搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有石墨烯/铟锑氧化物复合透明电极的GaN发光二极管

郭伟玲 邓杰 王嘉露 王乐 邰建鹏

引用本文:
Citation:

具有石墨烯/铟锑氧化物复合透明电极的GaN发光二极管

郭伟玲, 邓杰, 王嘉露, 王乐, 邰建鹏

GaN-based light emitting diode with graphene/indium antimony oxide composite transparent electrode

Guo Wei-Ling, Deng Jie, Wang Jia-Lu, Wang Le, Tai Jian-Peng
PDF
HTML
导出引用
  • 近年来, 石墨烯材料由于优异的光电性能获得了广泛关注, 并应用于发光二极管的透明电极以取代昂贵的铟锑氧化物(indium tin oxide, ITO)透明电极, 但由于石墨烯与p-GaN功函数不匹配, 二者很难形成好的欧姆接触, 因而造成器件电流扩展差和电压高等问题. 本文将ITO薄层作为石墨烯透明电极与p-GaN间的插入层, 以改善石墨烯与p-GaN层的欧姆接触. 所制备的石墨烯透明电极的方块电阻为252.6 $ \Omega/\Box $, 石墨烯/ITO复合透明电极的方块电阻为70.1 $ \Omega/\Box $; 石墨烯透明电极与p-GaN层的比接触电阻率为1.92 × 10–2 Ω·cm2, ITO插入之后, 其比接触电阻率降低为1.01 × 10–4 Ω·cm2; 基于石墨烯透明电极的发光二极管(light emitting diode, LED), 在20 mA注入电流下, 正向电压为4.84 V, 而石墨烯/ITO复合透明电极LED正向电压降低至2.80 V, 且光输出功率得到提高. 这归因于石墨烯/ITO复合透明电极与p-GaN界面处势垒高度的降低, 进而改善了欧姆接触; 另外, 方块电阻的降低, 使得电流扩展均匀性也得到了提高. 所采用的复合透明电极减少了ITO的用量, 得到了良好的欧姆接触, 为LED透明电极提供了一种可行方案.
    In recent years, graphene has received wide attention due to its excellent optoelectronic properties and has been applied to transparent electrodes of light-emitting diodes to replace the scarce and expensive indium antimony oxide (ITO), which is a typical current spreading layer in lateral GaN LED. However, there are some problems in graphene transparent electrode, such as the mismatch between graphene work function and p-GaN work function, and difficult-to-form good Ohmic contact with p-GaN, resulting in poor current expansion and high voltage of devices. In this paper, a thin ITO layer is used as an insertion layer between a three-layer graphene transparent electrode and and p-GaN, thereby improving the Ohmic contact between them. And a three-layer graphene/ITO composite transparent electrode LED is prepared and also compared with the pristine three-layer graphene LED. The thickness of ITO is only 50 nm, which is much thinner than the thickness of ITO in conventional LED. The sheet resistance of the prepared three-layer pristine graphene transparent electrode is 252.6 $ \Omega/\Box $, and the sheet resistance of the three-layer graphene/ITO composite transparent electrode is reduced to 70.1 $ \Omega/\Box $. The specific contact resistance between the three-layer pristine graphene transparent electrode and the p-GaN layer is 1.92 × 10–2 Ω·cm2, after the ITO being inserted, the specific resistance is reduced to 1.01 × 10–4 Ω·cm2. Based on the three-layer graphene transparent electrode LED, the forward voltage is 4.84 V at an injection current of 20 mA, while the forward voltage of the three-layer graphene/ITO composite transparent electrode LED is reduced to 2.80 V; under small currents, the ideal factor of the three-layer graphene/ITO composite transparent electrode LED is less than that of the three-layer graphene transparent electrode LED. In addition, with the current increasing, the luminous intensity of the three-layer graphene/ITO composite transparent electrode LED increases, so does the radiant flux, which is because the addition of the ITO thin layer reduces the barrier height at the interface between the three layers of graphene and p-GaN, and the sheet resistance of the composite transparent electrode is also reduced, thereby improving the Ohmic contact between graphene and p-GaN. At the same time, the current spread is more uniform. The composite transparent electrode uses the much less ITO and obtains better optoelectronic performance, and thus providing a feasible solution for the LED transparent electrode.
      通信作者: 郭伟玲, guoweiling@bjut.edu.cn
    • 基金项目: 国家重点研究发展计划(批准号: 2017 YFB0403100, 2017 YFB0403102)资助的课题
      Corresponding author: Guo Wei-Ling, guoweiling@bjut.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2017 YFB0403100, 2017 YFB0403102)
    [1]

