Eberly J H, Yu T 2007 Science 316 555

    [25]

    Shor P W 1995 Phys. Rev. A 52 R2493

    [26]

    Steane A M 1996 Phys. Rev. Lett. 77 793

    [27]

    Lidar D A, Chuang I L, Whaley K B 1998 Phys. Rev. Lett. 81 2594

    [28]

    Kwiat P G, Berglund A J, Altepeter J B, White A G 2000 Science 290 498

    [29]

    Viola L, Knill E, Lloyd S 1999 Phys. Rev. Lett. 82 2417

    [30]

    West J R, Lidar D A, Fong B H, Gyure M F 2010 Phys. Rev. Lett. 105 230503

    [31]

    He Z, Yao C M 2014 Chin. Phys. B 23 110601

    [32]

    Han W, Zhang Y J, Yan W B, Xia Y J 2014 Chin. Phys. B 23 0110304

    [33]

    Kim Y S, Lee J C, Kwon O, Kim Y H 2011 Nat. Phys. 10 1038

    [34]

    Sun Q Q, Al-Amri M, Davidovich L, Zubairy M S 2010 Phys. Rev. A 82 052323

    [35]

    Man Z X, Xia Y J 2012 Phys. Rev. A 86 012325

    [36]

    Man Z X, Xia Y J 2012 Phys. Rev. A 86 052322

    [37]

    Liao X P, Fang M F, Fang J S, Zhu Q Q 2013 Chin. Phys. B 23 020304

    [38]

    Xiao X 2014 Phys. Scr. 89 065102

    [39]

    Wang S C, Yu Z W, Zou W J, Wang X B 2014 Phys. Rev. A 89 022318

  • [1]

    Nielsen M, Chuang I 2000 Quantum Information and Computation (Cambridge: Cambridge University Press) pp171-593

    [2]

    Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [3]

    Song J, Xia Y, Song H S 2008 Phys. Rev. A 78 024302

    [4]

    Liu J C, Li Y H, Nie Y Y 2010 Int. J. Theor. Phys. 49 1976

    [5]

    Jennewein T, Weihs G, Pan J W, Zeilinger A 2001 Phys. Rev. Lett. 88 017903

    [6]

    Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829

    [7]

    Wang X W, Zhang D Y, Tang S Q, You K M 2010 Int. J. Theor. Phys. 49 2691

    [8]

    Wang X W, Zhang D Y, Tang S Q, Xie L J 2011 J. Phys. B: At. Mol. Opt. Phys. 44 035505

    [9]

    Murao M, Jonathan D, Plenio M B, Vedral V 1999 Phys. Rev. A 59 156

    [10]

    Yan L H, Gao Y F, Zhao J G A 2009 Int. J. Theor. Phys. 48 2445

    [11]

    Wang X W, Yang G J 2009 Phys. Rev. A 79 064306

    [12]

    Fan H, Wang Y N, Jing L, Yue J D, Shi H D, Zhang Y L, Mu L Z 2014 Phys. Rep. 544 241

    [13]

    Murao M, Vedral V 2001 Phys. Rev. Lett. 86 352

    [14]

    Wang X W, Zhang D Y, Yang G J, Tang S Q, Xie L J 2011 Phys. Rev. A 84 042310

    [15]

    Zhang Y J, Zhou Y, Xia Y J 2008 Acta Phys. Sin. 57 21 (in Chinese) [张英杰, 周原, 夏云杰 2008 57 21]

    [16]

    Xu P, Wang D, Ye L 2013 Chin. Phys. B 22 100306

    [17]

    Horodedecki R, Horodedecki P, Horodedecki M, Horodedecki K 2009 Rev. Mod. Phys. 81 865

    [18]

    Zyczkowski K, Horodedecki P, Horodedecki M, Horodedecki R 2001 Phys. Rev. A 65 012101

    [19]

    Zurek W H 2003 Rev. Mod. Phys. 75 715

    [20]

    Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404

    [21]

    Almeida M P, de Melo F, Hor-Meyll M, Salles A, Walborn S P, Ribeiro P H S, Davidovich L 2007 Science 316 579

    [22]

    Yu T, Eberly J H 2007 Phys. Rev. Lett. 97 140403

    [23]

    Almeida M P, de Melo F, Hor-Meyll M, Salles A, Walborn S P, Ribeiro P H S, Davidovich L 2007 Science 316 579

    [24]

    Eberly J H, Yu T 2007 Science 316 555

    [25]

    Shor P W 1995 Phys. Rev. A 52 R2493

    [26]

    Steane A M 1996 Phys. Rev. Lett. 77 793

    [27]

    Lidar D A, Chuang I L, Whaley K B 1998 Phys. Rev. Lett. 81 2594

    [28]

    Kwiat P G, Berglund A J, Altepeter J B, White A G 2000 Science 290 498

    [29]

    Viola L, Knill E, Lloyd S 1999 Phys. Rev. Lett. 82 2417

    [30]

    West J R, Lidar D A, Fong B H, Gyure M F 2010 Phys. Rev. Lett. 105 230503

    [31]

    He Z, Yao C M 2014 Chin. Phys. B 23 110601

    [32]

