Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fabrication and electrochemical properties of hollow cage-like nickel cobalt layered hydroxides with porous structure

Yang Wen Ding Qian-Yao Zhai Dong-Mei Bo Kai-Wen Feng Yan-Yan Wen Jie He Fang

Citation:

Fabrication and electrochemical properties of hollow cage-like nickel cobalt layered hydroxides with porous structure

Yang Wen, Ding Qian-Yao, Zhai Dong-Mei, Bo Kai-Wen, Feng Yan-Yan, Wen Jie, He Fang
PDF
HTML
Get Citation
  • Supercapacitors have attracted extensive attention in various storage devices due to their high power density, long life and friendly environment. Hence, improving the energy storage performances of electrode materials are of great significance for supercapacitors. Functional materials with specific nanostructures, as energy storage materials, can display excellent electrochemical performances, for they will provide rich electrochemically active sites, high specific surface area and enhance electrolyte contact area. Consequently, hollow cage-like nickel cobalt layered hydroxides (NiCo-LDH) are prepared via nitrate etching of ZIF-67 nanocrystals, and investigated as electrode materials of supercapacitor. The morphology, structure and electrochemical properties of the obtained materials are investigated by X-ray diffraction, scanning electron microscope, transmission electron microscope, N 2 adsorption/desorption and a series of electrochemical tests (including cyclic voltammetry, galvanostatic charge and discharge and AC impedance). The results show that the NiCo-LDH samples assembled by nanosheets present a porous structure with hollow cages and high specific area surfaces, which conduces to increasing the electroactive sites, enhancing the contact between the electrolyte and the electrode material, and thus significantly improving the electrochemical performance of the materials. With the mass ratio of nickel to cobalt salt being 1∶1, the specific capacitance of Ni 1Co 1-LDH is 801 F·g –1 at a current density of 0.5 A·g –1, and a specific capacitance of 582 F·g –1 can still be maintained at a high current density of 10 A·g –1. Moreover, the specific capacitance retention of Ni 1Co 1-LDH is 100.2% after 2000 cycles at a current density of 15 A·g –1, displaying good electrochemical performance and great potential in supercapacitor applications.
      Corresponding author: Feng Yan-Yan, feng1988glut@163.com
    • Funds: Project supported by the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant Nos. 2017GXNSFBA198124, 2017GXNSFBA198193), the National Natural Science Foundation of China (Grant No. 21606058), and the Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, China (Grant No. EMFM20211101)
    [1]

    González A, Goikolea E, Barrena J A, Mysyk R 2016 Renewable Sustainable Energy Rev. 58 1189Google Scholar

    [2]

    Zha D S, Sun H H, Fu Y S, Ouyang X P, Wang X 2017 Electrochim. Acta 236 18Google Scholar

    [3]

    Zhang L J, Hui K N, Hui S K, Lee H 2016 J. Power Sources 318 76Google Scholar

    [4]

    Wang H T, Jin C, Liu Y N, Kang X H, Bian S W, Zhu Quan 2018 Electrochim. Acta 283 1789Google Scholar

    [5]

    Cai Z X, Wang Z L, Kim J, Yamauchi Y 2019 Adv. Mater. 31 1804903Google Scholar

    [6]

    Li L, Liu X, Liu C, Wang H Z, Zhang J, Liang P, Wang H B, Wang H 2018 Electrochim. Acta 259 303Google Scholar

    [7]

    张诚, 邓明森, 蔡绍洪 2017 66 128201Google Scholar

    Zang C, Deng M S, Cai S H 2017 Acta Phys. Sin. 66 128201Google Scholar

    [8]

    Xiao P W, Meng Q H, Zhao L, Li J J, Wei Z X, Han B H 2017 Mater. Des. 129 164Google Scholar

    [9]

    Liu D, Du P C, Wei W L, Wang H X, Liu P 2018 J. Colloid. Interface Sci. 513 295Google Scholar

    [10]