    Dupuis R D, Krames M R 2008 J. Lighwave Technol. 26 1154Google Scholar

    [2]

    郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar

    [3]

    黎振超, 陈梓铭, 邹广锐兴, 叶轩立, 曹镛 2019 68 158505Google Scholar

    Li Z C, Chen Z M, Zou G R X, Ye X L, Cao Y 2019 Acta Phys. Sin. 68 158505Google Scholar

    [4]

    Kim B J, Yang G, Kim H Y, Baik K H, Mastro M A, Hite J K, Eddy C R, Ren F, Pearton S J, Kim J 2013 Opt. Express 21 29025Google Scholar

    [5]

    Lee J M, Jeong H Y, Choi K J, Park W 2011 Appl. Phys. Lett. 99 41115Google Scholar

    [6]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nature Photon. 4 611Google Scholar

    [7]

    蒲晓庆, 吴静, 郭强, 蔡建臻 2018 67 217301Google Scholar

    Pu X Q, Wu J, Guo Q, Cai J Z 2018 Acta Phys. Sin. 67 217301Google Scholar

    [8]

    Seo T H, Kim S J, Kim M J, Kim H S, Suh E K 2014 J. Phys. D: Appl. Phys. 47 215103Google Scholar

    [9]

    Wu C, Liu F, Liu B, Zhuang Z, Dai J P, Tao T, Zhang G, Xie Z L, Wang X R, Zhang R 2015 Solid State Electron. 109 47Google Scholar

    [10]

    Xun K, Xie Y Y, Ma H L, Du Y X, Zeng F G, Ding P, Gao Z Y, Xu C, Sun J 2016 Solid State Electron. 126 5Google Scholar

    [11]

    Youn D H, Yu Y J, Chio H K, Kim S K, Chio S Y, Chio C G 2013 Nanotechnology 24 075202Google Scholar

    [12]

    Xu K, Xu C, Deng J, Zhu Y X, Guo W L, Mao M M, Zheng L Sun J 2013 Appl. Phys. Lett. 102 162102Google Scholar

    [13]

    甄聪棉, 李秀玲, 潘成福, 聂向富, 王印月 2005 大学物理 06 10Google Scholar

    Zhen C M, Li X L, Pan C F, Nie C F, Wang Y Y 2005 College Phys. 06 10Google Scholar

    [14]

    马新宇, 陈茜, 廖杨芳, 肖清泉, 陈庆, 姚紫祎, 谢泉 2017 低温 39 16Google Scholar

    Ma X Y, Chen X, Liao Y F, Xiao Q Q, Chen Q, Yao Z W, Xie Q 2017 Low Temp. Phys. Lett. 39 16Google Scholar

    [15]

    严光明, 李成, 汤梦饶, 黄诗浩, 王尘, 卢卫芳, 黄巍, 赖虹凯, 陈松岩 2013 62 167304Google Scholar

    Yan G M, Li C, Tang M R, Huang S H, Wang C, Lu W F, Huang W, Lai H K, Chen S Y 2013 Acta Phys. Sin. 62 167304Google Scholar

    [16]

