搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中空笼状多孔结构镍钴层状氢氧化物的制备及其电化学性能

杨文 丁倩瑶 翟冬梅 薄开雯 冯艳艳 文婕 何方

引用本文:
Citation:

中空笼状多孔结构镍钴层状氢氧化物的制备及其电化学性能

杨文, 丁倩瑶, 翟冬梅, 薄开雯, 冯艳艳, 文婕, 何方

Fabrication and electrochemical properties of hollow cage-like nickel cobalt layered hydroxides with porous structure

Yang Wen, Ding Qian-Yao, Zhai Dong-Mei, Bo Kai-Wen, Feng Yan-Yan, Wen Jie, He Fang
PDF
HTML
导出引用
  • 超级电容器以功率密度高、寿命长、环境友好等优点在各种能量存储设备中受到广泛关注. 所以, 提高电极材料的储能性能对超级电容器的开发与应用具有重要的意义. 具有特定纳米结构的功能材料作为超级电容器电极材料时具有优异的电化学性能, 原因在于其能提供丰富的电化学活性位点、高的比表面积和增加电解质与材料的接触面积. 因此, 本文以ZIF-67纳米晶为模板, 利用硝酸盐刻蚀的方法制备中空笼状镍钴层状氢氧化物(NiCo-LDH), 并研究其作为超级电容器电极材料的储能性能. 借助X射线衍射、扫描电镜、透射电镜、低温氮气吸附/脱附和电化学测试等手段分析所得NiCo-LDH的结构、形貌和电化学性能. 结果表明: NiCo-LDH由纳米片组装形成中空笼状结构, 拥有丰富的介孔和大孔孔道以及较高的比表面积, 从而有助于增加电活性位点, 促使电解液与电极材料的充分接触, 进而显著提高材料的储能性能. 当刻蚀用镍、钴盐质量比为1∶1时, 样品Ni 1Co 1-LDH的比电容可达801 F·g –1(电流密度为0.5 A·g –1), 且在大电流密度下(10 A·g –1)仍能保持582 F·g –1的比电容; 在电流密度15 A·g –1的条件下经过2000次循环后, 其比电容值保持为初始值的100.2%, 表现出优异的储能性能和潜在的应用价值.
    Supercapacitors have attracted extensive attention in various storage devices due to their high power density, long life and friendly environment. Hence, improving the energy storage performances of electrode materials are of great significance for supercapacitors. Functional materials with specific nanostructures, as energy storage materials, can display excellent electrochemical performances, for they will provide rich electrochemically active sites, high specific surface area and enhance electrolyte contact area. Consequently, hollow cage-like nickel cobalt layered hydroxides (NiCo-LDH) are prepared via nitrate etching of ZIF-67 nanocrystals, and investigated as electrode materials of supercapacitor. The morphology, structure and electrochemical properties of the obtained materials are investigated by X-ray diffraction, scanning electron microscope, transmission electron microscope, N 2 adsorption/desorption and a series of electrochemical tests (including cyclic voltammetry, galvanostatic charge and discharge and AC impedance). The results show that the NiCo-LDH samples assembled by nanosheets present a porous structure with hollow cages and high specific area surfaces, which conduces to increasing the electroactive sites, enhancing the contact between the electrolyte and the electrode material, and thus significantly improving the electrochemical performance of the materials. With the mass ratio of nickel to cobalt salt being 1∶1, the specific capacitance of Ni 1Co 1-LDH is 801 F·g –1 at a current density of 0.5 A·g –1, and a specific capacitance of 582 F·g –1 can still be maintained at a high current density of 10 A·g –1. Moreover, the specific capacitance retention of Ni 1Co 1-LDH is 100.2% after 2000 cycles at a current density of 15 A·g –1, displaying good electrochemical performance and great potential in supercapacitor applications.
      通信作者: 冯艳艳, feng1988glut@163.com
    • 基金项目: 广西自然科学基金(批准号: 2017GXNSFBA198124, 2017GXNSFBA198193)、国家自然科学基金(批准号: 21606058)和广西电磁化学功能物质重点实验室基金(批准号: EMFM20211101)资助的课题
      Corresponding author: Feng Yan-Yan, feng1988glut@163.com
    • Funds: Project supported by the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant Nos. 2017GXNSFBA198124, 2017GXNSFBA198193), the National Natural Science Foundation of China (Grant No. 21606058), and the Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, China (Grant No. EMFM20211101)
    [1]

