Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of cavity configuration parameters on discharge characteristics of capillary discharge based pulsed plasma thruster

Wang Ya-Nan Ren Lin-Yuan Ding Wei-Dong Sun An-Bang Geng Jin-Yue

Citation:

Influence of cavity configuration parameters on discharge characteristics of capillary discharge based pulsed plasma thruster

Wang Ya-Nan, Ren Lin-Yuan, Ding Wei-Dong, Sun An-Bang, Geng Jin-Yue
PDF
HTML
Get Citation
  • Capillary discharge based pulsed plasma thrusters have great prospects of applications in in-orbit maneuvering of micro-nano satellites. In this paper, the influence of different capillary cavity structure parameters on the thruster's energy deposition process, ablation characteristics, output thrust parameters and plasma plume parameters under an energy level of 5 J were studied. The experimental results indicate that the increase of the inner diameter of the capillary cavity will significantly reduce the discharge current density, which leads the deposition energy and equivalent power to decrease; the increase of the cavity length helps to improve the energy transfer efficiency. The influence of cavity structure on the ablation characteristics is reflected in the influence of deposition energy per unit area on the tube wall temperature. When the inner diameter of the capillary increases from 1 mm to 3 mm, the ablation mass decreases significantly, and then the equivalent ablation mass remains approximately unchanged as the inner diameter of the cavity increases further; the ablation mass continues to increase as the capillary length increases, while the ablation mass per unit area continues to decrease. The impulse bit depends on the ablation mass and plasma plume velocity, and the difference in ablation characteristic further affects the plasma in the cavity. The density and equivalent pressure determine the plasma electrothermal acceleration process. The continuous increase in the diameter and length of the capillary cavity will induce the acceleration process to lag behind the discharge and ablation process. And the decrease of the deposited energy impedes the electrothermal acceleration process, which results in the decrease of the impulse bit, specific impulse, and the overall efficiency. Furthermore, the overall efficiency transfer model analysis indicates the influence of the capillary inner diameter on thruster efficiency is mainly reflected in the energy transfer efficiency, and the capillary length change mainly affects the electrothermal acceleration efficiency. The overall efficiency optimization of the thruster needs to start from increasing both energy deposition efficiency and acceleration efficiency.
      Corresponding author: Wang Ya-Nan, yn.wang_ee@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52007147), the China Postdoctoral Science Foundation (Grant No. 2020M683480), and the Advanced Space Propulsion Laboratory of BICE and Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology, China (Grant No. LabASP2020-07).
    [1]

    Levchenko I, Keidar M, Cantrell J, Wu Y L, Kuninaka H, Bazaka K, Xu S Y 2018 Nature 562 185Google Scholar

    [2]

    马定坤, 匡银, 杨新权 2017 空间电子技术 14 42Google Scholar

    Ma D K, Kuang Y, Yang X Q 2017 Space Electron. Technol. 14 42Google Scholar

    [3]

    Esper J, Neeck S, Slavin J A, Wiscombe W, Bauer F H 2003 Acta Astronaut 52 785Google Scholar

    [4]

    于达仁, 乔磊, 蒋文嘉, 刘辉 2020 推进技术 41 1

    Yu D R, Qiao L, Jiang W J, Liu H 2020 J. Propul. Technol. 41 1

    [5]

    Levchenko I, Bazaka K, Ding Y J, Ratses Y, Mazouffe S, Henning T J, Klar P, Shinahara S, Schein J, Garrigues L, Kim M, Lev D, Taccogna F, Boswell R W, Charles C, Koizumi H, Shen Y, Scharlemann C, Keidar M, Xu S Y 2018 Appl. Phys. Rev. 5 11104Google Scholar

    [6]

    Wright W P, Ferrer P 2015 Prog. Aerosp. Sci. 74 48Google Scholar

    [7]

    Molina-Cabrera P, Herdrich G, Lau M, Fausolas S, Schoenherr T, Komurasaki K 2011 Proceedings of 32nd International Electric Propulsion Conference (IEPC), Wiesbaden, Germany, September 11−15, 2011 pp1−18

    [8]

