-
Supercapacitor is a new-type energy storage device with the promising application prospect, and its development mainly relies on the development of electrode materials. In this work, a series of nickel-cobalt (Ni-Co) layered double hydroxides is synthesized via a simple hydrothermal method by using nickel and cobalt salts with four different anions (including sulfate, chlorate, acetate and nitrate) serving as nickel and cobalt sources. According to the types of salts, the obtained samples are named Ni-Co(SO4), Ni-Co(Cl), Ni-Co(Ac) and Ni-Co(NO3), respectively. The morphology and structure of Ni-Co layered double hydroxide are characterized by X-ray diffraction and scanning electron microscopy (SEM), respectively, and the electrochemical properties of the sample are investigated by CHI660D electrochemical workstation in 2 M KOH aqueous solution. The results demonstrate that the types of nickel and cobalt salts not only affect the morphology and structure of Ni-Co layered double hydroxide, but also significantly influence the electrochemical properties of the sample. The SEM images show that the Ni-Co layered double hydroxide synthesized with nickel sulfate and cobalt sulfate (Ni-Co(SO4)) possesses loose layer structure, which can provide abundant active sites and benefit the diffusion of electrolyte. The electrochemical test results show that the specific capacitances of Ni-Co(SO4), Ni-Co(Cl), Ni-Co(Ac) and Ni-Co(NO3) under a current density of 1 A/g at a potential window of 0.45 V, are 1551.1 F/g, 440.7 F/g, 337.8 F/g and 141.6 F/g respectively. As the current density increases from 1 A/g to 7 A/g, the capacitive retention rates of Ni-Co(SO4), Ni-Co(Cl), Ni-Co(Ac) and Ni-Co(NO3) are kept at 60.1%, 21.7%, 4.6% and 6.0%, respectively. The results of alternating current (AC) impedance test display that the electron transfer resistance follows an increasing trend:R[Ni-Co(SO4)] R[Ni-Co(Cl)] R[Ni-Co(Ac)] R[Ni-Co(NO3)]. The small electron transfer resistance is conducive to excellent capacitance at the high current density. Therefore, the excellent capacitive performance of the sample Ni-Co(SO4) is ascribed to the loose layer structure and low electron transfer resistance. In addition, the cycling stabilities of the samples are investigated by constant current charge-discharge test. The capacitive value of the sample Ni-Co(SO4) declines by 16% for 1000 cycles at a current density of 7 A/g. The capacitance decrease can be ascribed to the damage to the layered structure and the increase of the electron transfer resistance in the multiple constant current charge-discharge processes as shown in the results of SEM and AC impedance before and after cycle. This study provides a foundation for exploiting and utilizing high-performance nickel-cobalt layered double hydroxides as electrode material of supercapacitor.
-
Keywords:
- hydrothermal method /
- double hydroxides /
- specific capacitance
[1] Qu D 2002 J. Power Sources 109 403
[2] Xie L J, Sun G H, Xie L F, Su F Y, Li X M, Liu Z, Kong Q Q, L C X, Li K X, Chen C M 2016 New Carbon Mater. 31 37 (in Chinese) [谢莉婧, 孙国华, 谢龙飞, 苏方远, 李晓明, 刘卓, 孔庆强, 吕春祥, 李开喜, 陈成猛 2016 新型炭材料 31 37]
[3] Rakhi R B, Chen W, Cha D, Alshareef H N 2011 J. Mater. Chem. 21 16197
[4] Jiang J W, Zhang X G, Su L H, Zhang L H, Zhang F 2010 Inorg. Chem. 26 1623 (in Chinese) [蒋健伟, 张校刚, 苏凌浩, 章罗江, 张方 2010 无机化学学报 26 1623]
[5] Guo Q P, Liu X H, Zhao J W, Qin L R 2017 J. Southwest China Norm. Univ. 42 96 (in Chinese) [郭秋萍, 刘晓会, 赵建伟, 秦丽溶 2017 西南师范大学学报 (自然科学版) 42 96]