    González A, Goikolea E, Barrena J A, Mysyk R 2016 Renewable Sustainable Energy Rev. 58 1189Google Scholar

    [2]

    Zha D S, Sun H H, Fu Y S, Ouyang X P, Wang X 2017 Electrochim. Acta 236 18Google Scholar

    [3]

    Zhang L J, Hui K N, Hui S K, Lee H 2016 J. Power Sources 318 76Google Scholar

    [4]

    Wang H T, Jin C, Liu Y N, Kang X H, Bian S W, Zhu Quan 2018 Electrochim. Acta 283 1789Google Scholar

    [5]

    Cai Z X, Wang Z L, Kim J, Yamauchi Y 2019 Adv. Mater. 31 1804903Google Scholar

    [6]

    Li L, Liu X, Liu C, Wang H Z, Zhang J, Liang P, Wang H B, Wang H 2018 Electrochim. Acta 259 303Google Scholar

    [7]

    张诚, 邓明森, 蔡绍洪 2017 66 128201Google Scholar

    Zang C, Deng M S, Cai S H 2017 Acta Phys. Sin. 66 128201Google Scholar

    [8]

    Xiao P W, Meng Q H, Zhao L, Li J J, Wei Z X, Han B H 2017 Mater. Des. 129 164Google Scholar

    [9]

    Liu D, Du P C, Wei W L, Wang H X, Liu P 2018 J. Colloid. Interface Sci. 513 295Google Scholar

    [10]

    冯艳艳, 李彦杰, 杨文, 牛潇迪 2020 化工进展 39 2734

    Feng Y Y, Li Y J, Yang W, Niu X D 2020 Chem. Ind. Eng. Prog. 39 2734

    [11]

    Ryu I, Yang M H, Kwon H, Park H K, Do Y R, Lee S B, Yim S 2014 Langmuir 30 1704Google Scholar

    [12]

    Shi P P, Li L, Hua L, Qian Q Q, Wang P F, Zhou J Y, Sun G Z, Huang W 2017 ACS Nano 11 444Google Scholar

    [13]

    Shen K W, Ran F, Zhang X X, Liu C, Wang N J, Niu X Q, Liu Y, Zhang D J, Kong L B, Kang L, Chen S W 2015 Synth. Met. 209 369Google Scholar

    [14]

    Nanwani A, Deshmukh K A, Sivaraman P, Peshwe D R, Sharma I, Dhoble S J, Swart H C, Deshmukh A D, Gupta B K 2019 Npj 2 D Mater. Appl. 3 1Google Scholar

    [15]

    Xuan X Y, Qian M, Han L, Wan L J, Li Y Q, Lu T, Pan L K, Niu Y P, Gong S Q 2019 Electrochim. Acta 321 134710Google Scholar

    [16]

    冯艳艳, 黄宏斌, 张心桔, 易亚军, 杨文 2017 66 248202Google Scholar

    Feng Y Y, Huang H b, Zhang X J, Yi Y J, Yang W 2017 Acta Phys. Sin. 66 248202Google Scholar

    [17]

    Huang Q, Liu K Y, He F, Zhang S R, Xie Q L, Chen C 2017 Trans. Nonferrous Met. Soc. 27 1804Google Scholar

    [18]

    Huang W G, Zhang A T, Li X R, Tian J M, Yue L J, Cui L, Zheng R K, Wei D, Liu J Q 2019 J. Power Sources 440 227123Google Scholar

    [19]

    Xu J, Ma C J, Cao J Y, Chen Z D 2017 Dalton Trans. 46 3276Google Scholar

    [20]

    Xiao Z Y, Bao Y X, Li Z J, Huai X D, Wang M H, Liu P, Wang L 2019 ACS Appl. Energy Mater. 2 1086Google Scholar

