Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Plasmon induced transparency effect based on graphene nanoribbon waveguide side-coupled with rectangle cavities system

Wang Bo-Yun Zhu Zi-Hao Gao You-Kang Zeng Qing-Dong Liu Yang Du Jun Wang Tao Yu Hua-Qing

Citation:

Plasmon induced transparency effect based on graphene nanoribbon waveguide side-coupled with rectangle cavities system

Wang Bo-Yun, Zhu Zi-Hao, Gao You-Kang, Zeng Qing-Dong, Liu Yang, Du Jun, Wang Tao, Yu Hua-Qing
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In order to reduce the size of the device and realize the ultrafast response time and dynamic tunableness, the single-band and dual-band plasmon induced transparency (PIT) effect are investigated based on graphene nanoribbon waveguide side-coupled rectangle cavity. The slow light properties of the model are analyzed numerically and theoretically by coupled mode theory and finite difference time domain method. With controlling the chemical potential of the graphene rectangle cavity, the tunability of the resonant wavelength and the transmission peak can be achieved simultaneously in single-band and dual-band PIT model. As the chemical potential of graphene increases, the resonant wavelength of each transmission window of PIT effect decreases gradually and presents the blue shift. In addition, through dynamically tuning the resonant wavelength of the graphene rectangle cavity, when the chemical potential of the graphene rectangle cavity increases from 0.41 to 0.44 eV, the group index of single PIT system is controlled to be between 79.2 and 28.3, and the tunable bandwidth is 477 nm. Moreover, the group index of dual PIT system is controlled to be between 143.2 and 108.6 when the chemical potentials of graphene rectangle cavities 1, 2, and 3 are 0.39–0.42 eV, 0.40–0.43 eV, and 0.41–0.44 eV, respectively. The size of the entire PIT structure is <0.5 μm2. The research results here in this work are of reference significance in designing and fabricating the optical sensors, optical filters, slow light and light storage devices with ultrafast, ultracompact and dynamic tunableness.
      Corresponding author: Wang Bo-Yun, wangboyun@alumni.hust.edu.cn ; Yu Hua-Qing, yuhuaqing@hbeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11647122, 61705064), the Natural Science Foundation of Hubei Province, China (Grant Nos. 2018CFB672, 2018CFB773), the Project of Hubei Province Department of Education, China (Grant Nos. B2021215, T201617), and the Natural Science Foundation of Xiaogan City, China (Grant No. XGKJ2021010002).
    [1]

    Gao E D, Liu Z M, Li H J, Xu H, Zhang Z B, Luo X, Xiong C X, Liu C, Zhang B H, Zhou F Q 2019 Opt. Express 27 13884Google Scholar

    [2]

    Liu J H, Yu Y F, Zhang Z M 2019 Opt. Express 27 15382Google Scholar

    [3]

    Ziemkiewicz D, Slowik K, Zielinska-Raczynska S 2018 Opt. Lett. 43 490Google Scholar

    [4]

    Neubert T J, Wehrhold M, Kaya N S, Balasubramanian K 2020 Nanotechnology 31 405201Google Scholar

    [5]

    Li H J, Wang L L, Sun B, Huang Z R, Zhai X 2016 Plasmonics 11 87Google Scholar

    [6]

    Zhang T, Zhou J Z, Dai J, Dai Y T, Han X, Li J Q, Yin F F, Zhou Y, Xu K 2018 J. Phys. D:Appl. Phys. 51 055103Google Scholar

    [7]

    Liu Y C, Li B B, Xiao Y F 2017 Nanophotonics 6 789Google Scholar

    [8]

    Wang B Y, Zeng Q D, Xiao S Y, Xu C, Xiong L B, Lv H, Du J, Yu H Q 2017 J. Phys. D:Appl. Phys. 50 455107Google Scholar

    [9]

    Xiong C X, Li H J, Xu H, Zhao M Z, Zhang B H, Liu C, Wu K 2019 Opt. Express 27 17718Google Scholar

    [10]

    Han X, Wang T, Li X M, Zhu Y J 2015 J. Phys. D:Appl. Phys. 48 235102Google Scholar

    [11]