    吴鼎芬, 颜本达 1989 金属-半导体界面欧姆接触的原理、测试与工艺 (上海: 上海交通大学出版社) 第36−39页

    Wu D F, Yang B D 1989 Principle, Test and Process of Ohmic Contact at Metal-semiconductor Interface (Shanghai: Shanghai Jiaotong University Press) pp36−39 (in Chinese)

    [17]

    Hao Y, Marc S, Tom S, Erik R, Koen M, Steven D, Naoto H, Kathy B, Nadine C, Kristin D M 2015 IEEE Electron Device Lett. 36 1Google Scholar

    [18]

    Shah J M, Li Y L, Gessmann T, Schubert E F 2003 J. Appl. Phys. 94 2627Google Scholar

    [19]

    刘建朋, 朱彦旭, 郭伟玲, 闫微微, 吴国庆 2012 61 137303Google Scholar

    Liu J P, Zhu Y X, Guo W L, Yang W W, Wu G Q 2012 Acta Phys. Sin. 61 137303Google Scholar

    [20]

    Guo X, Schubert E F 2001 Appl. Phys. Lett. 78 3337Google Scholar

    [21]

    吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆 2019 68 148103Google Scholar

    Wu C C, Guo X D, Hu H, Yang X X, Dai Q 2019 Acta Phys. Sin. 68 148103Google Scholar

  • 图 1  制备的LED器件的结构示意图 (a)石墨烯透明电极LED I; (b)石墨烯/ITO复合透明电极LED II; (c)湿法转移石墨烯的光学显微镜图(左侧阴影部分为石墨烯, 右侧为ITO)

    Fig. 1.  Schematic diagram of the prepared LED device: (a) Graphene transparent electrode LED I; (b) graphene/ITO composite transparent electrode LED II; (c) optical micrograph of wet transfer graphene (graphene on the left and ITO on the right).

    图 2  圆点传输线模型 (a)模型示意图; (b)测试样品图

    Fig. 2.  Dot circular transmission line model (dot-CTLM): (a) Model diagram; (b) test sample.

    图 3  大电流下, LED I与LED II的I-V测试曲线

    Fig. 3.  I-V curves of LED I and LED II under high current.

    图 4  LED发光光学照片 (a) LED I; (b) LED II

    Fig. 4.  Optical graphs of LEDs: (a) LED I; (b) LED II.

    图 5  LED I与LED II的光谱图(内插图为半高宽随电流的变化)

    Fig. 5.  Spectrum of LED I and LED II. Inset shows the curves of the FWHM with current

    图 6  LED I与LED II辐射通量随电流变化对比图

    Fig. 6.  Comparison of radiant flux of LED I and LED II

    表 1  复合透明电极方块电阻及其与p-GaN比接触电阻率的测量结果

    Table 1.  Composite transparent electrode sheet resistance and its measurement results of contact resistivity with p-GaN.

    透明电极类型方块电阻比接触电阻率
    $R_{\rm sh}/ \Omega\cdot\Box^{-1}$ρc/Ω·cm2
    石墨烯252.61.92 × 10–2
    石墨烯/ITO70.11.01 × 10–4
    下载: 导出CSV
    Baidu
  • [1]

    Dupuis R D, Krames M R 2008 J. Lighwave Technol. 26 1154Google Scholar

    [2]

    郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar

    [3]

    黎振超, 陈梓铭, 邹广锐兴, 叶轩立, 曹镛 2019 68 158505Google Scholar

    Li Z C, Chen Z M, Zou G R X, Ye X L, Cao Y 2019 Acta Phys. Sin. 68 158505Google Scholar

    [4]

    Kim B J, Yang G, Kim H Y, Baik K H, Mastro M A, Hite J K, Eddy C R, Ren F, Pearton S J, Kim J 2013 Opt. Express 21 29025Google Scholar

    [5]

    Lee J M, Jeong H Y, Choi K J, Park W 2011 Appl. Phys. Lett. 99 41115Google Scholar