    [21]

    Yang Z, Wang X M, Zhang H, Yan S H, Zhang C, Liu S X 2019 ChemElectroChem 6 4456Google Scholar

    [22]

    Cheng C, Wei C Z, He Y Y, Liu L Y, Hu J Y, Du W M 2021 J. Energy Storage 33 102105Google Scholar

    [23]

    Li X Y, Yu L, Wang G L, Wan G P, Peng X G, Wang K, Wang G Z 2017 Electrochim. Acta 255 15Google Scholar

    [24]

    Xiao Z Y, Mei Y J, Yuan S, Mei H, Xu B, Bao Y X, Fan L L, Kang W P, Dai F N, Wang R, Wang L, Hu S Q, Sun D F, Zhou H C 2019 ACS Nano 13 7024Google Scholar

    [25]

    Xu Y Q, Hou S J, Yang G, Wang X J, Lu T, Pan L K 2018 Electrochim. Acta 285 192Google Scholar

    [26]

    Yu L, Hu H, Wu H B, Lou X W 2017 Adv. Mater. 29 1604563Google Scholar

    [27]

    Hu H, Guan B Y, Xia B Y, Lou X W 2015 J. Am. Chem. Soc. 137 5590Google Scholar

    [28]

    Liu D, Wan J W, Pang G S, Tang Z Y 2019 Adv. Mater. 31 1803291Google Scholar

    [29]

    Rashti A, Lu X, Dobson A, Hassani E, Feyzbar-Khalkhali-Nejad F, He K, Oh T S 2021 ACS Appl. Energy Mater. 4 1537Google Scholar

    [30]

    Liu K, Yu M L, Wang H Y, Wang J, Liu W P, Hoffmann M R 2019 Environ. Sci. Technol. 53 6474Google Scholar

    [31]

    Zhu Y Y, Zhou Y N, Zhang X, Sun Z G, Jiao C Q 2021 Adv. Opt. Mater. 9 2001889Google Scholar

    [32]

    Li R, Che R, Liu Q, Su S Z, Li Z S, Zhang H S, Liu J Y, Liu L H, Wang J 2017 J. Hazard. Mater. 338 167Google Scholar

    [33]

    Song X K, Jiang Y, Cheng F, Earnshaw J, Na J, Li X P, Yamauchi Y 2021 Small 17 2004142Google Scholar

    [34]

    Hou S Y, Lian Y, Bai Y Q, Zhou Q P, Ban C L, Wang Z F, Zhao J, Zhang H H 2020 Electrochim. Acta 341 136053Google Scholar

    [35]

    Wu H, Zhang Y N, Yuan W Y, Zhao Y X, Luo S H, Yuan X W, Zheng L X, Cheng L F 2018 J. Mater. Chem. A 6 16617Google Scholar

    [36]

    Wang D, Tian L Y, Li D W, Xu Y, Wei Q F 2020 J. Electroanal. Chem. 873 114377Google Scholar

    [37]

    Liu Y X, Wang Y Z, Shi C J, Chen Y J, Li D, He Z F, Wang C, Guo L, Ma J M 2020 Carbon 165 129Google Scholar

    [38]

    Tahir M. U, Arshad H, Xie W Y, Wang X L, Nawaz M, Yang C, Su X T 2020 Appl. Surf. Sci. 529 147073Google Scholar

    [39]

    Chu H L, Zhu Y, Fang T T, Hua J Q, Qiu S J, Liu H D, Qin L Y, Wei Q H, Zou Y J, Xiang C L, Xu F, Sun L X 2020 Sustainable Energy Fuel 4 337Google Scholar

    [40]

    Zang Y, Luo H, Zhang H, Xue H G 2021 ACS Appl. Energy Mater. 4 1189Google Scholar

    [41]

    Jiang Z, Li Z P, Qin Z H, Sun H Y, Jiao X L, Chen D R 2013 Nanoscale 5 11770Google Scholar

    [42]