    冯艳艳, 李彦杰, 杨文, 牛潇迪 2020 化工进展 39 2734

    Feng Y Y, Li Y J, Yang W, Niu X D 2020 Chem. Ind. Eng. Prog. 39 2734

    [11]

    Ryu I, Yang M H, Kwon H, Park H K, Do Y R, Lee S B, Yim S 2014 Langmuir 30 1704Google Scholar

    [12]

    Shi P P, Li L, Hua L, Qian Q Q, Wang P F, Zhou J Y, Sun G Z, Huang W 2017 ACS Nano 11 444Google Scholar

    [13]

    Shen K W, Ran F, Zhang X X, Liu C, Wang N J, Niu X Q, Liu Y, Zhang D J, Kong L B, Kang L, Chen S W 2015 Synth. Met. 209 369Google Scholar

    [14]

    Nanwani A, Deshmukh K A, Sivaraman P, Peshwe D R, Sharma I, Dhoble S J, Swart H C, Deshmukh A D, Gupta B K 2019 Npj 2 D Mater. Appl. 3 1Google Scholar

    [15]

    Xuan X Y, Qian M, Han L, Wan L J, Li Y Q, Lu T, Pan L K, Niu Y P, Gong S Q 2019 Electrochim. Acta 321 134710Google Scholar

    [16]

    冯艳艳, 黄宏斌, 张心桔, 易亚军, 杨文 2017 66 248202Google Scholar

    Feng Y Y, Huang H b, Zhang X J, Yi Y J, Yang W 2017 Acta Phys. Sin. 66 248202Google Scholar

    [17]

    Huang Q, Liu K Y, He F, Zhang S R, Xie Q L, Chen C 2017 Trans. Nonferrous Met. Soc. 27 1804Google Scholar

    [18]

    Huang W G, Zhang A T, Li X R, Tian J M, Yue L J, Cui L, Zheng R K, Wei D, Liu J Q 2019 J. Power Sources 440 227123Google Scholar

    [19]

    Xu J, Ma C J, Cao J Y, Chen Z D 2017 Dalton Trans. 46 3276Google Scholar

    [20]

    Xiao Z Y, Bao Y X, Li Z J, Huai X D, Wang M H, Liu P, Wang L 2019 ACS Appl. Energy Mater. 2 1086Google Scholar

    [21]

    Yang Z, Wang X M, Zhang H, Yan S H, Zhang C, Liu S X 2019 ChemElectroChem 6 4456Google Scholar

    [22]

    Cheng C, Wei C Z, He Y Y, Liu L Y, Hu J Y, Du W M 2021 J. Energy Storage 33 102105Google Scholar

    [23]

    Li X Y, Yu L, Wang G L, Wan G P, Peng X G, Wang K, Wang G Z 2017 Electrochim. Acta 255 15Google Scholar

    [24]

    Xiao Z Y, Mei Y J, Yuan S, Mei H, Xu B, Bao Y X, Fan L L, Kang W P, Dai F N, Wang R, Wang L, Hu S Q, Sun D F, Zhou H C 2019 ACS Nano 13 7024Google Scholar

    [25]

    Xu Y Q, Hou S J, Yang G, Wang X J, Lu T, Pan L K 2018 Electrochim. Acta 285 192Google Scholar

    [26]

    Yu L, Hu H, Wu H B, Lou X W 2017 Adv. Mater. 29 1604563Google Scholar

    [27]

    Hu H, Guan B Y, Xia B Y, Lou X W 2015 J. Am. Chem. Soc. 137 5590Google Scholar

    [28]

    Liu D, Wan J W, Pang G S, Tang Z Y 2019 Adv. Mater. 31 1803291Google Scholar

    [29]

    Rashti A, Lu X, Dobson A, Hassani E, Feyzbar-Khalkhali-Nejad F, He K, Oh T S 2021 ACS Appl. Energy Mater. 4 1537Google Scholar

    [30]

    Liu K, Yu M L, Wang H Y, Wang J, Liu W P, Hoffmann M R 2019 Environ. Sci. Technol. 53 6474Google Scholar

    [31]