    [6]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nature Photon. 4 611Google Scholar

    [7]

    蒲晓庆, 吴静, 郭强, 蔡建臻 2018 67 217301Google Scholar

    Pu X Q, Wu J, Guo Q, Cai J Z 2018 Acta Phys. Sin. 67 217301Google Scholar

    [8]

    Seo T H, Kim S J, Kim M J, Kim H S, Suh E K 2014 J. Phys. D: Appl. Phys. 47 215103Google Scholar

    [9]

    Wu C, Liu F, Liu B, Zhuang Z, Dai J P, Tao T, Zhang G, Xie Z L, Wang X R, Zhang R 2015 Solid State Electron. 109 47Google Scholar

    [10]

    Xun K, Xie Y Y, Ma H L, Du Y X, Zeng F G, Ding P, Gao Z Y, Xu C, Sun J 2016 Solid State Electron. 126 5Google Scholar

    [11]

    Youn D H, Yu Y J, Chio H K, Kim S K, Chio S Y, Chio C G 2013 Nanotechnology 24 075202Google Scholar

    [12]

    Xu K, Xu C, Deng J, Zhu Y X, Guo W L, Mao M M, Zheng L Sun J 2013 Appl. Phys. Lett. 102 162102Google Scholar

    [13]

    甄聪棉, 李秀玲, 潘成福, 聂向富, 王印月 2005 大学物理 06 10Google Scholar

    Zhen C M, Li X L, Pan C F, Nie C F, Wang Y Y 2005 College Phys. 06 10Google Scholar

    [14]

    马新宇, 陈茜, 廖杨芳, 肖清泉, 陈庆, 姚紫祎, 谢泉 2017 低温 39 16Google Scholar

    Ma X Y, Chen X, Liao Y F, Xiao Q Q, Chen Q, Yao Z W, Xie Q 2017 Low Temp. Phys. Lett. 39 16Google Scholar

    [15]

    严光明, 李成, 汤梦饶, 黄诗浩, 王尘, 卢卫芳, 黄巍, 赖虹凯, 陈松岩 2013 62 167304Google Scholar

    Yan G M, Li C, Tang M R, Huang S H, Wang C, Lu W F, Huang W, Lai H K, Chen S Y 2013 Acta Phys. Sin. 62 167304Google Scholar

    [16]

    吴鼎芬, 颜本达 1989 金属-半导体界面欧姆接触的原理、测试与工艺 (上海: 上海交通大学出版社) 第36−39页

    Wu D F, Yang B D 1989 Principle, Test and Process of Ohmic Contact at Metal-semiconductor Interface (Shanghai: Shanghai Jiaotong University Press) pp36−39 (in Chinese)

    [17]

    Hao Y, Marc S, Tom S, Erik R, Koen M, Steven D, Naoto H, Kathy B, Nadine C, Kristin D M 2015 IEEE Electron Device Lett. 36 1Google Scholar

    [18]

    Shah J M, Li Y L, Gessmann T, Schubert E F 2003 J. Appl. Phys. 94 2627Google Scholar

    [19]

    刘建朋, 朱彦旭, 郭伟玲, 闫微微, 吴国庆 2012 61 137303Google Scholar

    Liu J P, Zhu Y X, Guo W L, Yang W W, Wu G Q 2012 Acta Phys. Sin. 61 137303Google Scholar

    [20]

    Guo X, Schubert E F 2001 Appl. Phys. Lett. 78 3337Google Scholar

    [21]

    吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆 2019 68 148103Google Scholar

    Wu C C, Guo X D, Hu H, Yang X X, Dai Q 2019 Acta Phys. Sin. 68 148103Google Scholar