    王亚楠, 丁卫东, 程乐, 李悦, 孙安邦 2018 电工技术学报 33 218

    Wang Y N, Ding W D, Cheng L, Li Y, Sun A B 2018 Trans. Chin. Electrotech. Soc. 33 218

    [9]

    Ozaki J, Ikeda T, Fujiwara T, Nishizawa M, Araki S, Tahara H, Watanabe Y 2011 The 32nd International Electric Propulsion Conference, Wiesbaden, Germany, September 11−15, 2011 IEPC-2011-035

    [10]

    Keidar M, Boyd I D, Beilis I I 2001 J. Phys D: Appl. Phys. 34 1675Google Scholar

    [11]

    Zaghloul M R 2004 J. Appl. Phys. 95 3339Google Scholar

    [12]

    Schonherr T, Nees F, Arakawa Y, Komurasaki K, Herdrich G 2013 Phys. Plasma 20 033503Google Scholar

    [13]

    Wang W Z, Kong L H, Geng J Y, Wei F, Xia G Q 2017 J. Phys. D: Appl. Phys. 50 074005Google Scholar

    [14]

    Edamitsu T, Tahara H 2005 The 29th International Electric Propulsion Conference, Princeton, USA, October 31–November 4, 2005 IEPC 2005−105

    [15]

    Aoyagi J, Mukai M, Kamishima Y, Sasaki T, Shintani K, Takegahara H, Wakizono T, Sugiki M 2008 Vacuum 83 72Google Scholar

    [16]

    Hiroki T, Hirokazu T 2009 The 31st International Electric Propulsion Conference, Michigan, USA, September 20−24, 2009 IEPC-2009-154

    [17]

    Matthias L, Georg H, Stefanos F, Roser H P 2011 The 32nd International Electric Propulsion Conference, Wiesbaden, Germany, September 11−15, 2011 IEPC-2011-140

    [18]

    Wang Y N, Ding W D, Cheng L, Yan J Q, Wang J C, and Wang Y S 2017 IEEE Trans. Plasma Sci. 45 2715Google Scholar

    [19]

    孔策 2013 等离子体光谱学导论 (北京: 北京大学出版社)

    Kunze H J 2013 Introduction to Plasma Spectroscopy (Beijing: Peking University Press) (in Chinese)

    [20]

    Spores 1997 The 33rd Joint Propulsion Conference and Exhibit: Seattle, W. A., USA, July 6−9, 1997 2922

    [21]

    Griem H R 1964 Plasma Spectroscopy (Cambriadge: Cambriadge University Press)

    [22]

    Tie W, Zhang Y, Meng C, Zhang Q G, Yan Z, He P 2018 Plasma Sources Sci. Technol. 27 015005

    [23]

    Wang Y, Ding W, Cheng L, Li Y, Ge C J, Han R Y, Yan J Q, Zhao Z, Sun A B 2018 Rev. Sci. Instrum. 89 075104Google Scholar

    [24]

    Wang Y N, Ge C J, Cheng L, Ding W D, Geng J Y 2019 Rev. Sci. Instrum. 90 076111Google Scholar

    [25]

    李瑞 2012 博士学位论文(西安: 西安交通大学)

    Li R 2012 Ph. D. Dissertation (Xi'an: Xi'an Jiaotong University) (in Chinese)

    [26]

    Bushman S S, Burton R L 2011 J. Propul. Power 17 959

    [27]

    Pekker L 2009 J. Propul. Power 25 958Google Scholar

    [28]

    Liao H T, Wu M L, Wang N H 1999 J. Propul. Technol. 20 107

    [29]

    Branch M C, Sawyer R F 1969 The 5th Propulsion Joint Specialist, Colorado Springs, CO, USA, June13−17, 1969 p469

  • 图 1  毛细管推力器结构示意图

    Figure 1.  The schematic of CDPPT structure.

    图 2  实验平台 (a) 实物图; (b) 示意图; (c) 微推力测量扭摆

    Figure 2.  Experimental platform: (a) Photo; (b) schematic diagram of the system; (c) thrust balance.

    图 3  推力器放电等效电路及能量传递路径

    Figure 3.  The equivalent circuit of CDPPT discharge circuit and energy transfer path.

