-
地球上丰富的二硫化钼(MoS2)作为一种有前景的表面增强拉曼光谱(SERS)基底引起了人们的广泛关注,但由于其半导体特性而限制了其发展。因此,本文设计了一种MoS2/沸石咪唑酯骨架-67(ZIF-67)异质结构作为SERS基底,该基底具有优异的灵敏度,增强因子可达6.68×106。此外,利用MoS2/ZIF-67对胆红素进行无标记检测,检测限低至10-10 M。同时,该基底暴露在空气中4个月后,SERS性能基本保持不变,也表明该基底具有较高的稳定性和可重复使用性。该基底优秀的性能主要是由于MoS2的垂直分布结构能暴露出更多的活性位点。同时,ZIF-67具有较大的比表面积和丰富的孔洞结构,这也为分子提供了大量的吸附位点。此外,内部电荷转移诱导了高比例稳定1T相的形成,从而提高了电导率。本文为合理设计用于高灵敏SERS检测的无贵金属材料提供了有价值的参考。Earth-abundant molybdenum disulfide (MoS2) has attracted considerable attention as a promising substrate for surface-enhanced Raman spectroscopy (SERS). Naturally occurring MoS2 primarily exists in the semiconducting 2H phase, but its SERS performance is limited because active sites are typically confined to its edges. Furthermore, the irregular agglomeration of MoS2 can lead to performance degradation, rendering the natural semiconducting material unsuitable for practical applications. Therefore, enhancing the performance of MoS2 in the field of SERS is of crucial importance. Metal-organic frameworks (MOFs) are ideal materials for building efficient SERS substrates due to their tunable pore structures. Among various MOF materials, zeolitic imidazolate frameworks (ZIFs) have garnered significant interest owing to their well-defined polyhedral structures, homogeneity, and small particle sizes. Therefore, this study fabricated a MoS2/zeolitic imidazolate framework-67 (ZIF-67) heterostructure by the hydrothermal method as a SERS substrate, which exhibits exceptional sensitivity with an enhancement factor of up to 6.68×106 for rhodamine 6G. Moreover, the SERS performance remained almost unchanged after four months of exposure to air, demonstrating high stability and reusability. To evaluate the actual detection ability of this substrate, bilirubin was selected as the analyte, which is a clinically relevant metabolic waste. Since both high and low concentrations of free bilirubin can contribute to cardiovascular and cerebrovascular diseases, accurate monitoring of bilirubin levels is crucial for diagnosing bilirubin-induced disorders. Using the MoS2/ZIF-67 substrate, label-free detection of bilirubin was achieved with a limit of detection (LOD) as low as 10-10 M. The outstanding performance of this substrate can be attributed to the vertically aligned MoS2 nanostructure, which exposes more active sites. Additionally, ZIF-67 provides a high specific surface area and abundant porous structures, offering numerous adsorption sites for target molecules. Furthermore, internal charge transfer facilitates the formation of a highly conductive 1T phase, thereby improving electrical conductivity. This work provides valuable insights into the rational design of noble-metal-free materials for highly sensitive SERS detection.
-
Keywords:
- SERS /
- MoS2 /
- ZIF-67 /
- Heterostructure
-
[1] Odum E P 1969Science 164 262
[2] Guo Y, Liu Y 2022J. Geogr. Sci. 32 23
[3] Zhang Y, Gao F, Wang D, Li Z, Wang X, Wang C, Zhang K, Du Y 2023Coordin. Chem. Rev. 475 214916
[4] Li Y, Zhang J, Chen Q, Xia X, Chen M 2021Adv. Mater. 33 2100855
[5] Hou H, Anichini C, Samorì P, Criado A, Prato M 2022Adv. Funct. Mater. 32 2207065
[6] Li J, Chen C, Lv Z, Ma W, Wang M, Li Q, Dang J 2023J. Mater. Sci. Technol. 145 74
[7] Gong C, Li W, Lei Y, He X, Chen H, Du X, Fang W, Wang D, Zhao L 2022Compos. Pt. B-Eng. 236 109823
[8] Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Rüetschi A-S, Jaccard D, Gabay M, Muller D A, Triscone J-M, Mannhart J 2007Science 317 1196
[9] Ohtomo A, Hwang H Y 2004Nature 427 423
[10] Chen W, Zhu X, Wang R, Wei W, Liu M, Dong S, Ostrikov K K, Zang S-Q 2022J. Energy Chem. 75 16
[11] Xia T, Zhou L, Gu S, Gao H, Ren X, Li S, Wang R, Guo H 2021Mater. Des. 211 110165
[12] Wang H, Niu Z, Peng Z, Wu X, Gao C, Zhao S, Kim Y D, Wu H, Du X, Liu Z, Li B 2022ACS Appl. Mater. Interfaces 14 9116
[13] Xu H, Zhu J, Ma Q, Ma J, Bai H, Chen L, Mu S 2021Micromachines 12 240