    Xu H, Xiong C X, Chen Z Q, Zheng M F, Zhao M Z, Zhang B H, Li H J 2018 J. Opt. Soc. Am. B 35 1463Google Scholar

    [12]

    Liu Z M, Zhang X 2020 New J. Phys. 22 083006Google Scholar

    [13]

    Huang H L, Xia H, Guo Z B, Li H J, Xie D 2018 Opt. Commun. 424 163Google Scholar

    [14]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401Google Scholar

    [15]

    Zhang B H, Li H J, Xu H, Zhao M Z, Xiong C X, Liu C, Wu K 2019 Opt. Express 27 3598Google Scholar

    [16]

    Cen H F, Wang F Q, Liang R S, Wei Z C, Meng H Y, Jiang L H, Dong H G, Qin S J, Wang L, Wang C L 2018 Opt. Commun. 420 78Google Scholar

    [17]

    Qiu P P, Qiu W B, Lin Z L, Chen H B, Ren J B, Wang J X, Kan Q, Pan J Q 2017 Nanoscale Res. Lett. 12 374Google Scholar

    [18]

    Sun C, Si J N, Dong Z W, Deng X X 2016 Opt. Express 24 11466Google Scholar

    [19]

    Fan C Z, Jia Y L, Ren P W, Jia W 2021 J. Phys. D: Appl. Phys. 54 035107Google Scholar

    [20]

    Li J B, Xiao X J, Tan Y, Guo Q Q, Liang S, Xiao S, Zhong H H, He M D, Liu L H, Luo J H, Chen L Q 2020 Opt. Express 28 3136Google Scholar

    [21]

    Zhang T, Liu Q, Dan Y H, Yu S, Han X, Dai J, Xu K 2020 Opt. Express 28 18899Google Scholar

    [22]

    Wang B Y, Zhu Y H, Zhang J, Zeng Q D, Du J, Wang T, Yu H Q 2020 Chin. Phys. B 29 377

    [23]

    Karampitsos N, Kyrginas D, Couris S 2020 Opt. Lett. 45 1814Google Scholar

    [24]

    Baudisch M, Marini A, Cox J D, Zhu T, Silva F, Teichmann S, Massicotte M, Koppens F, Levitov L S, Abajo F J G, Biegert J 2018 Nat. Commun. 9 1018Google Scholar

    [25]

    Xiao B G, Zhu J F, Xiao L H 2020 Appl. Opt. 59 6041Google Scholar

    [26]

    Xu H, Zhao M Z, Zheng M F, Xiong C X, Zhang B H, Peng Y Y, Li H J 2019 J. Phys. D:Appl. Phys. 52 025104Google Scholar

    [27]

    胡宝晶, 黄铭, 黎鹏, 杨晶晶 2020 69 174201Google Scholar

    Hu B J, Huang M, Li P, Yang J J 2020 Acta Phys. Sin. 69 174201Google Scholar

    [28]

    Zhan S, Li H, Cao G, He Z, Li B, Yang H 2014 J. Phys. D:Appl. Phys. 47 205101Google Scholar

    [29]

    Chen Z, Chen H, Yin J, Zhang R, Jile H, Xu D, Yi Z, Zhou Z, Cai S, Yan P 2021 Diamond Relat. Mater. 116 108393Google Scholar

    [30]

    Chen Z, Chen H, Jile H, Xu D, Yi Z, Lei Y, Chen X, Zhou Z, Cai S, Li G 2021 Diamond Relat. Mater. 115 108374Google Scholar

    [31]

    Jiang L, Yuan C, Li Z, Su J, Yi Z, Yao W, Wu P, Liu Z, Cheng S, Pan M 2021 Diamond Relat. Mater. 111 108227Google Scholar

  • 图 1  双石墨烯矩形腔边耦合波导系统结构示意图, 失谐方式为双腔之间的频率失谐

    Figure 1.  Schematic of two graphene rectangle cavities side-coupled to a waveguide system. Detuning method is the frequency detuning between two cavities.

    图 2  当石墨烯的化学势为0.39, 0.40, 0.41, 0.42, 0.43, 0.44 eV时, 本征Q值与波长的关系

    Figure 2.  Relationship between the intrinsic quality factor and the wavelength for different chemical potential of the graphene EF = 0.39, 0.40, 0.41, 0.42, 0.43 and 0.44 eV, respectively.