    Zhu Y Y, Zhou Y N, Zhang X, Sun Z G, Jiao C Q 2021 Adv. Opt. Mater. 9 2001889Google Scholar

    [32]

    Li R, Che R, Liu Q, Su S Z, Li Z S, Zhang H S, Liu J Y, Liu L H, Wang J 2017 J. Hazard. Mater. 338 167Google Scholar

    [33]

    Song X K, Jiang Y, Cheng F, Earnshaw J, Na J, Li X P, Yamauchi Y 2021 Small 17 2004142Google Scholar

    [34]

    Hou S Y, Lian Y, Bai Y Q, Zhou Q P, Ban C L, Wang Z F, Zhao J, Zhang H H 2020 Electrochim. Acta 341 136053Google Scholar

    [35]

    Wu H, Zhang Y N, Yuan W Y, Zhao Y X, Luo S H, Yuan X W, Zheng L X, Cheng L F 2018 J. Mater. Chem. A 6 16617Google Scholar

    [36]

    Wang D, Tian L Y, Li D W, Xu Y, Wei Q F 2020 J. Electroanal. Chem. 873 114377Google Scholar

    [37]

    Liu Y X, Wang Y Z, Shi C J, Chen Y J, Li D, He Z F, Wang C, Guo L, Ma J M 2020 Carbon 165 129Google Scholar

    [38]

    Tahir M. U, Arshad H, Xie W Y, Wang X L, Nawaz M, Yang C, Su X T 2020 Appl. Surf. Sci. 529 147073Google Scholar

    [39]

    Chu H L, Zhu Y, Fang T T, Hua J Q, Qiu S J, Liu H D, Qin L Y, Wei Q H, Zou Y J, Xiang C L, Xu F, Sun L X 2020 Sustainable Energy Fuel 4 337Google Scholar

    [40]

    Zang Y, Luo H, Zhang H, Xue H G 2021 ACS Appl. Energy Mater. 4 1189Google Scholar

    [41]

    Jiang Z, Li Z P, Qin Z H, Sun H Y, Jiao X L, Chen D R 2013 Nanoscale 5 11770Google Scholar

    [42]

    Liu L L, Fang L, Wu F, Hu J, Zhang S F, Luo H J, Hu B S, Zhou M 2020 J. Alloys Compd. 824 153929Google Scholar

    [43]

    Yang F, Chu J, Cheng Y P, Gong J F, Wang X Q, Xiong S X 2021 Chem. Res. Chin. U. 37 772Google Scholar

    [44]

    Wan H Z, Li L, Xu Y, Tan Q Y, Liu X, Zhang J, Wang H B, Wang H 2018 Nanotechnology 29 194003Google Scholar

    [45]

    Li Y L, Li Q, Zhao S H, Chen C, Zhou J J, Tao K, Han L 2018 ChemistrySelect 3 13596Google Scholar

    [46]

    Lv Z J, Zhong Q, Bu Y F 2018 Adv. Mater. Interfaces 5 1800438Google Scholar

    [47]

    DinariI M, Allami H, Momeni M M 2020 Energy Fuel. 35 1831

    [48]

    Wu S H, Zhang J Z, Sun C, Chen J S 2020 J. Inorg. Organomet. Polym. 30 3179Google Scholar

  • 图 1  中空笼状NiCo-LDH的制备示意图

    Figure 1.  Schematic illustration of the preparation of hollow cage-like NiCo-LDH.

    图 2  样品的X射线衍射谱图

    Figure 2.  XRD patterns of the samples.

    图 3  样品的扫描电镜图 (a) Ni 0Co 1-LDH; (b) Ni 1Co 2-LDH; (c) Ni 1Co 1-LDH; (d) Ni 2Co 1-LDH; (e) Ni 1Co 0-LDH

    Figure 3.  SEM images of the samples: (a) Ni 0Co 1-LDH; (b) Ni 1Co 2-LDH; (c) Ni 1Co 1-LDH; (d) Ni 2Co 1-LDH; (e) Ni 1Co 0-LDH.