    图 4  不同内径下 (a) 电压波形; (b) 电流波形; (c) 阻性功率; (d) 沉积能量

    Figure 4.  The discharge characteristics of CDPPT with different cavity diameter: (a) Voltage waveform; (b) current waveform; (c) arc resistance power; (d) deposited energy.

    图 5  不同内径下沉积能量及沉积能量效率

    Figure 5.  The deposited energy and efficiency of CDPPT with different cavity diameter.

    图 6  不同长度下 (a) 电压波形; (b) 电流波形; (c) 阻性功率; (d)沉积能量

    Figure 6.  The discharge characteristics of CDPPT with different cavity length: (a) Voltage waveform; (b) current waveform; (c) arc resistance power; (d) deposited energy.

    图 7  不同内径下沉积能量及沉积能量效率

    Figure 7.  The deposited energy and efficiency of CDPPT with different cavity length.

    图 8  烧蚀质量与单位面积烧蚀质量 (a) 不同内径; (b) 不同长度

    Figure 8.  The ablation mass per shot and ablation mass per unit surface of CDPPT: (a) With different cavity diameter; (b) with different cavity length.

    图 9  不同内径下(a) 元冲量, (b) 比冲与效率; 不同长度下 (c) 元冲量, (d) 比冲与效率

    Figure 9.  The impulse bit (a), specific impulse and efficiency (b) of CDPPT with different cavity length; impulse bit (c), specific impulse and efficiency (d) of CDPPT with different cavity diameter.

    图 10  不同内径下羽流等离子体 (a) 等离子体温度; (b) 等离子体密度

    Figure 10.  Theplasma temperature (a) and plasma density (b) of CDPPT plasma plume with different cavity diameter.

    图 11  不同长度下羽流等离子体 (a) 等离子体温度; (b) 等离子体密度

    Figure 11.  The plasma temperature (a) and plasma density (b) of CDPPT plasma plume with different cavity length.

    图 12  推力器能量效率 (a) 不同长度; (b) 不同内径

    Figure 12.  The CDPPT thrust efficiency and transfer efficiency with different (a) cavity length and (b) different cavity diameter.

    表 1  毛细管推力器工作参数与结构参数

    Table 1.  Operation parameters and structural parameters of CDPPT.

    参数取值
    主电容容值 C0/μF2.5
    充电电压 U0/kV2
    毛细管长度 l0/mm14, 16, 18, 20, 25, 30, 35, 40
    毛细管内径 R0/mm1, 3, 5, 7, 9
    DownLoad: CSV

    表 2  不同容值下等效放电回路参数

    Table 2.  Equivalent circuit parameters of CDPPT with different capacitance.

    主电容值/μF0.51.01.52.02.5
    Lc + L0/nH97.1389.0286.3284.9784.16
    DownLoad: CSV

    表 3  不同内径下等效放电回路参数

    Table 3.  Equivalent circuit parameters of CDPPT with different cavity diameter.

    毛细管内径/mm初始储能/J主电流幅值/A弧道电阻/mΩ弧道电感/nH
    15.062379 ± 38.20703.10 ± 15.4349.98 ± 2.38
    35.006116 ± 8.94143.70 ± 0.5335.50 ± 3.08
    55.18 ± 0.017568 ± 17.8958.72 ± 0.1328.19 ± 1.92
    75.05 ± 0.018148 ± 26.8349.74 ± 0.7027.75 ± 2.05
    95.08 ± 0.01840039.38 ± 0.1821.53 ± 2.94
    DownLoad: CSV

    表 4  不同长度下等效放电回路参数

    Table 4.  Equivalent circuit parameters of CDPPT with different cavity length.

    毛细管长度/mm初始储能/J主电流幅值/A弧道电阻/mΩ弧道电感/nH
    145.16 ± 0.017944 ± 35.7853.00 ± 0.0714.14 ± 0.46
    165.11 ± 0.03764056.47 ± 0.3619.36 ± 1.69
    185.07 ± 0.017544 ± 35.7866.20 ± 0.4522.25 ± 2.12
    205.16 ± 0.067256 ± 35.7877.56 ± 0.4022.32 ± 0.22
    255.056872 ± 43.8290.66 ± 0.8122.74 ± 3.12
    305.096436 ± 21.91107.34 ± 0.1925.67 ± 2.12
    355.17 ± 0.016004 ± 21.91129.86 ± 0.3434.27 ± 2.84
    405.10 ± 0.085684 ± 21.91148.86 ± 0.7336.24 ± 1.89
    DownLoad: CSV
    Baidu
  • [1]

