搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MoS2/沸石咪唑酯骨架-67异质结构提高SERS检测性能的研究

李滨江 张禹晨 李威 王雪华

引用本文:
Citation:

基于MoS2/沸石咪唑酯骨架-67异质结构提高SERS检测性能的研究

李滨江, 张禹晨, 李威, 王雪华

Investigation on Improving SERS Detection Performance Based on MoS2/Zeolitic Imidazolate Framework-67 Heterostructure

LI Binjiang, ZHANG Yuchen, LI Wei, WANG Xuehua
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 地球上丰富的二硫化钼(MoS2)作为一种有前景的表面增强拉曼光谱(SERS)基底引起了人们的广泛关注,但由于其半导体特性而限制了其发展。因此,本文设计了一种MoS2/沸石咪唑酯骨架-67(ZIF-67)异质结构作为SERS基底,该基底具有优异的灵敏度,增强因子可达6.68×106。此外,利用MoS2/ZIF-67对胆红素进行无标记检测,检测限低至10-10 M。同时,该基底暴露在空气中4个月后,SERS性能基本保持不变,也表明该基底具有较高的稳定性和可重复使用性。该基底优秀的性能主要是由于MoS2的垂直分布结构能暴露出更多的活性位点。同时,ZIF-67具有较大的比表面积和丰富的孔洞结构,这也为分子提供了大量的吸附位点。此外,内部电荷转移诱导了高比例稳定1T相的形成,从而提高了电导率。本文为合理设计用于高灵敏SERS检测的无贵金属材料提供了有价值的参考。
    Earth-abundant molybdenum disulfide (MoS2) has attracted considerable attention as a promising substrate for surface-enhanced Raman spectroscopy (SERS). Naturally occurring MoS2 primarily exists in the semiconducting 2H phase, but its SERS performance is limited because active sites are typically confined to its edges. Furthermore, the irregular agglomeration of MoS2 can lead to performance degradation, rendering the natural semiconducting material unsuitable for practical applications. Therefore, enhancing the performance of MoS2 in the field of SERS is of crucial importance. Metal-organic frameworks (MOFs) are ideal materials for building efficient SERS substrates due to their tunable pore structures. Among various MOF materials, zeolitic imidazolate frameworks (ZIFs) have garnered significant interest owing to their well-defined polyhedral structures, homogeneity, and small particle sizes. Therefore, this study fabricated a MoS2/zeolitic imidazolate framework-67 (ZIF-67) heterostructure by the hydrothermal method as a SERS substrate, which exhibits exceptional sensitivity with an enhancement factor of up to 6.68×106 for rhodamine 6G. Moreover, the SERS performance remained almost unchanged after four months of exposure to air, demonstrating high stability and reusability. To evaluate the actual detection ability of this substrate, bilirubin was selected as the analyte, which is a clinically relevant metabolic waste. Since both high and low concentrations of free bilirubin can contribute to cardiovascular and cerebrovascular diseases, accurate monitoring of bilirubin levels is crucial for diagnosing bilirubin-induced disorders. Using the MoS2/ZIF-67 substrate, label-free detection of bilirubin was achieved with a limit of detection (LOD) as low as 10-10 M. The outstanding performance of this substrate can be attributed to the vertically aligned MoS2 nanostructure, which exposes more active sites. Additionally, ZIF-67 provides a high specific surface area and abundant porous structures, offering numerous adsorption sites for target molecules. Furthermore, internal charge transfer facilitates the formation of a highly conductive 1T phase, thereby improving electrical conductivity. This work provides valuable insights into the rational design of noble-metal-free materials for highly sensitive SERS detection.
  • [1]

    Odum E P 1969Science 164 262

    [2]

    Guo Y, Liu Y 2022J. Geogr. Sci. 32 23

    [3]

    Zhang Y, Gao F, Wang D, Li Z, Wang X, Wang C, Zhang K, Du Y 2023Coordin. Chem. Rev. 475 214916

    [4]

    Li Y, Zhang J, Chen Q, Xia X, Chen M 2021Adv. Mater. 33 2100855

    [5]