    图 4  样品Ni 1Co 1-LDH的能谱分析 (a) 总图; (b) Co元素; (c) Ni元素

    Figure 4.  EDS profiles of the sample Ni 1Co 1-LDH: (a) Total mapping; (b) Co element; (c) Ni element.

    图 5  样品的透射电镜图 (a) ZIF-67; (b) Ni 0Co 1-LDH; (c) Ni 1Co 1-LDH; (d) Ni 2Co 1-LDH; (e) Ni 2Co 1-LDH; (f) Ni 1Co 0-LDH

    Figure 5.  TEM images of the samples: (a) ZIF-67; (b) Ni 0Co 1-LDH; (c) Ni 1Co 1-LDH; (d) Ni 2Co 1-LDH; (e) Ni 2Co 1-LDH; (f) Ni 1Co 0-LDH.

    图 6  样品的(a)氮气吸附/脱附等温线和(b)孔径分布图

    Figure 6.  (a) N 2 adsorption/desorption isotherms and (b) pore size distributions of the samples.

    图 7  样品在不同扫描速度下的循环伏安曲线 (a) Ni 0Co 1-LDH; (b) Ni 1Co 2-LDH; (c) Ni 1Co 1-LDH; (d) Ni 2Co 1-LDH; (e) Ni 1Co 0-LDH

    Figure 7.  CV curves of the samples at different scan rates: (a) Ni 0Co 1-LDH; (b) Ni 1Co 2-LDH; (c) Ni 1Co 1-LDH; (d) Ni 2Co 1-LDH; (e) Ni 1Co 0-LDH.

    图 8  样品在不同电流密度下的恒电流充放电曲线 (a) Ni 0Co 1-LDH; (b) Ni 1Co 2-LDH; (c) Ni 1Co 1-LDH; (d) Ni 2Co 1-LDH; (e) Ni 1Co 0-LDH

    Figure 8.  GCD curves of the samples at various current densities: (a) Ni 0Co 1-LDH; (b) Ni 1Co 2-LDH; (c) Ni 1Co 1-LDH; (d) Ni 2Co 1-LDH; (e) Ni 1Co 0-LDH.

    图 9  样品在不同电流密度下的(a)比电容和(b)电容保留率

    Figure 9.  (a) Specific capacitances and (b) capacitance retentions of the samples under various current densities.

    图 10  样品在电流密度为15 A·g –1下的循环稳定性能

    Figure 10.  Cyclic performance of the samples at the current density of 15 A·g –1.

    图 11  样品的(a), (b)Nyquist曲线和(c)高频区Nyquist曲线的放大图

    Figure 11.  (a), (b) Nyquist curves and (c) the enlarged curves at the high frequency range of the samples.

    表 1  样品的孔结构参数

    Table 1.  Pore structure parameters of the samples.

    Sample Ni/Co molar ratio BET specific surface area/m 2·g –1 Pore volume (meso)/(cm 3·g –1) Average pore width/nm Average pore width (meso)/nm
    Ni 0Co 1-LDH 0 81.4 0.443 18.2 17.5
    Ni 1Co 2-LDH 0.18 112.7 0.600 17.9 16.5
    Ni 1Co 1-LDH 0.39 182.6 0.954 17.9 16.3
    Ni 2Co 1-LDH 0.45 194.3 0.973 17.8 15.4
    Ni 1Co 0-LDH 2.37 233.3 0.913 13.2 11.5
    DownLoad: CSV

    表 2  NiCo-LDH基电极材料的比电容值比较

    Table 2.  Comparison of specific capacitances of various NiCo-LDH based electrodes materials.