    Levchenko I, Keidar M, Cantrell J, Wu Y L, Kuninaka H, Bazaka K, Xu S Y 2018 Nature 562 185Google Scholar

    [2]

    马定坤, 匡银, 杨新权 2017 空间电子技术 14 42Google Scholar

    Ma D K, Kuang Y, Yang X Q 2017 Space Electron. Technol. 14 42Google Scholar

    [3]

    Esper J, Neeck S, Slavin J A, Wiscombe W, Bauer F H 2003 Acta Astronaut 52 785Google Scholar

    [4]

    于达仁, 乔磊, 蒋文嘉, 刘辉 2020 推进技术 41 1

    Yu D R, Qiao L, Jiang W J, Liu H 2020 J. Propul. Technol. 41 1

    [5]

    Levchenko I, Bazaka K, Ding Y J, Ratses Y, Mazouffe S, Henning T J, Klar P, Shinahara S, Schein J, Garrigues L, Kim M, Lev D, Taccogna F, Boswell R W, Charles C, Koizumi H, Shen Y, Scharlemann C, Keidar M, Xu S Y 2018 Appl. Phys. Rev. 5 11104Google Scholar

    [6]

    Wright W P, Ferrer P 2015 Prog. Aerosp. Sci. 74 48Google Scholar

    [7]

    Molina-Cabrera P, Herdrich G, Lau M, Fausolas S, Schoenherr T, Komurasaki K 2011 Proceedings of 32nd International Electric Propulsion Conference (IEPC), Wiesbaden, Germany, September 11−15, 2011 pp1−18

    [8]

    王亚楠, 丁卫东, 程乐, 李悦, 孙安邦 2018 电工技术学报 33 218

    Wang Y N, Ding W D, Cheng L, Li Y, Sun A B 2018 Trans. Chin. Electrotech. Soc. 33 218

    [9]

    Ozaki J, Ikeda T, Fujiwara T, Nishizawa M, Araki S, Tahara H, Watanabe Y 2011 The 32nd International Electric Propulsion Conference, Wiesbaden, Germany, September 11−15, 2011 IEPC-2011-035

    [10]

    Keidar M, Boyd I D, Beilis I I 2001 J. Phys D: Appl. Phys. 34 1675Google Scholar

    [11]

    Zaghloul M R 2004 J. Appl. Phys. 95 3339Google Scholar

    [12]

    Schonherr T, Nees F, Arakawa Y, Komurasaki K, Herdrich G 2013 Phys. Plasma 20 033503Google Scholar

    [13]

    Wang W Z, Kong L H, Geng J Y, Wei F, Xia G Q 2017 J. Phys. D: Appl. Phys. 50 074005Google Scholar

    [14]

    Edamitsu T, Tahara H 2005 The 29th International Electric Propulsion Conference, Princeton, USA, October 31–November 4, 2005 IEPC 2005−105

    [15]

    Aoyagi J, Mukai M, Kamishima Y, Sasaki T, Shintani K, Takegahara H, Wakizono T, Sugiki M 2008 Vacuum 83 72Google Scholar

    [16]

    Hiroki T, Hirokazu T 2009 The 31st International Electric Propulsion Conference, Michigan, USA, September 20−24, 2009 IEPC-2009-154

    [17]

    Matthias L, Georg H, Stefanos F, Roser H P 2011 The 32nd International Electric Propulsion Conference, Wiesbaden, Germany, September 11−15, 2011 IEPC-2011-140

    [18]

    Wang Y N, Ding W D, Cheng L, Yan J Q, Wang J C, and Wang Y S 2017 IEEE Trans. Plasma Sci. 45 2715Google Scholar

    [19]

    孔策 2013 等离子体光谱学导论 (北京: 北京大学出版社)

    Kunze H J 2013 Introduction to Plasma Spectroscopy (Beijing: Peking University Press) (in Chinese)

    [20]