    Hou H, Anichini C, Samorì P, Criado A, Prato M 2022Adv. Funct. Mater. 32 2207065

    [6]

    Li J, Chen C, Lv Z, Ma W, Wang M, Li Q, Dang J 2023J. Mater. Sci. Technol. 145 74

    [7]

    Gong C, Li W, Lei Y, He X, Chen H, Du X, Fang W, Wang D, Zhao L 2022Compos. Pt. B-Eng. 236 109823

    [8]

    Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Rüetschi A-S, Jaccard D, Gabay M, Muller D A, Triscone J-M, Mannhart J 2007Science 317 1196

    [9]

    Ohtomo A, Hwang H Y 2004Nature 427 423

    [10]

    Chen W, Zhu X, Wang R, Wei W, Liu M, Dong S, Ostrikov K K, Zang S-Q 2022J. Energy Chem. 75 16

    [11]

    Xia T, Zhou L, Gu S, Gao H, Ren X, Li S, Wang R, Guo H 2021Mater. Des. 211 110165

    [12]

    Wang H, Niu Z, Peng Z, Wu X, Gao C, Zhao S, Kim Y D, Wu H, Du X, Liu Z, Li B 2022ACS Appl. Mater. Interfaces 14 9116

    [13]

    Xu H, Zhu J, Ma Q, Ma J, Bai H, Chen L, Mu S 2021Micromachines 12 240

    [14]

    Cao Y 2021ACS Nano 15 11014

    [15]

    He H, Li X, Huang D, Luan J, Liu S, Pang W K, Sun D, Tang Y, Zhou W, He L, Zhang C, Wang H, Guo Z 2021ACS Nano 15 8896

    [16]

    Peng H, Zhou K, Jin Y, Zhang Q, Liu J, Wang H 2022Chem. Eng. J. 429 132477

    [17]

    Wang H, Fu W, Yang X, Huang Z, Li J, Zhang H, Wang Y 2020J. Mater. Chem. A 8 6926

    [18]

    Huang Z, Yuan S, Zhang T, Cai B, Xu B, Lu X, Fan L, Dai F, Sun D 2020Appl. Catal. B-Environ. 272 118976

    [19]

    Zhang X, Zhang S, Tang Y, Huang X, Pang H 2022Compos. Pt. B-Eng. 230 109532

    [20]

    Yang J, Zhang C, Niu Y, Huang J, Qian X, Wong K-Y 2021Chem. Eng. J. 409 128293

    [21]

    Wu Y, Wang Z, Liang M, Cheng H, Li M, Liu L, Wang B, Wu J, Prasad Ghimire R, Wang X, Sun Z, Xue S, Qiao Q 2018ACS Appl. Mater. Interfaces 10 17883

    [22]

    Zhou L, Zhuang Z, Zhao H, Lin M, Zhao D, Mai L 2017Adv. Mater. 29 1602914

    [23]

    Quan Y, Li J, Hu M, Wei M, Yang J, Gao M, Liu Y 2022Appl. Surf. Sci. 598 153750

    [24]

    Li M, Cai B, Tian R, Yu X, Breese M B H, Chu X, Han Z, Li S, Joshi R, Vinu A, Wan T, Ao Z, Yi J, Chu D 2021Chem. Eng. J. 409 128158

    [25]

    Xu J, Cheng C, Shang S, Gao W, Zeng P, Jiang S 2020ACS Appl. Mater. Interfaces 12 49452

    [26]

    Li Q, Huang F, Li S, Zhang H, Yu X 2022Small 18 2104323

    [27]

    Sundara Venkatesh P, Kannan N, Ganesh Babu M, Paulraj G, Jeganathan K 2022Int. J. Hydrog. Energy 47 37256

    [28]

    Xu J, Shang S, Gao W, Zeng P, Jiang S 2021Cellulose 28 7389

    [29]

    Chen Y, Meng G, Yang T, Chen C, Chang Z, Kong F, Tian H, Cui X, Hou X, Shi J 2022Chem. Eng. J. 450 138157