[6] Zhang L L, Zhao X S 2009 Chem. Soc. Rev. 38 2520
[7] Yang W, Feng Y, Wang N, Yuan H, Xiao D 2015 J. Alloy. Compd. 644 836
[8] Xi D, Chen X M 2013 J. Shanghai Norm. Univ. 42 260 (in Chinese) [奚栋, 陈心满 2013 上海师范大学学报(自然科学版) 42 260]
[9] Yin Y, Liu C, Fan S 2012 J. Phys. Chem. C 116 26185
[10] Yang W, Gao Z, Song N, Zhang Y, Yang Y, Wang J 2014 J. Power Sources 272 915
[11] Giri S, Das C K, Kalra S S 2012 J. Mater. Sci. Res. 1 10
[12] Wu J Z, Lu D D, Zhang R, Zhu Y R, Yang S Y, Zhu R S, Yi T F 2016 Mod. Chem. Ind. 2 80 (in Chinese) [武金珠, 卢丹丹, 张瑞, 朱彦荣, 杨双瑗, 诸荣孙, 伊廷锋 2016 现代化工 2 80]
[13] He J, Wei M, Li B, Kang Y, Evans D G 2007 Interf. Sci. Technol. 38 345
[14] Mavis B, Akinc M 2004 J. Power Sources 134 308
[15] Cao G T, Xue J L, Xia S J, Ni Z M 2016 J. Chin. Ceram. Soc. 44 726 (in Chinese) [曹根庭, 薛继龙, 夏盛杰, 倪哲明 2016 硅酸盐学报 44 726]
[16] Niu Y L, Jin X, Zheng J, Li Z J, Gu Z G, Yan T, Fang Y J 2012 Chin. J. Inorg. Chem. 28 1878
[17] Liu Z, Ma R, Osada M, Iyi N, Ebina Y, Takada K, Sasaki T 2006 J. Am. Chem. Soc. 128 4872
[18] Gao X, L H, Li Z, Xu Q, Liu H, Wang Y, Xia Y 2016 RSC Adv. 6 107278
[19] Yan L, Kong H, Li Z J 2013 Acta Chim. Sin. 71 822 (in Chinese) [严琳, 孔惠, 李在均 2013 化学学报 71 822]
[20] Sun X, Wang G, Sun H, Lu F, Yu M, Lian J 2013 J. Power Sources 238 150
[21] Koilraj P, Srinivasan K 2013 Ind. Eng. Chem. Res. 52 7373
[22] Pang X, Ma Z Q, Zuo L 2009 Acta Phys.-Chim. Sin. 25 2433 (in Chinese) [庞旭, 马正青, 左列 2009 物理化学学报 25 2433]
-
[1] Qu D 2002 J. Power Sources 109 403
[2] Xie L J, Sun G H, Xie L F, Su F Y, Li X M, Liu Z, Kong Q Q, L C X, Li K X, Chen C M 2016 New Carbon Mater. 31 37 (in Chinese) [谢莉婧, 孙国华, 谢龙飞, 苏方远, 李晓明, 刘卓, 孔庆强, 吕春祥, 李开喜, 陈成猛 2016 新型炭材料 31 37]
[3] Rakhi R B, Chen W, Cha D, Alshareef H N 2011 J. Mater. Chem. 21 16197
[4] Jiang J W, Zhang X G, Su L H, Zhang L H, Zhang F 2010 Inorg. Chem. 26 1623 (in Chinese) [蒋健伟, 张校刚, 苏凌浩, 章罗江, 张方 2010 无机化学学报 26 1623]
[5] Guo Q P, Liu X H, Zhao J W, Qin L R 2017 J. Southwest China Norm. Univ. 42 96 (in Chinese) [郭秋萍, 刘晓会, 赵建伟, 秦丽溶 2017 西南师范大学学报 (自然科学版) 42 96]
[6] Zhang L L, Zhao X S 2009 Chem. Soc. Rev. 38 2520
[7] Yang W, Feng Y, Wang N, Yuan H, Xiao D 2015 J. Alloy. Compd. 644 836
[8] Xi D, Chen X M 2013 J. Shanghai Norm. Univ. 42 260 (in Chinese) [奚栋, 陈心满 2013 上海师范大学学报(自然科学版) 42 260]
[9] Yin Y, Liu C, Fan S 2012 J. Phys. Chem. C 116 26185
[10] Yang W, Gao Z, Song N, Zhang Y, Yang Y, Wang J 2014 J. Power Sources 272 915
[11] Giri S, Das C K, Kalra S S 2012 J. Mater. Sci. Res. 1 10
[12] Wu J Z, Lu D D, Zhang R, Zhu Y R, Yang S Y, Zhu R S, Yi T F 2016 Mod. Chem. Ind. 2 80 (in Chinese) [武金珠, 卢丹丹, 张瑞, 朱彦荣, 杨双瑗, 诸荣孙, 伊廷锋 2016 现代化工 2 80]
[13] He J, Wei M, Li B, Kang Y, Evans D G 2007 Interf. Sci. Technol. 38 345
[14] Mavis B, Akinc M 2004 J. Power Sources 134 308
[15] Cao G T, Xue J L, Xia S J, Ni Z M 2016 J. Chin. Ceram. Soc. 44 726 (in Chinese) [曹根庭, 薛继龙, 夏盛杰, 倪哲明 2016 硅酸盐学报 44 726]
[16] Niu Y L, Jin X, Zheng J, Li Z J, Gu Z G, Yan T, Fang Y J 2012 Chin. J. Inorg. Chem. 28 1878
[17] Liu Z, Ma R, Osada M, Iyi N, Ebina Y, Takada K, Sasaki T 2006 J. Am. Chem. Soc. 128 4872
[18] Gao X, L H, Li Z, Xu Q, Liu H, Wang Y, Xia Y 2016 RSC Adv. 6 107278
[19] Yan L, Kong H, Li Z J 2013 Acta Chim. Sin. 71 822 (in Chinese) [严琳, 孔惠, 李在均 2013 化学学报 71 822]
[20] Sun X, Wang G, Sun H, Lu F, Yu M, Lian J 2013 J. Power Sources 238 150
[21] Koilraj P, Srinivasan K 2013 Ind. Eng. Chem. Res. 52 7373
[22] Pang X, Ma Z Q, Zuo L 2009 Acta Phys.-Chim. Sin. 25 2433 (in Chinese) [庞旭, 马正青, 左列 2009 物理化学学报 25 2433]
Catalog
Metrics
- Abstract views: 8304
- PDF Downloads: 294
- Cited By: 0