    Spores 1997 The 33rd Joint Propulsion Conference and Exhibit: Seattle, W. A., USA, July 6−9, 1997 2922

    [21]

    Griem H R 1964 Plasma Spectroscopy (Cambriadge: Cambriadge University Press)

    [22]

    Tie W, Zhang Y, Meng C, Zhang Q G, Yan Z, He P 2018 Plasma Sources Sci. Technol. 27 015005

    [23]

    Wang Y, Ding W, Cheng L, Li Y, Ge C J, Han R Y, Yan J Q, Zhao Z, Sun A B 2018 Rev. Sci. Instrum. 89 075104Google Scholar

    [24]

    Wang Y N, Ge C J, Cheng L, Ding W D, Geng J Y 2019 Rev. Sci. Instrum. 90 076111Google Scholar

    [25]

    李瑞 2012 博士学位论文(西安: 西安交通大学)

    Li R 2012 Ph. D. Dissertation (Xi'an: Xi'an Jiaotong University) (in Chinese)

    [26]

    Bushman S S, Burton R L 2011 J. Propul. Power 17 959

    [27]

    Pekker L 2009 J. Propul. Power 25 958Google Scholar

    [28]

    Liao H T, Wu M L, Wang N H 1999 J. Propul. Technol. 20 107

    [29]

    Branch M C, Sawyer R F 1969 The 5th Propulsion Joint Specialist, Colorado Springs, CO, USA, June13−17, 1969 p469