    [30]

    Rafiei S, Tangestaninejad S, Horcajada P, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Kardanpour R, Zadehahmadi F 2018Chem. Eng. J. 334 1233

    [31]

    Chang J, Wang Y, Chen L, Wu D, Xu F, Bai Z, Jiang K, Gao Z 2020Int. J. Hydrog. Energy 45 12787

    [32]

    Hou B, Wu J 2020Dalton Trans. 49 17621

    [33]

    Leng X, Wang Y, Wang F 2019Adv. Mater. Interfaces 6 1900010

    [34]

    Mohammadpour E, Asadpour-Zeynali K 2020Microchem J. 157 104939

    [35]

    Hou X, Zhou H, Zhao M, Cai Y, Wei Q 2020ACS Sustainable Chem. Eng. 8 5724

    [36]

    Liu Z, Gao Z, Liu Y, Xia M, Wang R, Li N 2017ACS Appl. Mater. Interfaces 9 25291

    [37]

    Li X, Lv X, Li N, Wu J, Zheng Y-Z, Tao X 2019Appl. Catal. B-Environ. 243 76

    [38]

    Mu X, Zhu Y, Gu X, Dai S, Mao Q, Bao L, Li W, Liu S, Bao J, Mu S 2021J. Energy Chem. 62 546

    [39]

    Lei Z, Zhan J, Tang L, Zhang Y, Wang Y 2018Adv. Energy Mater. 8 1703482

    [40]

    Gao B, Zhao Y, Du X, Li D, Ding S, Li Y, Xiao C, Song Z 2021Chem. Eng. J. 411 128567

    [41]

    Kochat V, Apte A, Hachtel J A, Kumazoe H, Krishnamoorthy A, Susarla S, Idrobo J C, Shimojo F, Vashishta P, Kalia R, Nakano A, Tiwary C S, Ajayan P M 2017Adv. Mater. 29 1703754

    [42]

    Sim D M, Han H J, Yim S, Choi M-J, Jeon J, Jung Y S 2017ACS Omega 2 4678

    [43]

    Nguyen D C, Tran D T, Doan T L L, Kim D H, Kim N H, Lee J H 2020Adv. Energy Mater. 10 1903289

    [44]

    Zhu H, Zhang J, Yanzhang R, Du M, Wang Q, Gao G, Wu J, Wu G, Zhang M, Liu B, Yao J, Zhang X 2015Adv. Mater. 27 4752

    [45]

    Solomon G, Landström A, Mazzaro R, Jugovac M, Moras P, Cattaruzza E, Morandi V, Concina I, Vomiero A 2021Adv. Energy Mater. 11 2101324

    [46]

    Ganesan P, Sivanantham A, Shanmugam S 2018J. Mater. Chem. A 6 1075

    [47]

    Li W, Liu J, Guo P, Li H, Fei B, Guo Y, Pan H, Sun D, Fang F, Wu R 2021Adv. Energy Mater. 11 2102134

    [48]

    Sun H, Yao M, Song Y, Zhu L, Dong J, Liu R, Li P, Zhao B, Liu B 2019Nanoscale 11 21493

    [49]

    Wang X, Han Y, Liu Y, Yu Y, Ma J, Yang T, Hu J, Huang H 2023Int. J. Hydrog. Energy 48 3048

    [50]

    Wang Y, Zeng C, Zhang Y, Su R, Yang D, Wang Z, Wu Y, Pan H, Zhu W, Hu W, Liu H, Yang R 2022Mater. Today Phys. 22 100600

    [51]

    Sun S, Zheng J, Sun R, Wang D, Sun G, Zhang X, Gong H, Li Y, Gao M, Li D, Xu G, Liang X 2022Nanomaterials 12 896

    [52]

    Gupta J D, Jangra P, Mishra A K 2025ACS Appl. Nano Mater. 8 7449

    [53]

