-
近年来,镍氧化物超导电性备受关注,全球多个科研团队在常压和高压条件下,发现了多种镍氧化物材料的超导电性。来自中国和美国的研究团队通过独立、相异的研究路径,发现了常压下双层Ruddlesden-Popper结构镍氧化物薄膜的高温超导电性,为深入研究高温超导机理提供了全新的平台。中国团队基于自主发展的“强氧化原子逐层外延”技术,制备出具有原子级平滑表面的纯相双层结构镍氧化物超导薄膜。通过原位强氧化处理技术,可在原子级平整的薄膜表面开展ARPES等表面敏感测量,揭示超导相的电子结构特征,为超导微观机理的深入研究提供关键实验基础。通过协同开展晶格结构设计、稀土/碱土元素替代以及界面应力工程调控,我们有望进一步提升该体系的超导转变温度。Recent years have witnessed remarkable progress in nickelate superconductivity, with global teams identifying multiple nickelate superconductors under both ambient and high pressures. U.S. and Chinese research teams independently discovered ambient-pressure superconductivity in Ruddlesden-Popper bilayer nickelate thin films through distinct technical pathways, establishing a novel platform for probing high-temperature superconducting mechanisms. The Chinese team synthesized pure-phase bilayer nickelate films with atomically smooth surfaces using their proprietary Gigantic-Oxidative Atomic-Layer-by-Layer Epitaxy (GOALL-Epitaxy) technique. Enabled by in situ strong oxidation processing, surface sensitive measurements, such as ARPES, can be conducted with these atomically flat films, revealing the electronic structures of the superconducting phase, and promising further in-depth experimental research on superconducting mechanisms. Through synergistic efforts in lattice engineering, rare-earth/alkaline-earth element substitution, and interface strain engineering, this system holds potential for achieving higher superconducting transition temperatures.
-
Keywords:
- High-Temperature Superconductivity /
- Nickelate Thin Film /
- Gigantic-Oxidative Atomic-Layer-by-Layer Epitaxy
-
[1] Kamerlingh Onnes, H. 1991 Through Measurement to Knowledge: The Selected Papers of Heike Kamerlingh Onnes 1853–1926. (Dordrecht: Springer Netherlands) 267.
[2] Bardeen J, Cooper L, Schrieffer J 1957 Phys. Rev. 108, 1175.
[3] McMillan W, 1968 Phys. Rev. 167, 331.
[4] Bednorz J, Müller K 1986 Z. Physik B-Condensed Matter 64, 189.
[5] Uchida S, Takagi H, Kitazawa K, Tanaka S 1987 Jpn. J. Appl. Phys. 26, L1.
[6] Zhao Z, Chen L, Yang Q, Huang Y, Chen G, Tang R, Liu G, Cui C, Chen L, Wang L, Guo S, Li S, Bi J 1987 Chin. Sci. Bull. 32, 412 (in Chinese).
[7] Wu M, Ashburn J, Torng C, Hor P, Meng R, Gao L, Huang Z, Wang Y,Chu C 1987 Phys. Rev. Lett. 58, 908.
[8] Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H, Kamiya T, Hosono H 2006 J. Am. Chem. Soc. 128, 10012.
[9] Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130, 3296.
[10] Chen X, Wu T, Wu G, Liu R, Chen H, Fang D 2008 Nature 453, 761.
[11] Chen G, Li Z, Wu D, Li G, Hu W, Dong J, Zheng P, Luo J, Wang N 2008 Phys. Rev. Lett. 100, 247002.
[12] Ren Z, Lu W, Yang J, Yi W, Shen X, Zheng C, Che G, Dong X, Sun L, Zhou F, Zhao Z 2008 Chin. Phys. Lett. 25, 2215.
[13] Wang Q,Wang Q, Li Z, Zhang W, Zhang Z, Zhang J, Li W, Ding H, Ou Y, Deng P, Chang K, Wen J, Song C, He K, Jia J, Ji S, Wang Y, Wang L, Chen X, Ma X, Xue Q 2012 Chin. Phys. Lett. 29, 037402.
[14] Li D, Lee K, Wang B, Osada M, Crossley S, Lee H, Cui Y, Hikita Y, Hwang H 2019 Nature 572, 624.
[15] Sun H, Huo M, Hu X, Li J, Liu Z, Han Y, Tang L, Mao Z, Yang P, Wang B, Cheng J, Yao D, Zhang G, Wang M 2023 Nature 621, 493.
[16] Zhang Y, Su D, Huang Y, Shan Z, Sun H, Huo M, Ye K, Zhang J, Yang Z, Xu Y, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H 2024 Nat. Phys. 20, 1269.