    图 3  单PIT效应的实现原理示意图

    Figure 3.  Schematic diagram of realizing principle of single PIT effect.

    图 4  单PIT效应仿真分析 (a1)—(d1)单PIT效应透射光谱; (a2)—(d2)相应的相移响应和群折射率

    Figure 4.  Single PIT effect simulation analysis: (a1)–(d1) The transmission spectra of single PIT effect; (a2)–(d2) corresponding phase shift responses and group index.

    图 5  单PIT效应透射凹陷((a), (c))和峰值波长((b))处的|Hz|2磁场分布

    Figure 5.  |Hz|2 magneticfield distributions of single PIT effect at transmission dips ((a) and (c)) and the peak wavelength ((b)).

    图 6  在PIT峰值波长处, 群折射率与石墨烯化学势的关系

    Figure 6.  Relationship between the group index and the chemical potential of the graphene under the peak wavelength of the PIT.

    图 7  三石墨烯矩形腔边耦合波导系统结构示意图

    Figure 7.  Schematic of triple graphene rectangle cavities side-coupled to a waveguide system.

    图 8  双PIT效应的实现原理示意图

    Figure 8.  Schematic diagram of realizing principle of dual PIT effect.

    图 9  双PIT效应仿真分析 (a1)—(d1)双PIT效应透射光谱; (a2)—(d2)相应的相移响应和群折射率

    Figure 9.  Dual PIT effect simulation analysis: (a1)–(d1) Transmission spectra of dual PIT effect; (a2)–(d2) corresponding phase shift responses and group index.

    图 10  双PIT效应峰值波长处的|Hz|2磁场分布

    Figure 10.  |Hz|2 magnetic field distributions of dual PIT effect at the peak wavelength.

    表 1  PIT峰值波长处, 不同石墨烯矩形腔化学势、泵浦光强下的PIT系统最大群折射率

    Table 1.  The maximum group index of the PIT system under different chemical potentials of graphene rectangle cavities and pump light intensity at the peak wavelength of PIT.

    调谐方式相关参数PIT系统最大群折射率
    石墨烯化学势EF1 = 0.39 eV, EF2 = 0.40 eV, EF3 = 0.41 eV143.2
    EF1 = 0.40 eV, EF2 = 0.41 eV, EF3 = 0.42 eV
    127.3
    EF1 = 0.41 eV, EF2 = 0.42 eV, EF3 = 0.43 eV116.2
    EF1 = 0.42 eV, EF2 = 0.43 eV, EF3 = 0.44 eV108.6
    泵浦光强I = 11.7 MW·cm–214.5 [10]
    DownLoad: CSV
    Baidu
  • [1]

    Gao E D, Liu Z M, Li H J, Xu H, Zhang Z B, Luo X, Xiong C X, Liu C, Zhang B H, Zhou F Q 2019 Opt. Express 27 13884Google Scholar

    [2]

    Liu J H, Yu Y F, Zhang Z M 2019 Opt. Express 27 15382Google Scholar

    [3]

    Ziemkiewicz D, Slowik K, Zielinska-Raczynska S 2018 Opt. Lett. 43 490Google Scholar

    [4]

    Neubert T J, Wehrhold M, Kaya N S, Balasubramanian K 2020 Nanotechnology 31 405201Google Scholar

    [5]

    Li H J, Wang L L, Sun B, Huang Z R, Zhai X 2016 Plasmonics 11 87Google Scholar

    [6]

    Zhang T, Zhou J Z, Dai J, Dai Y T, Han X, Li J Q, Yin F F, Zhou Y, Xu K 2018 J. Phys. D:Appl. Phys. 51 055103Google Scholar

    [7]

    Liu Y C, Li B B, Xiao Y F 2017 Nanophotonics 6 789Google Scholar

    [8]

    Wang B Y, Zeng Q D, Xiao S Y, Xu C, Xiong L B, Lv H, Du J, Yu H Q 2017 J. Phys. D:Appl. Phys. 50 455107Google Scholar

    [9]

    Xiong C X, Li H J, Xu H, Zhao M Z, Zhang B H, Liu C, Wu K 2019 Opt. Express 27 17718Google Scholar