    Liu L L, Fang L, Wu F, Hu J, Zhang S F, Luo H J, Hu B S, Zhou M 2020 J. Alloys Compd. 824 153929Google Scholar

    [43]

    Yang F, Chu J, Cheng Y P, Gong J F, Wang X Q, Xiong S X 2021 Chem. Res. Chin. U. 37 772Google Scholar

    [44]

    Wan H Z, Li L, Xu Y, Tan Q Y, Liu X, Zhang J, Wang H B, Wang H 2018 Nanotechnology 29 194003Google Scholar

    [45]

    Li Y L, Li Q, Zhao S H, Chen C, Zhou J J, Tao K, Han L 2018 ChemistrySelect 3 13596Google Scholar

    [46]

    Lv Z J, Zhong Q, Bu Y F 2018 Adv. Mater. Interfaces 5 1800438Google Scholar

    [47]

    DinariI M, Allami H, Momeni M M 2020 Energy Fuel. 35 1831

    [48]

    Wu S H, Zhang J Z, Sun C, Chen J S 2020 J. Inorg. Organomet. Polym. 30 3179Google Scholar

  • 图 1  中空笼状NiCo-LDH的制备示意图

    Fig. 1.  Schematic illustration of the preparation of hollow cage-like NiCo-LDH.

    图 2  样品的X射线衍射谱图

    Fig. 2.  XRD patterns of the samples.

    图 3  样品的扫描电镜图 (a) Ni 0Co 1-LDH; (b) Ni 1Co 2-LDH; (c) Ni 1Co 1-LDH; (d) Ni 2Co 1-LDH; (e) Ni 1Co 0-LDH

    Fig. 3.  SEM images of the samples: (a) Ni 0Co 1-LDH; (b) Ni 1Co 2-LDH; (c) Ni 1Co 1-LDH; (d) Ni 2Co 1-LDH; (e) Ni 1Co 0-LDH.

    图 4  样品Ni 1Co 1-LDH的能谱分析 (a) 总图; (b) Co元素; (c) Ni元素

    Fig. 4.  EDS profiles of the sample Ni 1Co 1-LDH: (a) Total mapping; (b) Co element; (c) Ni element.

    图 5  样品的透射电镜图 (a) ZIF-67; (b) Ni 0Co 1-LDH; (c) Ni 1Co 1-LDH; (d) Ni 2Co 1-LDH; (e) Ni 2Co 1-LDH; (f) Ni 1Co 0-LDH

    Fig. 5.  TEM images of the samples: (a) ZIF-67; (b) Ni 0Co 1-LDH; (c) Ni 1Co 1-LDH; (d) Ni 2Co 1-LDH; (e) Ni 2Co 1-LDH; (f) Ni 1Co 0-LDH.

    图 6  样品的(a)氮气吸附/脱附等温线和(b)孔径分布图

    Fig. 6.  (a) N 2 adsorption/desorption isotherms and (b) pore size distributions of the samples.

    图 7  样品在不同扫描速度下的循环伏安曲线 (a) Ni 0Co 1-LDH; (b) Ni 1Co 2-LDH; (c) Ni 1Co 1-LDH; (d) Ni 2Co 1-LDH; (e) Ni 1Co 0-LDH

    Fig. 7.  CV curves of the samples at different scan rates: (a) Ni 0Co 1-LDH; (b) Ni 1Co 2-LDH; (c) Ni 1Co 1-LDH; (d) Ni 2Co 1-LDH; (e) Ni 1Co 0-LDH.

    图 8  样品在不同电流密度下的恒电流充放电曲线 (a) Ni 0Co 1-LDH; (b) Ni 1Co 2-LDH; (c) Ni 1Co 1-LDH; (d) Ni 2Co 1-LDH; (e) Ni 1Co 0-LDH

    Fig. 8.  GCD curves of the samples at various current densities: (a) Ni 0Co 1-LDH; (b) Ni 1Co 2-LDH; (c) Ni 1Co 1-LDH; (d) Ni 2Co 1-LDH; (e) Ni 1Co 0-LDH.