  • [1] 朱洪强, 罗磊, 吴泽邦, 尹开慧, 岳远霞, 杨英, 冯庆, 贾伟尧. 利用掺杂提高石墨烯吸附二氧化氮的敏感性及光学性质的理论计算.  , 2024, 73(20): 203101. doi: 10.7498/aps.73.20240992
    [2] 周昆, 马豪悦, 孙希贤, 吴小虎. 基于VO2和石墨烯实现hBN声子极化激元和自发发射率的主动调谐.  , 2023, 72(7): 074201. doi: 10.7498/aps.72.20222167
    [3] 邓旭良, 冀先飞, 王德君, 黄玲琴. 石墨烯过渡层对金属/SiC接触肖特基势垒调控的第一性原理研究.  , 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [4] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应.  , 2022, 71(2): 024201. doi: 10.7498/aps.71.20211397
    [5] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应研究.  , 2021, (): . doi: 10.7498/aps.70.20211397
    [6] 王波, 张纪红, 李聪颖. 石墨烯增强半导体态二氧化钒近场热辐射.  , 2021, 70(5): 054207. doi: 10.7498/aps.70.20201360
    [7] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 张婷婷, 刘洋, 胡振洋, 唐小洁. 基于石墨烯电极的蒽醌分子器件开关特性.  , 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [8] 胡宝晶, 黄铭, 黎鹏, 杨晶晶. 基于纳米金属-石墨烯耦合的多频段等离激元诱导透明.  , 2020, 69(17): 174201. doi: 10.7498/aps.69.20200200
    [9] 史超, 林晨森, 陈硕, 朱军. 石墨烯表面的特征水分子排布及其湿润透明特性的分子动力学模拟.  , 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [10] 崔树稳, 李璐, 魏连甲, 钱萍. 双层石墨烯层间限域CO氧化反应的密度泛函研究.  , 2019, 68(21): 218101. doi: 10.7498/aps.68.20190447
    [11] 蒲晓庆, 吴静, 郭强, 蔡建臻. 石墨烯与金属的欧姆接触理论研究.  , 2018, 67(21): 217301. doi: 10.7498/aps.67.20181479
    [12] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计.  , 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [13] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 陈爱民, 杨爱云, 张婷婷, 刘洋. 基于石墨烯电极的齐聚苯乙炔分子器件的整流特性.  , 2018, 67(11): 118501. doi: 10.7498/aps.67.20180088
    [14] 秦志辉. 类石墨烯锗烯研究进展.  , 2017, 66(21): 216802. doi: 10.7498/aps.66.216802
    [15] 俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营. 以石墨烯为电极的有机噻吩分子整流器的设计及电输运特性研究.  , 2017, 66(9): 098501. doi: 10.7498/aps.66.098501
    [16] 王孜博, 江华, 谢心澄. 多端口石墨烯系统中的非局域电阻.  , 2017, 66(21): 217201. doi: 10.7498/aps.66.217201
    [17] 刘学文, 朱重阳, 董辉, 徐峰, 孙立涛. 二硒化铁/还原氧化石墨烯的制备及其在染料敏化太阳能电池中的应用.  , 2016, 65(11): 118802. doi: 10.7498/aps.65.118802
    [18] 卢晓波, 张广宇. 石墨烯莫尔超晶格.  , 2015, 64(7): 077305. doi: 10.7498/aps.64.077305
    [19] 邓新华, 刘江涛, 袁吉仁, 王同标. 全新的电导率特征矩阵方法及其在石墨烯THz频率光学特性上的应用.  , 2015, 64(5): 057801. doi: 10.7498/aps.64.057801
    [20] 严光明, 李成, 汤梦饶, 黄诗浩, 王尘, 卢卫芳, 黄巍, 赖虹凯, 陈松岩. 金属与半导体Ge欧姆接触制备、性质及其机理分析.  , 2013, 62(16): 167304. doi: 10.7498/aps.62.167304
计量
  • 文章访问数:  10537
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-26
  • 修回日期:  2019-10-04
  • 上网日期:  2019-11-27
  • 刊出日期:  2019-12-01

/

返回文章
返回
Baidu
map