    Sample Electrolyte Specific capacitance/(F·g –1) Reference
    Ni 2Co 1-LDH 2 M KOH 963 (0.5 A·g –1) 本文
    MnO 2-2/NiCo-LDH/CC 1 M NaSO 4 312 (0.2 A·g –1) [ 42]
    NiCo@BC 6 M KOH 606.4 (0.5 A·g –1) [ 43]
    Ni-Co LDH/NiNw 6 M KOH 466.6 (0.125 A·g –1) [ 44]
    NiCo LDH@Ni-CAT 1 M KOH 882 (1 A·g –1) [ 45]
    NCLDH@CNTs 6 M KOH 916.8 (1 A·g –1) [ 46]
    10%Ce-NiCo-LDH/CNT 1 M KOH 187.2 (1 A·g –1) [ 47]
    MnO 2/NiCo-LDH 6 M KOH 555.6 (1 A·g –1) [ 48]
    DownLoad: CSV
    Baidu
  • [1]

    González A, Goikolea E, Barrena J A, Mysyk R 2016 Renewable Sustainable Energy Rev. 58 1189Google Scholar

    [2]

    Zha D S, Sun H H, Fu Y S, Ouyang X P, Wang X 2017 Electrochim. Acta 236 18Google Scholar

    [3]

    Zhang L J, Hui K N, Hui S K, Lee H 2016 J. Power Sources 318 76Google Scholar

    [4]

    Wang H T, Jin C, Liu Y N, Kang X H, Bian S W, Zhu Quan 2018 Electrochim. Acta 283 1789Google Scholar

    [5]

    Cai Z X, Wang Z L, Kim J, Yamauchi Y 2019 Adv. Mater. 31 1804903Google Scholar

    [6]

    Li L, Liu X, Liu C, Wang H Z, Zhang J, Liang P, Wang H B, Wang H 2018 Electrochim. Acta 259 303Google Scholar

    [7]

    张诚, 邓明森, 蔡绍洪 2017 66 128201Google Scholar

    Zang C, Deng M S, Cai S H 2017 Acta Phys. Sin. 66 128201Google Scholar

    [8]

    Xiao P W, Meng Q H, Zhao L, Li J J, Wei Z X, Han B H 2017 Mater. Des. 129 164Google Scholar

    [9]

    Liu D, Du P C, Wei W L, Wang H X, Liu P 2018 J. Colloid. Interface Sci. 513 295Google Scholar

    [10]

    冯艳艳, 李彦杰, 杨文, 牛潇迪 2020 化工进展 39 2734

    Feng Y Y, Li Y J, Yang W, Niu X D 2020 Chem. Ind. Eng. Prog. 39 2734

    [11]

    Ryu I, Yang M H, Kwon H, Park H K, Do Y R, Lee S B, Yim S 2014 Langmuir 30 1704Google Scholar

    [12]

    Shi P P, Li L, Hua L, Qian Q Q, Wang P F, Zhou J Y, Sun G Z, Huang W 2017 ACS Nano 11 444Google Scholar

    [13]

    Shen K W, Ran F, Zhang X X, Liu C, Wang N J, Niu X Q, Liu Y, Zhang D J, Kong L B, Kang L, Chen S W 2015 Synth. Met. 209 369Google Scholar

    [14]

    Nanwani A, Deshmukh K A, Sivaraman P, Peshwe D R, Sharma I, Dhoble S J, Swart H C, Deshmukh A D, Gupta B K 2019 Npj 2 D Mater. Appl. 3 1Google Scholar

    [15]

    Xuan X Y, Qian M, Han L, Wan L J, Li Y Q, Lu T, Pan L K, Niu Y P, Gong S Q 2019 Electrochim. Acta 321 134710Google Scholar

    [16]

    冯艳艳, 黄宏斌, 张心桔, 易亚军, 杨文 2017 66 248202Google Scholar

    Feng Y Y, Huang H b, Zhang X J, Yi Y J, Yang W 2017 Acta Phys. Sin. 66 248202Google Scholar

    [17]

    Huang Q, Liu K Y, He F, Zhang S R, Xie Q L, Chen C 2017 Trans. Nonferrous Met. Soc. 27 1804Google Scholar

    [18]

    Huang W G, Zhang A T, Li X R, Tian J M, Yue L J, Cui L, Zheng R K, Wei D, Liu J Q 2019 J. Power Sources 440 227123Google Scholar