    图 9  样品在不同电流密度下的(a)比电容和(b)电容保留率

    Fig. 9.  (a) Specific capacitances and (b) capacitance retentions of the samples under various current densities.

    图 10  样品在电流密度为15 A·g –1下的循环稳定性能

    Fig. 10.  Cyclic performance of the samples at the current density of 15 A·g –1.

    图 11  样品的(a), (b)Nyquist曲线和(c)高频区Nyquist曲线的放大图

    Fig. 11.  (a), (b) Nyquist curves and (c) the enlarged curves at the high frequency range of the samples.

    表 1  样品的孔结构参数

    Table 1.  Pore structure parameters of the samples.

    Sample Ni/Co molar ratio BET specific surface area/m 2·g –1 Pore volume (meso)/(cm 3·g –1) Average pore width/nm Average pore width (meso)/nm
    Ni 0Co 1-LDH 0 81.4 0.443 18.2 17.5
    Ni 1Co 2-LDH 0.18 112.7 0.600 17.9 16.5
    Ni 1Co 1-LDH 0.39 182.6 0.954 17.9 16.3
    Ni 2Co 1-LDH 0.45 194.3 0.973 17.8 15.4
    Ni 1Co 0-LDH 2.37 233.3 0.913 13.2 11.5
    下载: 导出CSV

    表 2  NiCo-LDH基电极材料的比电容值比较

    Table 2.  Comparison of specific capacitances of various NiCo-LDH based electrodes materials.

    Sample Electrolyte Specific capacitance/(F·g –1) Reference
    Ni 2Co 1-LDH 2 M KOH 963 (0.5 A·g –1) 本文
    MnO 2-2/NiCo-LDH/CC 1 M NaSO 4 312 (0.2 A·g –1) [ 42]
    NiCo@BC 6 M KOH 606.4 (0.5 A·g –1) [ 43]
    Ni-Co LDH/NiNw 6 M KOH 466.6 (0.125 A·g –1) [ 44]
    NiCo LDH@Ni-CAT 1 M KOH 882 (1 A·g –1) [ 45]
    NCLDH@CNTs 6 M KOH 916.8 (1 A·g –1) [ 46]
    10%Ce-NiCo-LDH/CNT 1 M KOH 187.2 (1 A·g –1) [ 47]
    MnO 2/NiCo-LDH 6 M KOH 555.6 (1 A·g –1) [ 48]
    下载: 导出CSV
    Baidu
  • [1]

    González A, Goikolea E, Barrena J A, Mysyk R 2016 Renewable Sustainable Energy Rev. 58 1189Google Scholar

    [2]

    Zha D S, Sun H H, Fu Y S, Ouyang X P, Wang X 2017 Electrochim. Acta 236 18Google Scholar

    [3]

    Zhang L J, Hui K N, Hui S K, Lee H 2016 J. Power Sources 318 76Google Scholar

    [4]

    Wang H T, Jin C, Liu Y N, Kang X H, Bian S W, Zhu Quan 2018 Electrochim. Acta 283 1789Google Scholar

    [5]

    Cai Z X, Wang Z L, Kim J, Yamauchi Y 2019 Adv. Mater. 31 1804903Google Scholar

    [6]

    Li L, Liu X, Liu C, Wang H Z, Zhang J, Liang P, Wang H B, Wang H 2018 Electrochim. Acta 259 303Google Scholar

    [7]

    张诚, 邓明森, 蔡绍洪 2017 66 128201Google Scholar

    Zang C, Deng M S, Cai S H 2017 Acta Phys. Sin. 66 128201Google Scholar

    [8]

    Xiao P W, Meng Q H, Zhao L, Li J J, Wei Z X, Han B H 2017 Mater. Des. 129 164Google Scholar

    [9]

    Liu D, Du P C, Wei W L, Wang H X, Liu P 2018 J. Colloid. Interface Sci. 513 295Google Scholar

    [10]

    冯艳艳, 李彦杰, 杨文, 牛潇迪 2020 化工进展 39 2734

    Feng Y Y, Li Y J, Yang W, Niu X D 2020 Chem. Ind. Eng. Prog. 39 2734

    [11]