[17] Wang N, Wang G, Shen X, Hou J, Luo J, Ma X, Yang H, Shi L, Dou J, Feng J, Yang J, Shi Y, Ren Z, Ma H, Yang P, Liu Z, Liu Y, Zhang H, Dong X, Wang Y, Jiang K, Hu J, Nagasaki S, Kitagawa K, Calder S, Yan J, Sun J, Wang B, Zhou R, Uwatoko Y, Cheng J 2024 Nature 634, 579.
[18] Zhu Y, Peng D, Zhang E, Pan B, Chen X, Chen L, Ren H, Liu F, Hao Y, Li N, Xing Z, Lan F, Han J, Wang J, Jia D, Wo H, Gu Y, Gu Y, Ji L, Wang W, Gou H, Shen Y, Ying T, Chen X, Yang W, Cao H, Zheng C, Zeng Q, Guo J, Zhao J 2024 Nature 631, 531.
[19] Lee J, Luo G, Tung I, Chang S, Luo Z, Malshe M, Gadre M, Bhattacharya A, Nakhmanson S, Eastman J, Hong H, Jellinek J, Morgan D, Fong D, Freeland J 2014 Nat. Mater. 13, 879.
[20] Lei Q, Golalikhani M, Davidson B, Liu G, Schlom D, Qiao Q, Zhu Y, Chandrasena R, Yang W, Gray A, Arenholz E, Farrar A, Tenne D, Hu M, Guo J, Singh R, Xi X 2017 npj Quant. Mater. 2, 10.
[21] Zhou X, Zhang X, Yi J, Qin P, Feng Z, Jiang P, Zhong Z, Yan H, Wang X, Chen H, Wu H, Zhang X, Meng Z, Yu X, Breese M, Cao J, Wang J, Jiang C, Liu Z 2021 Adv. Mater. 34, 2106117.
[22] Pan G, Song Q, Segedin D, Jung M, El-Sherif H, Fleck E, Goodge B, Doyle S, Carrizales D, N’Diaye A, Shafer P, Paik H, Kourkoutis L, Baggari I, Botana A, Brooks C, Mundy J 2022 Phys. Rev. Materials 6, 055003.
[23] Gao X, Liu J, Ji Y, Wei L, Xiao W, Hu S, Li L, Gan Y, Chen K, Liao Z 2023 APL Mater. 11, 111109.
[24] Wei W, Vu D, Zhang Z, Walker F, Ahn C 2023 Sci. Adv. 9, eadh3327.
[25] Aggarwal L, Božović I 2024 Materials 17, 2546.
[26] Ding X, Fan Y, Wang X, Li C, An Z, Ye J, Tang S, Lei M, Sun X, Guo N, Chen Z, Sangphet S, Wang Y, Xu H, Peng R, Feng D 2024 Nat. Sci. Rev. 11, nwae194.
[27] Cui T, Choi S, Lin T, Liu C, Wang G, Wang N, Chen S, Hong H, Rong D, Wang Q, Jin Q, Wang J, Gu L, Ge C, Wang C, Cheng J, Zhang Q, Si L, Jin K, Guo E 2024 Commun. Mater. 5, 32.
[28] Liu Y, Ou M, Chu H, Yang H, Li Q, Zhang Y, Wen H 2024 Phys. Rev. Materials 8, 124801.
[29] Ren X, Sutarto R, Wu X, Zhang J, Huang H, Xiang T, Hu J, Comin R, Zhou X, Zhu Z 2025 Commun. Phys. 8, 52.
[30] Chow S, Luo Z, Ariando A 2025 Nature https://doi.org/10.1038/s41586-025-08893-4.
[31] Liu Y, Ou M, Wang Y, Wen H arXiv.2411.16047 [cond-mat.supr-con].
[32] Huo M, Ma P, Huang C, Huang X, Sun H, Wang M arXiv:2501.15929 [cond-mat.supr-con].
[33] Zhong H, Hao B, Wei Y, Zhang Z, Liu R, Huang X, Ni X, Cantarino M, Cao K, Nie Y, Schmitt T, Lu X arXiv:2502.03178 [cond-mat.supr-con].
[34] Xu M, Qiu D, Xu M, Guo Y, Shen C, Yang C, Sun W, Nie Y, Li Z, Xiang T, Qiao L, Xiong J, Li Y arXiv:2502.14633 [cond-mat.supr-con].
[35] Yang M, Wang H, Tang J, Luo J, Wu X, Mao R, Xu W, Zhou G, Dong Z, Feng B, Shi L, Pei Z, Gao P, Chen Z, Li D arXiv:2503.18346 [cond-mat.supr-con].
[36] Zhou G, Huang H, Wang F, Wang H, Yang Q, Nie Z, Lv W, Ding C, Li Y, Lin J, Yue C, Li D, Sun Y, Lin J, Zhang G, Xue Q, Chen Z 2025 Nat. Sci. Rev. 12, nwae429.