    [19]

    Xu J, Ma C J, Cao J Y, Chen Z D 2017 Dalton Trans. 46 3276Google Scholar

    [20]

    Xiao Z Y, Bao Y X, Li Z J, Huai X D, Wang M H, Liu P, Wang L 2019 ACS Appl. Energy Mater. 2 1086Google Scholar

    [21]

    Yang Z, Wang X M, Zhang H, Yan S H, Zhang C, Liu S X 2019 ChemElectroChem 6 4456Google Scholar

    [22]

    Cheng C, Wei C Z, He Y Y, Liu L Y, Hu J Y, Du W M 2021 J. Energy Storage 33 102105Google Scholar

    [23]

    Li X Y, Yu L, Wang G L, Wan G P, Peng X G, Wang K, Wang G Z 2017 Electrochim. Acta 255 15Google Scholar

    [24]

    Xiao Z Y, Mei Y J, Yuan S, Mei H, Xu B, Bao Y X, Fan L L, Kang W P, Dai F N, Wang R, Wang L, Hu S Q, Sun D F, Zhou H C 2019 ACS Nano 13 7024Google Scholar

    [25]

    Xu Y Q, Hou S J, Yang G, Wang X J, Lu T, Pan L K 2018 Electrochim. Acta 285 192Google Scholar

    [26]

    Yu L, Hu H, Wu H B, Lou X W 2017 Adv. Mater. 29 1604563Google Scholar

    [27]

    Hu H, Guan B Y, Xia B Y, Lou X W 2015 J. Am. Chem. Soc. 137 5590Google Scholar

    [28]

    Liu D, Wan J W, Pang G S, Tang Z Y 2019 Adv. Mater. 31 1803291Google Scholar

    [29]

    Rashti A, Lu X, Dobson A, Hassani E, Feyzbar-Khalkhali-Nejad F, He K, Oh T S 2021 ACS Appl. Energy Mater. 4 1537Google Scholar

    [30]

    Liu K, Yu M L, Wang H Y, Wang J, Liu W P, Hoffmann M R 2019 Environ. Sci. Technol. 53 6474Google Scholar

    [31]

    Zhu Y Y, Zhou Y N, Zhang X, Sun Z G, Jiao C Q 2021 Adv. Opt. Mater. 9 2001889Google Scholar

    [32]

    Li R, Che R, Liu Q, Su S Z, Li Z S, Zhang H S, Liu J Y, Liu L H, Wang J 2017 J. Hazard. Mater. 338 167Google Scholar

    [33]

    Song X K, Jiang Y, Cheng F, Earnshaw J, Na J, Li X P, Yamauchi Y 2021 Small 17 2004142Google Scholar

    [34]

    Hou S Y, Lian Y, Bai Y Q, Zhou Q P, Ban C L, Wang Z F, Zhao J, Zhang H H 2020 Electrochim. Acta 341 136053Google Scholar

    [35]

    Wu H, Zhang Y N, Yuan W Y, Zhao Y X, Luo S H, Yuan X W, Zheng L X, Cheng L F 2018 J. Mater. Chem. A 6 16617Google Scholar

    [36]

    Wang D, Tian L Y, Li D W, Xu Y, Wei Q F 2020 J. Electroanal. Chem. 873 114377Google Scholar

    [37]

    Liu Y X, Wang Y Z, Shi C J, Chen Y J, Li D, He Z F, Wang C, Guo L, Ma J M 2020 Carbon 165 129Google Scholar

    [38]

    Tahir M. U, Arshad H, Xie W Y, Wang X L, Nawaz M, Yang C, Su X T 2020 Appl. Surf. Sci. 529 147073Google Scholar

    [39]

    Chu H L, Zhu Y, Fang T T, Hua J Q, Qiu S J, Liu H D, Qin L Y, Wei Q H, Zou Y J, Xiang C L, Xu F, Sun L X 2020 Sustainable Energy Fuel 4 337Google Scholar

    [40]

