-
Orbital angular momentum (OAM) vortex electromagnetic waves can provide a new degree of freedom for information modulation at a physical level, which has great prospects of applications in the fields of wireless communication and radar imaging. The application of beam scanning techniques of phased array to OAM vortex electromagnetic wave can increase its communication coverage and expand the detection coverage of vortex radars. Firstly, in this paper, the principle of generating the beam steering vortex electromagnetic beam is discussed and the compensated phase formula for generating beam steering OAM beams is given by planar phased array. Secondly, considering the advantages of phased array antennas in beam scanning and OAM reconfigurability, a planar phased array with 8 × 8 antenna elements at 10 GHz is designed and fabricated. The performances of OAM beam steering and mode reconfigurability are verified. Finally, the performance changes of the deflecting OAM vortex beam at different scanning angles are discussed and analyzed. Simulations and measurements both show that there exist pattern distortion problems when steering angle of OAM beam becomes large. In this paper, the variation of the OAM mode purity is also studied when the scanning angle and the OAM mode number change. The results show that the planar phased array antennas can effectively generate the beam steering OAM vortex beams in a certain angle range. Hence, this paper can provide a reference for the OAM vortex electromagnetic wave communication and the vortex radar in the future.
-
Keywords:
- orbital angular momentum /
- vortex wave /
- beam steering /
- planar phased array
[1] Thide B, Then H, Sjoholm J, Palmer K, Bergman J, Carozzi T D, Istomin Ya N, Ibragimov N H, Khamitova R 2007 Phys. Rev. Lett. 99 087701
Google Scholar
[2] Mohammadi S M, Daldorff L K, Bergman J E, Karlsson R L, Thidé B, Forozesh K, Carozzi T D, Isham B 2009 IEEE Trans. Antennas Propag. 58 565
Google Scholar
[3] Tamburini F, Mari E, Sponselli A, Thidé B, Bianchini A, Romanato F 2012 New J. Phys. 14 033001
Google Scholar
[4] Bu X, Zhang Z, Chen L, Liang X, Tang H, Wang X 2018 IEEE Antennas Wirel. Propag. Lett. 17 764
Google Scholar
[5] Liu K, Gao Y, Li X, Cheng Y 2018 AIP Adv. 8 025002
Google Scholar
[6] Liu K, Cheng Y, Gao Y, Li X, Qin Y, Wang H 2017 Appl. Phys Lett. 110 0164102
Google Scholar
[7] 吴文兵, 圣宗强, 吴宏伟 2019 68 054102
Google Scholar
Wu W B, Sheng Z Q, Wu H W 2019 Acta Phys. Sin. 68 054102
Google Scholar
[8] Tamburini F, Mari E, Thidé B, Barbieri C, Romanato F 2011 Appl. Phys. Lett. 99 0204102
Google Scholar
[9] Yuan T, Cheng Y, Wang H, Qin Y 2016 IEEE Trans. Antennas Propag. 65 688
Google Scholar
[10] Lin M, Gao Y, Liu P, Liu J 2017 IEEE Trans. Antennas Propag. 65 3510
Google Scholar
[11] Zheng S, . Hui X, Jin X, Chi H, Zhang X 2015 IEEE Trans. Antennas Propag. 63 1530
Google Scholar
[12] Zhang W, Zheng S, Hui X, Chen Y, Jin X, Chi H, Zhang X 2016 IEEE Antennas Wirel. Propag. Lett. 16 194
Google Scholar
[13] Yu Z, Guo N, Fan J 2020 IEEE Antennas Wirel. Propag. Lett. 19 601
Google Scholar
[14] 高喜, 唐李光 2021 70 038101
Google Scholar
Gao X, Tang L G 2021 Acta Phys. Sin. 70 038101
Google Scholar
[15] Lü HH, Huang Q L, Yi X J, Hou J Q, Shi X W 2020 IEEE Antennas Wirel. Propag. Lett. 19 881
Google Scholar
[16] Li F, Chen H, Zhou Y, You J, Panoiu N C, Zhou P, Deng L 2020 IEEE Trans. Microwave Theory Tech. 69 1829
Google Scholar
[17] Huang H, Li S 2019 IEEE Antennas Wirel. Propag. Lett. 18 432
Google Scholar
[18] Chen G T, JiaoY. C, Zhao G 2018 IEEE Antennas Wirel. Propag. Lett. 18 182
Google Scholar
[19] Wen Y, Li G Z, Tian H M, Ran S Guo J 2021 Chin. Phys. B 30 58103
Google Scholar
[20] 李晓楠, 周璐, 赵国忠 2019 68 238101
Google Scholar
Li X N, Zhou L, Zhao G Z 2019 Acta Phys. Sin. 68 238101
Google Scholar
[21] Tang S, Cai T, Liang J G, Xiao Y, Zhang C W, Zhang Q, Hu Z, Jiang T 2019 Opt. Express 27 1816
Google Scholar
[22] Meng X, Chen X, Yang L, Xue W, Zhang A, Sha W E, Cheng Q 2020 Appl. Phys. Lett. 117 243503
Google Scholar
[23] 冯加林, 施宏宇, 王远, 张安学, 徐卓 2020 69 135201
Google Scholar
Feng J L, Shi H Y, Wang Y, Zhang A X, Xu Z 2020 Acta Phys. Sin. 69 135201
Google Scholar
[24] Yuan T, Cheng Y, Wang H, Qin Y 2016 IEEE Antennas Wirel. Propag. Lett. 16 704
Google Scholar
[25] Zheng S, Chen Y, Zhang Z, Jin X, Chi H, Zhang X, Chen Z N 2017 IEEE Trans. Antennas Propag. 66 1352
Google Scholar
[26] Liu K, Liu H, Qin Y, Cheng Y, Wang S, Li X, Wang H 2016 IEEE Trans. Antennas Propag. 64 3850
Google Scholar
[27] Jack B, Leach J Frankearnold S 2009 New J. Phys 10 6456
Google Scholar
[28] Shi Y, Wu Q W, Ming J, 2021 IEEE Access 9 63122
Google Scholar
-
图 6 XOZ-平面上的远场仿真与实测结果 (a) 仿真l = 1; (b) 实测l = 1; (c) 仿真l = 2; (d)实测l = 2; (e)仿真l = 3; (f) 实测l = 3
Figure 6. The simulated and measured radiation patterns ofthearray in XOZ-plane: (a) Simulated l = 1; (b) measured l = 1; (c) simulated l = 2; (d) measured l = 2; (e) simulated l = 3; (f) measured l = 3.