    Lombardi J R, Birke R L 2014J. Phys. Chem. C 118 11120

  • [1] 戴硕, 李振, 张超, 郁菁, 赵晓菲, 吴阳, 满宝元. 竖直取向MoS2纳米片复合Ag基底的表面增强拉曼光谱效应及机制.  , doi: 10.7498/aps.74.20241671
    [2] 田金朋, 王硕培, 时东霞, 张广宇. 垂直短沟道二硫化钼场效应晶体管.  , doi: 10.7498/aps.71.20220738
    [3] 吴帆帆, 季怡汝, 杨威, 张广宇. 二硫化钼的电子能带结构和低温输运实验进展.  , doi: 10.7498/aps.71.20220015
    [4] 杨文, 丁倩瑶, 翟冬梅, 薄开雯, 冯艳艳, 文婕, 何方. 中空笼状多孔结构镍钴层状氢氧化物的制备及其电化学性能.  , doi: 10.7498/aps.71.20211100
    [5] 蒋黎英, 易颖婷, 易早, 杨华, 李治友, 苏炬, 周自刚, 陈喜芳, 易有根. 基于单层二硫化钼的高品质因子、高品质因数的四波段完美吸收器.  , doi: 10.7498/aps.70.20202163
    [6] 刘凯龙, 彭冬生. 拉伸应变对单层二硫化钼光电特性的影响.  , doi: 10.7498/aps.70.20210816
    [7] 武敏, 费宏明, 林瀚, 赵晓丹, 杨毅彪, 陈智辉. 基于二维六方氮化硼材料的光子晶体非对称传输异质结构设计.  , doi: 10.7498/aps.70.20200741
    [8] 杜建宾, 冯志芳, 张倩, 韩丽君, 唐延林, 李奇峰. 外电场作用下MoS2的分子结构和电子光谱.  , doi: 10.7498/aps.68.20190781
    [9] 孟凡, 胡劲华, 王辉, 邹戈胤, 崔建功, 赵乐. 等离子体谐振腔对二硫化钼的荧光增强效应.  , doi: 10.7498/aps.68.20191121
    [10] 刘乐, 汤建, 王琴琴, 时东霞, 张广宇. 石墨烯封装单层二硫化钼的热稳定性研究.  , doi: 10.7498/aps.67.20181255
    [11] 张新成, 廖文虎, 左敏. 非共振圆偏振光作用下单层二硫化钼电子结构及其自旋/谷输运性质.  , doi: 10.7498/aps.67.20180213
    [12] 危阳, 马新国, 祝林, 贺华, 黄楚云. 二硫化钼/石墨烯异质结的界面结合作用及其对带边电位影响的理论研究.  , doi: 10.7498/aps.66.087101
    [13] 李明林, 万亚玲, 胡建玥, 王卫东. 单层二硫化钼力学性能温度和手性效应的分子动力学模拟.  , doi: 10.7498/aps.65.176201
    [14] 张理勇, 方粮, 彭向阳. 单层二硫化钼多相性质及相变的第一性原理研究.  , doi: 10.7498/aps.65.127101
    [15] 张理勇, 方粮, 彭向阳. 金衬底调控单层二硫化钼电子性能的第一性原理研究.  , doi: 10.7498/aps.64.187101
    [16] 傅重源, 邢淞, 沈涛, 邰博, 董前民, 舒海波, 梁培. 水热法合成纳米花状二硫化钼及其微观结构表征.  , doi: 10.7498/aps.64.016102
    [17] 魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅. Au的金属颗粒对二硫化钼发光增强.  , doi: 10.7498/aps.63.217802
    [18] 董海明. 低温下二硫化钼电子迁移率研究.  , doi: 10.7498/aps.62.206101
    [19] 张阳, 顾书林, 叶建东, 黄时敏, 顾然, 陈斌, 朱顺明, 郑有炓. ZnMgO/ZnO异质结构中二维电子气的研究.  , doi: 10.7498/aps.62.150202
    [20] 吴木生, 徐波, 刘刚, 欧阳楚英. 应变对单层二硫化钼能带影响的第一性原理研究.  , doi: 10.7498/aps.61.227102
计量
  • 文章访问数:  24
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-04-24

/

返回文章
返回
Baidu
map