    Zang Y, Luo H, Zhang H, Xue H G 2021 ACS Appl. Energy Mater. 4 1189Google Scholar

    [41]

    Jiang Z, Li Z P, Qin Z H, Sun H Y, Jiao X L, Chen D R 2013 Nanoscale 5 11770Google Scholar

    [42]

    Liu L L, Fang L, Wu F, Hu J, Zhang S F, Luo H J, Hu B S, Zhou M 2020 J. Alloys Compd. 824 153929Google Scholar

    [43]

    Yang F, Chu J, Cheng Y P, Gong J F, Wang X Q, Xiong S X 2021 Chem. Res. Chin. U. 37 772Google Scholar

    [44]

    Wan H Z, Li L, Xu Y, Tan Q Y, Liu X, Zhang J, Wang H B, Wang H 2018 Nanotechnology 29 194003Google Scholar

    [45]

    Li Y L, Li Q, Zhao S H, Chen C, Zhou J J, Tao K, Han L 2018 ChemistrySelect 3 13596Google Scholar

    [46]

    Lv Z J, Zhong Q, Bu Y F 2018 Adv. Mater. Interfaces 5 1800438Google Scholar

    [47]

    DinariI M, Allami H, Momeni M M 2020 Energy Fuel. 35 1831

    [48]

    Wu S H, Zhang J Z, Sun C, Chen J S 2020 J. Inorg. Organomet. Polym. 30 3179Google Scholar