[37] Ko E, Yu Y, Liu Y, Bhatt L, Li J, Thampy V, Kuo C, Wang B, Lee Y, Lee K, Lee J, Goodge B, Muller D, Hwang H 2025 Nature 638, 935.
[38] Zhou G, Lv W, Wang H, Nie Z, Chen Y, Li Y, Huang H, Chen W, Sun Y, Xue Q, Chen Z 2025 Nature 640, 641.
[39] Kanai M, Kawai T, Kawai S, Tabata H 1989 Appl. Phys. Lett. 54, 1802.
[40] Kanai M, Kawai T, Kawai S 1991 Appl. Phys. Lett. 58, 771.
[41] Dong Z, Huo M, Li J, Li J, Li P, Sun H, Gu L, Lu Y, Wang M, Wang Y, Chen Z 2024 Nature 630, 847.
[42] Liu Y, Ko E, Tarn Y, Bhatt L, Goodge B, Muller D, Raghu S, Yu Y, Hwang H arXiv:2501.08022 [cond-mat.supr-con].
[43] Wang H, Huang H, Zhou G, Lv W, Yue C, Xu L, Wu X, Nie Z, Chen Y, Sun Y, Chen W, Yuan H, Chen Z, Xue Q arXiv: 2502.18068 [cond-mat.supr-con].
[44] Li P, Zhou G, Lv W, Li Y, Yue C, Huang H, Xu L, Shen J, Miao Y, Song W, Nie Z, Chen Y, Wang H, Chen W, Huang Y, Chen Z, Qian T, Lin J, He J, Sun Y, Chen Z, Xue Q arXiv.2501.09255 [cond-mat.supr-con].
[45] Yue C, Miao J, Huang H, Hua Y, Li P, Li Y, Zhou G, Lv W, Yang Q, Sun H, Sun Y, Lin J, Xue Q, Chen Z, Chen W arXiv:2501.06875 [cond-mat.str-el].
[46] Shen J, Miao Y, Ou Z, Zhou G, Chen Y, Luan R, Sun H, Feng Z, Yong X, Li P, Li Y, Xu L, Lv W, Nie Z, Wang H, Huang H, Sun Y, Xue Q, Chen Z, He J arXiv.2502.17831 [cond-mat.supr-con].
[47] Wang BY, Zhong Y, Abadi S, Liu Y, Yu Y, Zhang X, Wu Y, Wang R, Li J, Tarn Y, Ko EK, Thampy V, Hashimoto M, Lu D, Lee YS, Devereaux TP, Jia C, Hwang HY, Shen ZX arXiv:2504.16372 [cond-mat.supr-con].
[48] Yang H, Zhou Y, Miao G, Rusz J, Yan X, Guzman F, Xu X, Xu X, Aoki T, Zeiger P, Zhu X, Wang W, Guo J, Wu R, Pan X 2024 Nature 635, 332.
[49] Li F, Peng D, Dou J, Guo N, Ma L, Liu C, Wang L, Zhang Y, Luo J, Yang J, Zhang J, Cai W, Cheng J, Zheng Q, Zhou R, Zeng Q, Tao X, Zhang J arXiv:2501.14584 [cond-mat.supr-con].
[50] Li J, Peng D, Ma P, Zhang H, Xing Z, Huang X, Huang C, Huo M, Hu D, Dong Z, Chen X, Xie T, Dong H, Sun H, Zeng Q, Mao H, Wang M arXiv:2404.11369 [cond-mat.supr-con].
[51] Wang Z, Zou C, Lin C, Luo X, Yan H, Yin C, Xu Y, Zhou X, Wang Y, Zhu J 2023 Science 381, 227.
[52] Zhang M, Pei C, Du X, Hu W, Cao Y, Wang Q, Wu J, Li Y, Liu H, Wen C, Zhao Y, Li C, Cao W, Zhu S, Zhang Q, Yu N, Cheng P, Zhang L, Li Z, Zhao J, Chen Y, Guo H, Wu C, Yang F, Yan S, Yang L, Qi Y 2025 Phys. Rev. X 15, 021005.
[53] Shi M, Li Y, Wang Y, Peng D, Yang S, Li H, Fan K, Jiang K, He J, Zeng Q, Song D, Ge B, Xiang Z, Wang Z, Ying J, Wu T, Chen X arXiv:2501.12647 [cond-mat.supr-con].
[54] Zhang E, Peng D, Zhu Y, Chen L, Cui B, Wang X, Wang W, Zeng Q, Zhao J 2025 Phys. Rev. X 15, 021008.
[55] Shi M, Peng D, Fan K, Xing Z, Yang S, Wang Y, Li H, Wu R, Du M, Ge B, Zeng Z, Zeng Q, Ying J, Wu T, Chen X arXiv:2502.01018 [cond-mat.supr-con].
计量
- 文章访问数: 30
- PDF下载量: 2
- 被引次数: 0