    [10]

    Han X, Wang T, Li X M, Zhu Y J 2015 J. Phys. D:Appl. Phys. 48 235102Google Scholar

    [11]

    Xu H, Xiong C X, Chen Z Q, Zheng M F, Zhao M Z, Zhang B H, Li H J 2018 J. Opt. Soc. Am. B 35 1463Google Scholar

    [12]

    Liu Z M, Zhang X 2020 New J. Phys. 22 083006Google Scholar

    [13]

    Huang H L, Xia H, Guo Z B, Li H J, Xie D 2018 Opt. Commun. 424 163Google Scholar

    [14]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401Google Scholar

    [15]

    Zhang B H, Li H J, Xu H, Zhao M Z, Xiong C X, Liu C, Wu K 2019 Opt. Express 27 3598Google Scholar

    [16]

    Cen H F, Wang F Q, Liang R S, Wei Z C, Meng H Y, Jiang L H, Dong H G, Qin S J, Wang L, Wang C L 2018 Opt. Commun. 420 78Google Scholar

    [17]

    Qiu P P, Qiu W B, Lin Z L, Chen H B, Ren J B, Wang J X, Kan Q, Pan J Q 2017 Nanoscale Res. Lett. 12 374Google Scholar

    [18]

    Sun C, Si J N, Dong Z W, Deng X X 2016 Opt. Express 24 11466Google Scholar

    [19]

    Fan C Z, Jia Y L, Ren P W, Jia W 2021 J. Phys. D: Appl. Phys. 54 035107Google Scholar

    [20]

    Li J B, Xiao X J, Tan Y, Guo Q Q, Liang S, Xiao S, Zhong H H, He M D, Liu L H, Luo J H, Chen L Q 2020 Opt. Express 28 3136Google Scholar

    [21]

    Zhang T, Liu Q, Dan Y H, Yu S, Han X, Dai J, Xu K 2020 Opt. Express 28 18899Google Scholar

    [22]

    Wang B Y, Zhu Y H, Zhang J, Zeng Q D, Du J, Wang T, Yu H Q 2020 Chin. Phys. B 29 377

    [23]

    Karampitsos N, Kyrginas D, Couris S 2020 Opt. Lett. 45 1814Google Scholar

    [24]

    Baudisch M, Marini A, Cox J D, Zhu T, Silva F, Teichmann S, Massicotte M, Koppens F, Levitov L S, Abajo F J G, Biegert J 2018 Nat. Commun. 9 1018Google Scholar

    [25]

    Xiao B G, Zhu J F, Xiao L H 2020 Appl. Opt. 59 6041Google Scholar

    [26]

    Xu H, Zhao M Z, Zheng M F, Xiong C X, Zhang B H, Peng Y Y, Li H J 2019 J. Phys. D:Appl. Phys. 52 025104Google Scholar

    [27]

    胡宝晶, 黄铭, 黎鹏, 杨晶晶 2020 69 174201Google Scholar

    Hu B J, Huang M, Li P, Yang J J 2020 Acta Phys. Sin. 69 174201Google Scholar

    [28]

    Zhan S, Li H, Cao G, He Z, Li B, Yang H 2014 J. Phys. D:Appl. Phys. 47 205101Google Scholar

    [29]

    Chen Z, Chen H, Yin J, Zhang R, Jile H, Xu D, Yi Z, Zhou Z, Cai S, Yan P 2021 Diamond Relat. Mater. 116 108393Google Scholar

    [30]

    Chen Z, Chen H, Jile H, Xu D, Yi Z, Lei Y, Chen X, Zhou Z, Cai S, Li G 2021 Diamond Relat. Mater. 115 108374Google Scholar

    [31]

    Jiang L, Yuan C, Li Z, Su J, Yi Z, Yao W, Wu P, Liu Z, Cheng S, Pan M 2021 Diamond Relat. Mater. 111 108227Google Scholar

Metrics
  • Abstract views:  5085
  • PDF Downloads:  110
  • Cited By: 0
Publishing process
  • Received Date:  29 July 2021
  • Accepted Date:  22 September 2021
  • Available Online:  09 October 2021
  • Published Online:  20 January 2022

/

返回文章
返回
Baidu
map