    Ryu I, Yang M H, Kwon H, Park H K, Do Y R, Lee S B, Yim S 2014 Langmuir 30 1704Google Scholar

    [12]

    Shi P P, Li L, Hua L, Qian Q Q, Wang P F, Zhou J Y, Sun G Z, Huang W 2017 ACS Nano 11 444Google Scholar

    [13]

    Shen K W, Ran F, Zhang X X, Liu C, Wang N J, Niu X Q, Liu Y, Zhang D J, Kong L B, Kang L, Chen S W 2015 Synth. Met. 209 369Google Scholar

    [14]

    Nanwani A, Deshmukh K A, Sivaraman P, Peshwe D R, Sharma I, Dhoble S J, Swart H C, Deshmukh A D, Gupta B K 2019 Npj 2 D Mater. Appl. 3 1Google Scholar

    [15]

    Xuan X Y, Qian M, Han L, Wan L J, Li Y Q, Lu T, Pan L K, Niu Y P, Gong S Q 2019 Electrochim. Acta 321 134710Google Scholar

    [16]

    冯艳艳, 黄宏斌, 张心桔, 易亚军, 杨文 2017 66 248202Google Scholar

    Feng Y Y, Huang H b, Zhang X J, Yi Y J, Yang W 2017 Acta Phys. Sin. 66 248202Google Scholar

    [17]

    Huang Q, Liu K Y, He F, Zhang S R, Xie Q L, Chen C 2017 Trans. Nonferrous Met. Soc. 27 1804Google Scholar

    [18]

    Huang W G, Zhang A T, Li X R, Tian J M, Yue L J, Cui L, Zheng R K, Wei D, Liu J Q 2019 J. Power Sources 440 227123Google Scholar

    [19]

    Xu J, Ma C J, Cao J Y, Chen Z D 2017 Dalton Trans. 46 3276Google Scholar

    [20]

    Xiao Z Y, Bao Y X, Li Z J, Huai X D, Wang M H, Liu P, Wang L 2019 ACS Appl. Energy Mater. 2 1086Google Scholar

    [21]

    Yang Z, Wang X M, Zhang H, Yan S H, Zhang C, Liu S X 2019 ChemElectroChem 6 4456Google Scholar

    [22]

    Cheng C, Wei C Z, He Y Y, Liu L Y, Hu J Y, Du W M 2021 J. Energy Storage 33 102105Google Scholar

    [23]

    Li X Y, Yu L, Wang G L, Wan G P, Peng X G, Wang K, Wang G Z 2017 Electrochim. Acta 255 15Google Scholar

    [24]

    Xiao Z Y, Mei Y J, Yuan S, Mei H, Xu B, Bao Y X, Fan L L, Kang W P, Dai F N, Wang R, Wang L, Hu S Q, Sun D F, Zhou H C 2019 ACS Nano 13 7024Google Scholar

    [25]

    Xu Y Q, Hou S J, Yang G, Wang X J, Lu T, Pan L K 2018 Electrochim. Acta 285 192Google Scholar

    [26]

    Yu L, Hu H, Wu H B, Lou X W 2017 Adv. Mater. 29 1604563Google Scholar

    [27]

    Hu H, Guan B Y, Xia B Y, Lou X W 2015 J. Am. Chem. Soc. 137 5590Google Scholar

    [28]

    Liu D, Wan J W, Pang G S, Tang Z Y 2019 Adv. Mater. 31 1803291Google Scholar

    [29]

    Rashti A, Lu X, Dobson A, Hassani E, Feyzbar-Khalkhali-Nejad F, He K, Oh T S 2021 ACS Appl. Energy Mater. 4 1537Google Scholar

    [30]

    Liu K, Yu M L, Wang H Y, Wang J, Liu W P, Hoffmann M R 2019 Environ. Sci. Technol. 53 6474Google Scholar

    [31]

    Zhu Y Y, Zhou Y N, Zhang X, Sun Z G, Jiao C Q 2021 Adv. Opt. Mater. 9 2001889Google Scholar

    [32]