[14] Cao Y 2021ACS Nano 15 11014
[15] He H, Li X, Huang D, Luan J, Liu S, Pang W K, Sun D, Tang Y, Zhou W, He L, Zhang C, Wang H, Guo Z 2021ACS Nano 15 8896
[16] Peng H, Zhou K, Jin Y, Zhang Q, Liu J, Wang H 2022Chem. Eng. J. 429 132477
[17] Wang H, Fu W, Yang X, Huang Z, Li J, Zhang H, Wang Y 2020J. Mater. Chem. A 8 6926
[18] Huang Z, Yuan S, Zhang T, Cai B, Xu B, Lu X, Fan L, Dai F, Sun D 2020Appl. Catal. B-Environ. 272 118976
[19] Zhang X, Zhang S, Tang Y, Huang X, Pang H 2022Compos. Pt. B-Eng. 230 109532
[20] Yang J, Zhang C, Niu Y, Huang J, Qian X, Wong K-Y 2021Chem. Eng. J. 409 128293
[21] Wu Y, Wang Z, Liang M, Cheng H, Li M, Liu L, Wang B, Wu J, Prasad Ghimire R, Wang X, Sun Z, Xue S, Qiao Q 2018ACS Appl. Mater. Interfaces 10 17883
[22] Zhou L, Zhuang Z, Zhao H, Lin M, Zhao D, Mai L 2017Adv. Mater. 29 1602914
[23] Quan Y, Li J, Hu M, Wei M, Yang J, Gao M, Liu Y 2022Appl. Surf. Sci. 598 153750
[24] Li M, Cai B, Tian R, Yu X, Breese M B H, Chu X, Han Z, Li S, Joshi R, Vinu A, Wan T, Ao Z, Yi J, Chu D 2021Chem. Eng. J. 409 128158
[25] Xu J, Cheng C, Shang S, Gao W, Zeng P, Jiang S 2020ACS Appl. Mater. Interfaces 12 49452
[26] Li Q, Huang F, Li S, Zhang H, Yu X 2022Small 18 2104323
[27] Sundara Venkatesh P, Kannan N, Ganesh Babu M, Paulraj G, Jeganathan K 2022Int. J. Hydrog. Energy 47 37256
[28] Xu J, Shang S, Gao W, Zeng P, Jiang S 2021Cellulose 28 7389
[29] Chen Y, Meng G, Yang T, Chen C, Chang Z, Kong F, Tian H, Cui X, Hou X, Shi J 2022Chem. Eng. J. 450 138157
[30] Rafiei S, Tangestaninejad S, Horcajada P, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Kardanpour R, Zadehahmadi F 2018Chem. Eng. J. 334 1233
[31] Chang J, Wang Y, Chen L, Wu D, Xu F, Bai Z, Jiang K, Gao Z 2020Int. J. Hydrog. Energy 45 12787
[32] Hou B, Wu J 2020Dalton Trans. 49 17621
[33] Leng X, Wang Y, Wang F 2019Adv. Mater. Interfaces 6 1900010
[34] Mohammadpour E, Asadpour-Zeynali K 2020Microchem J. 157 104939
[35] Hou X, Zhou H, Zhao M, Cai Y, Wei Q 2020ACS Sustainable Chem. Eng. 8 5724
[36] Liu Z, Gao Z, Liu Y, Xia M, Wang R, Li N 2017ACS Appl. Mater. Interfaces 9 25291
[37] Li X, Lv X, Li N, Wu J, Zheng Y-Z, Tao X 2019Appl. Catal. B-Environ. 243 76
[38] Mu X, Zhu Y, Gu X, Dai S, Mao Q, Bao L, Li W, Liu S, Bao J, Mu S 2021J. Energy Chem. 62 546
[39] Lei Z, Zhan J, Tang L, Zhang Y, Wang Y 2018Adv. Energy Mater. 8 1703482
[40] Gao B, Zhao Y, Du X, Li D, Ding S, Li Y, Xiao C, Song Z 2021Chem. Eng. J. 411 128567
[41] Kochat V, Apte A, Hachtel J A, Kumazoe H, Krishnamoorthy A, Susarla S, Idrobo J C, Shimojo F, Vashishta P, Kalia R, Nakano A, Tiwary C S, Ajayan P M 2017Adv. Mater. 29 1703754
[42] Sim D M, Han H J, Yim S, Choi M-J, Jeon J, Jung Y S 2017ACS Omega 2 4678
[43] Nguyen D C, Tran D T, Doan T L L, Kim D H, Kim N H, Lee J H 2020Adv. Energy Mater. 10 1903289
[44] Zhu H, Zhang J, Yanzhang R, Du M, Wang Q, Gao G, Wu J, Wu G, Zhang M, Liu B, Yao J, Zhang X 2015Adv. Mater. 27 4752
[45] Solomon G, Landström A, Mazzaro R, Jugovac M, Moras P, Cattaruzza E, Morandi V, Concina I, Vomiero A 2021Adv. Energy Mater. 11 2101324
[46] Ganesan P, Sivanantham A, Shanmugam S 2018J. Mater. Chem. A 6 1075
[47] Li W, Liu J, Guo P, Li H, Fei B, Guo Y, Pan H, Sun D, Fang F, Wu R 2021Adv. Energy Mater. 11 2102134
[48] Sun H, Yao M, Song Y, Zhu L, Dong J, Liu R, Li P, Zhao B, Liu B 2019Nanoscale 11 21493
[49] Wang X, Han Y, Liu Y, Yu Y, Ma J, Yang T, Hu J, Huang H 2023Int. J. Hydrog. Energy 48 3048
[50] Wang Y, Zeng C, Zhang Y, Su R, Yang D, Wang Z, Wu Y, Pan H, Zhu W, Hu W, Liu H, Yang R 2022Mater. Today Phys. 22 100600
[51] Sun S, Zheng J, Sun R, Wang D, Sun G, Zhang X, Gong H, Li Y, Gao M, Li D, Xu G, Liang X 2022Nanomaterials 12 896
[52] Gupta J D, Jangra P, Mishra A K 2025ACS Appl. Nano Mater. 8 7449
[53] Lombardi J R, Birke R L 2014J. Phys. Chem. C 118 11120
计量
- 文章访问数: 24
- PDF下载量: 1
- 被引次数: 0