  • [1] Shao Chun-Rui, Li Hai-Yang, Wang Jun, Xia Guo-Dong. Thermal rectification enhancement based on porous structure in bulk materials. Acta Physica Sinica, 2021, 70(23): 236501. doi: 10.7498/aps.70.20211285
    [2] Fabrication and electrochemical properties of hollow cage-like nickel cobalt layered hydroxides with porous structure. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211100
    [3] Jing Qi, Li Xiao-Juan. Preparation of porous barium titanate ceramics and enhancement of piezoelectric sensitivity. Acta Physica Sinica, 2019, 68(5): 057701. doi: 10.7498/aps.68.20181790
    [4] Bai Chun-Jiang, Feng Guo-Bao, Cui Wan-Zhao, He Yong-Ning, Zhang Wen, Hu Shao-Guang, Ye Ming, Hu Tian-Cun, Huang Guang-Sun, Wang Qi. Suppressing second electron yield based on porous anodic alumina. Acta Physica Sinica, 2018, 67(3): 037902. doi: 10.7498/aps.67.20172243
    [5] Zhang Cheng, Deng Ming-Sen, Cai Shao-Hong. Co3O4 mesoporous nanostructure supported by Ni foam as high-performance supercapacitor electrodes. Acta Physica Sinica, 2017, 66(12): 128201. doi: 10.7498/aps.66.128201
    [6] Feng Yan-Yan, Huang Hong-Bin, Zhang Xin-Ju, Yi Ya-Jun, Yang Wen. Synthesis and electrochemical properties of Ni-Co layered double hydroxides with high performance. Acta Physica Sinica, 2017, 66(24): 248202. doi: 10.7498/aps.66.248202
    [7] Wang Fan, Li Yu-Dong, Guo Qi, Wang Bo, Zhang Xing-Yao, Wen Lin, He Cheng-Fa. Total ionizing dose radiation effects in foue-transistor complementary metal oxide semiconductor image sensors. Acta Physica Sinica, 2016, 65(2): 024212. doi: 10.7498/aps.65.024212
    [8] Meng Dai-Yi, Shen Lan-Xian, Li De-Cong, Shai Xu-Xia, Deng Shu-Kang. Structural and electrical transport properties of Mg-doped n-type Sn-based type Ⅷ single crystalline clathrate. Acta Physica Sinica, 2014, 63(17): 177401. doi: 10.7498/aps.63.177401
    [9] Zhu Xu-Fei, Han Hua, Song Ye, Ma Hong-Tu, Qi Wei-Xing, Lu Chao, Xu Chen. Forming efficiency of porous anodic oxide and formation mechanism of nanopores. Acta Physica Sinica, 2012, 61(22): 228202. doi: 10.7498/aps.61.228202
    [10] Sun Peng, Hu Ming, Liu Bo, Sun Feng-Yun, Xu Lu-Jia. Electrical properties of the metal/porous silicon/Si(M/PS/Si) microstructure. Acta Physica Sinica, 2011, 60(5): 057303. doi: 10.7498/aps.60.057303
    [11] Deng Shu-Kang, Tang Xin-Feng, Yang Pei-Zhi, Yan Yong-Gao. Structure and thermoelectric properties of p-type Ge-based Ba8Ga16CdxGe30-x type-Ⅰ clathrates doping by Cd. Acta Physica Sinica, 2009, 58(6): 4274-4280. doi: 10.7498/aps.58.4274
    [12] Cao Wei-Qiang, Deng Shu-Kang, Tang Xin-Feng, Li Peng. The effects of melt spinning process on microstructure and thermoelectric properties of Zn-doped type-I clathrates. Acta Physica Sinica, 2009, 58(1): 612-618. doi: 10.7498/aps.58.612
    [13] Wang Lei, Yang De-Ren. The structure study for Si80 cages. Acta Physica Sinica, 2009, 58(4): 2590-2593. doi: 10.7498/aps.58.2590
    [14] Zhang Wei-Jia, Wang Tian-Min. Study of indium trihydroxide In (OH)Zr3 for ITO. Acta Physica Sinica, 2004, 53(6): 1923-1929. doi: 10.7498/aps.53.1923
    [15] CHEN ZHEN-PING, ZHANG JIN-CANG, CHENG GUO-SHENG, LI XI-GUI, ZHANG XUN-SHENG. STUDY OF THE SYNTHESIS PROCESS AND STRUCTURAL DEFECTS IN Y-123 SUPERCONDUCTING SYSTEMS BY POSITRON EXPERIMENT. Acta Physica Sinica, 2001, 50(3): 550-555. doi: 10.7498/aps.50.550
    [16] LIAN GUI-JUN, LI MEI-YA, KANG JIN-FENG, GUO JIAN-DONG, SUN YUN-FENG, XIONG GUANG-CHENG. EPITAXIAL GROWTH OF PEROVSKITE OXIDE THIN FILMS. Acta Physica Sinica, 1999, 48(10): 1917-1922. doi: 10.7498/aps.48.1917
    [17] QIU YUAN-WU, ZHANG BO, LIU JIAN-CHENG. ELECTRONIC STRUCTURES OF VACANCIES AND IMPURITIES IN CUBIC YTTRIA STABILIZED ZIRCONIA CRYSTALS. Acta Physica Sinica, 1993, 42(8): 1297-1303. doi: 10.7498/aps.42.1297
    [18] CAO ZHONG-SHENG, XU MING, ZHAO ZHONG-XIAN. LOW TEMPERATURE RESISTIVITY OF METALLIC GLASSES (Cu1-xNix)33 Zr67. Acta Physica Sinica, 1988, 37(7): 1167-1171. doi: 10.7498/aps.37.1167
    [19] ZHAO JI-LIANG, LUO YUAN-SU, HUANG SHENG-TAO. INVESTIGATION OF STRUCTURE RELAXATION IN Co-Ni-Fe BASE METAL GLASSES BY X-RAY SCATTERING. Acta Physica Sinica, 1983, 32(1): 15-24. doi: 10.7498/aps.32.15
    [20] WANG YUNG-CHIANG. THE FORMATION ENERGY OF VACANCY OF METAL. Acta Physica Sinica, 1959, 15(9): 469-474. doi: 10.7498/aps.15.469
Metrics
  • Abstract views:  6781
  • PDF Downloads:  141
  • Cited By: 0
Publishing process
  • Received Date:  10 June 2021
  • Accepted Date:  27 August 2021
  • Available Online:  24 December 2021
  • Published Online:  05 January 2022

/

返回文章
返回
Baidu
map