    Li R, Che R, Liu Q, Su S Z, Li Z S, Zhang H S, Liu J Y, Liu L H, Wang J 2017 J. Hazard. Mater. 338 167Google Scholar

    [33]

    Song X K, Jiang Y, Cheng F, Earnshaw J, Na J, Li X P, Yamauchi Y 2021 Small 17 2004142Google Scholar

    [34]

    Hou S Y, Lian Y, Bai Y Q, Zhou Q P, Ban C L, Wang Z F, Zhao J, Zhang H H 2020 Electrochim. Acta 341 136053Google Scholar

    [35]

    Wu H, Zhang Y N, Yuan W Y, Zhao Y X, Luo S H, Yuan X W, Zheng L X, Cheng L F 2018 J. Mater. Chem. A 6 16617Google Scholar

    [36]

    Wang D, Tian L Y, Li D W, Xu Y, Wei Q F 2020 J. Electroanal. Chem. 873 114377Google Scholar

    [37]

    Liu Y X, Wang Y Z, Shi C J, Chen Y J, Li D, He Z F, Wang C, Guo L, Ma J M 2020 Carbon 165 129Google Scholar

    [38]

    Tahir M. U, Arshad H, Xie W Y, Wang X L, Nawaz M, Yang C, Su X T 2020 Appl. Surf. Sci. 529 147073Google Scholar

    [39]

    Chu H L, Zhu Y, Fang T T, Hua J Q, Qiu S J, Liu H D, Qin L Y, Wei Q H, Zou Y J, Xiang C L, Xu F, Sun L X 2020 Sustainable Energy Fuel 4 337Google Scholar

    [40]

    Zang Y, Luo H, Zhang H, Xue H G 2021 ACS Appl. Energy Mater. 4 1189Google Scholar

    [41]

    Jiang Z, Li Z P, Qin Z H, Sun H Y, Jiao X L, Chen D R 2013 Nanoscale 5 11770Google Scholar

    [42]

    Liu L L, Fang L, Wu F, Hu J, Zhang S F, Luo H J, Hu B S, Zhou M 2020 J. Alloys Compd. 824 153929Google Scholar

    [43]

    Yang F, Chu J, Cheng Y P, Gong J F, Wang X Q, Xiong S X 2021 Chem. Res. Chin. U. 37 772Google Scholar

    [44]

    Wan H Z, Li L, Xu Y, Tan Q Y, Liu X, Zhang J, Wang H B, Wang H 2018 Nanotechnology 29 194003Google Scholar

    [45]

    Li Y L, Li Q, Zhao S H, Chen C, Zhou J J, Tao K, Han L 2018 ChemistrySelect 3 13596Google Scholar

    [46]

    Lv Z J, Zhong Q, Bu Y F 2018 Adv. Mater. Interfaces 5 1800438Google Scholar

    [47]

    DinariI M, Allami H, Momeni M M 2020 Energy Fuel. 35 1831

    [48]

    Wu S H, Zhang J Z, Sun C, Chen J S 2020 J. Inorg. Organomet. Polym. 30 3179Google Scholar