  • [1] Yang Nan-Nan, Wang Shang-Min, Zhang Jia-Liang, Wen Xiao-Qiong, Zhao Kai. Improved electro-mechanical model and energy conversion efficiency analysis of pulsed plasma thrusters. Acta Physica Sinica, 2024, 73(21): 215202. doi: 10.7498/aps.73.20241117
    [2] Zhang Jin-Shuo, Sun Hui, Du Zhi-Jie, Zhang Xue-Hang, Xiao Qing-Mei, Fan Jin-Rui, Yan Hui-Jie, Song Jian. Analysis and optimization of acceleration model in coaxial plasma gun in pre-fill mode. Acta Physica Sinica, 2023, 72(15): 155202. doi: 10.7498/aps.72.20230463
    [3] Zhu Xin-Zhe, Li Bo-Yuan, Liu Feng, Li Jian-Long, Bi Ze-Wu, Lu Lin, Yuan Xiao-Hui, Yan Wen-Chao, Chen Min, Chen Li-Ming, Sheng Zheng-Ming, Zhang Jie. Experimental study on capillary discharge for laser plasma wake acceleration. Acta Physica Sinica, 2022, 71(9): 095202. doi: 10.7498/aps.71.20212435
    [4] Yu Xin, Qi Liang-Wen, Zhao Chong-Xiao, Ren Chun-Sheng. Comparative study of positive and negative pulsed discharge plasma characteristics of coaxial gun. Acta Physica Sinica, 2020, 69(3): 035202. doi: 10.7498/aps.69.20191321
    [5] Liu Tao, Zhao Yong-Peng, Cui Huai-Yu, Liu Xiao-Lin. Characteristics of gain in Ne-like Ar 69.8 nm laser pumped by capillary discharge based on double-pass amplification. Acta Physica Sinica, 2019, 68(2): 025201. doi: 10.7498/aps.68.20181617
    [6] Jiao Jiao, Tong Ji-Sheng, Ma Chun-Guang, Guo Ji-Yu, Bo Yong, Zhao Qing. New transmission mode of electromagnetic wave in high-density rod cavity structure. Acta Physica Sinica, 2018, 67(1): 015202. doi: 10.7498/aps.67.20171728
    [7] Cheng Yu-Guo, Xia Guang-Qing. Numerical investigation on the plasma acceleration of the inductive pulsed plasma thruster. Acta Physica Sinica, 2017, 66(7): 075204. doi: 10.7498/aps.66.075204
    [8] Liu Tao, Zhao Yong-Peng, Ding Yu-Jie, Li Xiao-Qiang, Cui Huai-Yu, Jiang Shan. Characteristics of gain in Ne-like Ar 69.8 nm laser pumped by capillary discharge. Acta Physica Sinica, 2017, 66(15): 155201. doi: 10.7498/aps.66.155201
    [9] Zhao Yong-Peng, Li Lian-Bo, Cui Huai-Yu, Jiang Shan, Liu Tao, Zhang Wen-Hong, Li Wei. Intensity distribution of 69.8 nm laser pumped by capillary discharge. Acta Physica Sinica, 2016, 65(9): 095201. doi: 10.7498/aps.65.095201
    [10] Che Xue-Ke, Nie Wan-Sheng, Zhou Peng-Hui, He Hao-Bo, Tian Xi-Hui, Zhou Si-Yin. Study on continuous vortices induced by sub-microsecond pulsed surface dielectric barrier discharge plasma. Acta Physica Sinica, 2013, 62(22): 224702. doi: 10.7498/aps.62.224702
    [11] Zhao Yong-Peng, Xu Qiang, Xiao De-Long, Ding Ning, Xie Yao, Li Qi, Wang Qi. Time behavior and optimum conditions for the Xe gas extreme ultraviolet source. Acta Physica Sinica, 2013, 62(24): 245204. doi: 10.7498/aps.62.245204
    [12] Zhang Hua, Wu Jian-Jun, Zhang Dai-Xian, Zhang Rui, He Zhen. A modified electromechanical model with one-dimensional abalation model for numerical analysis of the pulsed plasma thruster. Acta Physica Sinica, 2013, 62(21): 210202. doi: 10.7498/aps.62.210202
    [13] Zhang Rui, Zhang Dai-Xian, Zhang Fan, He Zhen, Wu Jian-Jun. Structural and optical characterization of film deposited by pulsed plasma thruster plume. Acta Physica Sinica, 2013, 62(2): 025207. doi: 10.7498/aps.62.025207
    [14] Hu Ming, Wan Shu-De, Zhong Lei, Liu Hao, Wang Hai. Magnetic control of the constant-current glow discharge plasma characteristics. Acta Physica Sinica, 2012, 61(4): 045201. doi: 10.7498/aps.61.045201
    [15] Yang Juan, Shi Feng, Yang Tie-Lian, Meng Zhi-Qiang. Numerical simulation on the plasma field within discharge chamber of electron cyclotron resonance ion thruster. Acta Physica Sinica, 2010, 59(12): 8701-8706. doi: 10.7498/aps.59.8701
    [16] Huang Wen-Tong, Li Shou-Zhe, Wang De-Zhen, Ma Teng-Cai. Characteristics of the plasma discharge generated in dielectric capillary at atmospheric pressure. Acta Physica Sinica, 2010, 59(6): 4110-4116. doi: 10.7498/aps.59.4110
    [17] Sun Jiao, Zhang Jia-Liang, Wang De-Zhen, Ma Teng-Cai. A novel cold plasma jet generated by capillary atmospheric dielectric barrier discharge. Acta Physica Sinica, 2006, 55(1): 344-350. doi: 10.7498/aps.55.344
    [18] Zhao Yong-Peng, Cheng Yuan-Li, Wang Qi, Hayashi Yasushi, Hotta Eiki. The lasing time of soft x-ray laser pumped by capillary discharge. Acta Physica Sinica, 2005, 54(6): 2731-2734. doi: 10.7498/aps.54.2731
    [19] Cheng Yuan-Li, Luan Bo-Han, Wu Yin-Chu, Zhao Yong-Peng, Wang Qi, Zheng Wu-Di, Peng Hui-Min, Yang Da-Wei. Effect of pre-pulses on capillary discharge soft x-ray laser. Acta Physica Sinica, 2005, 54(10): 4979-4984. doi: 10.7498/aps.54.4979
    [20] Chen Gang, Pan Bai-Liang, Yao Zhi-Xin. Parametric study of plasma resistance in gas pulsed discharges. Acta Physica Sinica, 2003, 52(7): 1635-1639. doi: 10.7498/aps.52.1635
Metrics
  • Abstract views:  5023
  • PDF Downloads:  90
  • Cited By: 0
Publishing process
  • Received Date:  28 June 2021
  • Accepted Date:  26 July 2021
  • Available Online:  20 August 2021
  • Published Online:  05 December 2021

/

返回文章
返回
Baidu
map