    Han W, Zhang Y J, Yan W B, Xia Y J 2014 Chin. Phys. B 23 0110304

    [33]

    Kim Y S, Lee J C, Kwon O, Kim Y H 2011 Nat. Phys. 10 1038

    [34]

    Sun Q Q, Al-Amri M, Davidovich L, Zubairy M S 2010 Phys. Rev. A 82 052323

    [35]

    Man Z X, Xia Y J 2012 Phys. Rev. A 86 012325

    [36]

    Man Z X, Xia Y J 2012 Phys. Rev. A 86 052322

    [37]

    Liao X P, Fang M F, Fang J S, Zhu Q Q 2013 Chin. Phys. B 23 020304

    [38]

    Xiao X 2014 Phys. Scr. 89 065102

    [39]

    Wang S C, Yu Z W, Zou W J, Wang X B 2014 Phys. Rev. A 89 022318

  • [1] 胡强, 曾柏云, 辜鹏宇, 贾欣燕, 樊代和. 退相干条件下两比特纠缠态的量子非局域关联检验.  , 2022, 71(7): 070301. doi: 10.7498/aps.71.20211453
    [2] 张骄阳, 丛爽, 王驰, SajedeHarraz. 借助弱测量和环境辅助测量的N量子比特状态退相干抑制.  , 2022, 71(22): 220303. doi: 10.7498/aps.71.20220760
    [3] 宋悦, 李军奇, 梁九卿. 级联环境下三量子比特量子关联动力学研究.  , 2021, 70(10): 100301. doi: 10.7498/aps.70.20202133
    [4] 张晓东, 於亚飞, 张智明. 量子弱测量中纠缠对参数估计精度的影响.  , 2021, 70(24): 240302. doi: 10.7498/aps.70.20210796
    [5] 赵军龙, 张译丹, 杨名. 噪声对一种三粒子量子探针态的影响.  , 2018, 67(14): 140302. doi: 10.7498/aps.67.20180040
    [6] 武莹, 李锦芳, 刘金明. 基于部分测量增强量子隐形传态过程的量子Fisher信息.  , 2018, 67(14): 140304. doi: 10.7498/aps.67.20180330
    [7] 张秦榕, 王彬彬, 张孟龙, 严冬. 稀薄里德伯原子气体中的两体纠缠.  , 2018, 67(3): 034202. doi: 10.7498/aps.67.20172052
    [8] 黄江. 弱测量对四个量子比特量子态的保护.  , 2017, 66(1): 010301. doi: 10.7498/aps.66.010301
    [9] 吴承峰, 杜亚男, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明. 弱相干光源测量设备无关量子密钥分发系统的性能优化分析.  , 2016, 65(10): 100302. doi: 10.7498/aps.65.100302
    [10] 宗晓岚, 杨名. 多粒子纠缠的保护方案.  , 2016, 65(8): 080303. doi: 10.7498/aps.65.080303
    [11] 杜亚男, 解文钟, 金璇, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明. 基于弱相干光源测量设备无关量子密钥分发系统的误码率分析.  , 2015, 64(11): 110301. doi: 10.7498/aps.64.110301
    [12] 汪仲清, 赵小奇, 周贤菊. 原子在弱相干场光纤耦合腔系统中的纠缠特性.  , 2013, 62(22): 220302. doi: 10.7498/aps.62.220302
    [13] 卢道明. 弱相干场耦合腔系统中的纠缠特性.  , 2013, 62(3): 030302. doi: 10.7498/aps.62.030302
    [14] 赵加强, 曹连振, 逯怀新, 王晓芹. 三比特类GHZ态的Bell型不等式和非定域性.  , 2013, 62(12): 120301. doi: 10.7498/aps.62.120301
    [15] 韩伟, 崔文凯, 张英杰, 夏云杰. 不同环境模型下Bell型纠缠态衰退行为的比较.  , 2012, 61(23): 230302. doi: 10.7498/aps.61.230302
    [16] 郭振, 闫连山, 潘炜, 罗斌, 徐明峰. 量子纠缠消相干对确定型远程制备的影响.  , 2011, 60(6): 060301. doi: 10.7498/aps.60.060301
    [17] 尹辑文, 肖景林, 于毅夫, 王子武. 库仑势对抛物量子点量子比特消相干的影响.  , 2008, 57(5): 2695-2698. doi: 10.7498/aps.57.2695
    [18] 张登玉, 郭 萍, 高 峰. 强热辐射环境中两能级原子量子态保真度.  , 2007, 56(4): 1906-1910. doi: 10.7498/aps.56.1906
    [19] 向少华, 宋克慧. 噪声环境中两粒子纠缠态的纠缠消相干.  , 2006, 55(2): 529-534. doi: 10.7498/aps.55.529
    [20] 黄燕霞, 赵朋义, 黄熙, 詹明生. 压缩真空场与原子非线性作用过程中的纠缠与消纠缠.  , 2004, 53(1): 75-81. doi: 10.7498/aps.53.75
计量
  • 文章访问数:  5891
  • PDF下载量:  296
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-22
  • 修回日期:  2015-09-02
  • 刊出日期:  2015-12-05

/

返回文章
返回
Baidu
map