  • [1] 邵春瑞, 李海洋, 王军, 夏国栋. 多孔结构体材料热整流效应.  , 2021, 70(23): 236501. doi: 10.7498/aps.70.20211285
    [2] 杨文, 丁倩瑶, 翟冬梅, 薄开雯, 冯艳艳, 文婕, 何方. 中空笼状多孔结构镍钴层状氢氧化物的制备及其电化学性能.  , 2021, (): . doi: 10.7498/aps.70.20211100
    [3] 景奇, 李晓娟. 多孔钛酸钡陶瓷制备及其增强的压电灵敏性.  , 2019, 68(5): 057701. doi: 10.7498/aps.68.20181790
    [4] 白春江, 封国宝, 崔万照, 贺永宁, 张雯, 胡少光, 叶鸣, 胡天存, 黄光荪, 王琪. 铝阳极氧化的多孔结构抑制二次电子发射的研究.  , 2018, 67(3): 037902. doi: 10.7498/aps.67.20172243
    [5] 张诚, 邓明森, 蔡绍洪. 基于镍泡沫支撑的Co3O4纳米多孔结构的高性能超级电容器电极.  , 2017, 66(12): 128201. doi: 10.7498/aps.66.128201
    [6] 冯艳艳, 黄宏斌, 张心桔, 易亚军, 杨文. 高性能镍钴层状双金属氢氧化物的制备及其电化学性能研究.  , 2017, 66(24): 248202. doi: 10.7498/aps.66.248202
    [7] 王帆, 李豫东, 郭旗, 汪波, 张兴尧, 文林, 何承发. 基于4晶体管像素结构的互补金属氧化物半导体图像传感器总剂量辐射效应研究.  , 2016, 65(2): 024212. doi: 10.7498/aps.65.024212
    [8] 孟代仪, 申兰先, 李德聪, 晒旭霞, 邓书康. Mg掺杂n型Sn基Ⅷ型单晶笼合物的结构及电传输特性.  , 2014, 63(17): 177401. doi: 10.7498/aps.63.177401
    [9] 朱绪飞, 韩华, 宋晔, 马宏图, 戚卫星, 路超, 徐辰. 多孔阳极氧化物的形成效率与纳米孔道的形成机理.  , 2012, 61(22): 228202. doi: 10.7498/aps.61.228202
    [10] 孙鹏, 胡明, 刘博, 孙凤云, 许路加. 金属/多孔硅/单晶硅(M/PS/Si)微结构的电学特性.  , 2011, 60(5): 057303. doi: 10.7498/aps.60.057303
    [11] 邓书康, 唐新峰, 杨培志, 鄢永高. Cd掺杂p型Ge基Ba8Ga16CdxGe30-x Ⅰ型笼合物的结构及热电特性.  , 2009, 58(6): 4274-4280. doi: 10.7498/aps.58.4274
    [12] 曹卫强, 邓书康, 唐新峰, 李鹏. 熔体旋甩工艺对Zn掺杂Ⅰ-型Ba8Ga12Zn2Ge32笼合物微结构及热电性能的影响.  , 2009, 58(1): 612-618. doi: 10.7498/aps.58.612
    [13] 汪雷, 杨德仁. Si80笼状分子的结构研究.  , 2009, 58(4): 2590-2593. doi: 10.7498/aps.58.2590
    [14] 张维佳, 王天民. ITO前驱物氢氧化铟In(OH)Zr3理论研究.  , 2004, 53(6): 1923-1929. doi: 10.7498/aps.53.1923
    [15] 陈镇平, 张金仓, 程国生, 李喜贵, 章讯生. 金属氧化物超导陶瓷Y-123体系烧结过程与结构缺陷的正电子实验研究.  , 2001, 50(3): 550-555. doi: 10.7498/aps.50.550
    [16] 连贵君, 李美亚, 康晋峰, 郭建东, 孙云峰, 熊光成. 钙钛矿结构氧化物薄膜 的外延生长.  , 1999, 48(10): 1917-1922. doi: 10.7498/aps.48.1917
    [17] 邱元武, 张波, 刘建成. 氧化钇稳定立方氧化锆晶体中空位和杂质的电子结构.  , 1993, 42(8): 1297-1303. doi: 10.7498/aps.42.1297
    [18] 曹忠胜, 徐明, 赵忠贤. 金属玻璃(Cu1-xNix)33Zr67合金的低温电阻率.  , 1988, 37(7): 1167-1171. doi: 10.7498/aps.37.1167
    [19] 赵继良, 罗远苏, 黄胜涛. 钴镍铁基金属玻璃结构弛豫的X射线研究.  , 1983, 32(1): 15-24. doi: 10.7498/aps.32.15
    [20] 汪永江. 金属中空位的形成能.  , 1959, 15(9): 469-474. doi: 10.7498/aps.15.469
计量
  • 文章访问数:  6778
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-10
  • 修回日期:  2021-08-27
  • 上网日期:  2021-12-24
  • 刊出日期:  2022-01-05

/

返回文章
返回
Baidu
map