-
[1] Thide B, Then H, Sjoholm J, Palmer K, Bergman J, Carozzi T D, Istomin Ya N, Ibragimov N H, Khamitova R 2007 Phys. Rev. Lett. 99 087701
Google Scholar
[2] Mohammadi S M, Daldorff L K, Bergman J E, Karlsson R L, Thidé B, Forozesh K, Carozzi T D, Isham B 2009 IEEE Trans. Antennas Propag. 58 565
Google Scholar
[3] Tamburini F, Mari E, Sponselli A, Thidé B, Bianchini A, Romanato F 2012 New J. Phys. 14 033001
Google Scholar
[4] Bu X, Zhang Z, Chen L, Liang X, Tang H, Wang X 2018 IEEE Antennas Wirel. Propag. Lett. 17 764
Google Scholar
[5] Liu K, Gao Y, Li X, Cheng Y 2018 AIP Adv. 8 025002
Google Scholar
[6] Liu K, Cheng Y, Gao Y, Li X, Qin Y, Wang H 2017 Appl. Phys Lett. 110 0164102
Google Scholar
[7] 吴文兵, 圣宗强, 吴宏伟 2019 68 054102
Google Scholar
Wu W B, Sheng Z Q, Wu H W 2019 Acta Phys. Sin. 68 054102
Google Scholar
[8] Tamburini F, Mari E, Thidé B, Barbieri C, Romanato F 2011 Appl. Phys. Lett. 99 0204102
Google Scholar
[9] Yuan T, Cheng Y, Wang H, Qin Y 2016 IEEE Trans. Antennas Propag. 65 688
Google Scholar
[10] Lin M, Gao Y, Liu P, Liu J 2017 IEEE Trans. Antennas Propag. 65 3510
Google Scholar
[11] Zheng S, . Hui X, Jin X, Chi H, Zhang X 2015 IEEE Trans. Antennas Propag. 63 1530
Google Scholar
[12] Zhang W, Zheng S, Hui X, Chen Y, Jin X, Chi H, Zhang X 2016 IEEE Antennas Wirel. Propag. Lett. 16 194
Google Scholar
[13] Yu Z, Guo N, Fan J 2020 IEEE Antennas Wirel. Propag. Lett. 19 601
Google Scholar
[14] 高喜, 唐李光 2021 70 038101
Google Scholar
Gao X, Tang L G 2021 Acta Phys. Sin. 70 038101
Google Scholar
[15] Lü HH, Huang Q L, Yi X J, Hou J Q, Shi X W 2020 IEEE Antennas Wirel. Propag. Lett. 19 881
Google Scholar
[16] Li F, Chen H, Zhou Y, You J, Panoiu N C, Zhou P, Deng L 2020 IEEE Trans. Microwave Theory Tech. 69 1829
Google Scholar
[17] Huang H, Li S 2019 IEEE Antennas Wirel. Propag. Lett. 18 432
Google Scholar
[18] Chen G T, JiaoY. C, Zhao G 2018 IEEE Antennas Wirel. Propag. Lett. 18 182
Google Scholar
[19] Wen Y, Li G Z, Tian H M, Ran S Guo J 2021 Chin. Phys. B 30 58103
Google Scholar
[20] 李晓楠, 周璐, 赵国忠 2019 68 238101
Google Scholar
Li X N, Zhou L, Zhao G Z 2019 Acta Phys. Sin. 68 238101
Google Scholar
[21] Tang S, Cai T, Liang J G, Xiao Y, Zhang C W, Zhang Q, Hu Z, Jiang T 2019 Opt. Express 27 1816
Google Scholar
[22] Meng X, Chen X, Yang L, Xue W, Zhang A, Sha W E, Cheng Q 2020 Appl. Phys. Lett. 117 243503
Google Scholar
[23] 冯加林, 施宏宇, 王远, 张安学, 徐卓 2020 69 135201
Google Scholar
Feng J L, Shi H Y, Wang Y, Zhang A X, Xu Z 2020 Acta Phys. Sin. 69 135201
Google Scholar
[24] Yuan T, Cheng Y, Wang H, Qin Y 2016 IEEE Antennas Wirel. Propag. Lett. 16 704
Google Scholar
[25] Zheng S, Chen Y, Zhang Z, Jin X, Chi H, Zhang X, Chen Z N 2017 IEEE Trans. Antennas Propag. 66 1352
Google Scholar
[26] Liu K, Liu H, Qin Y, Cheng Y, Wang S, Li X, Wang H 2016 IEEE Trans. Antennas Propag. 64 3850
Google Scholar
[27] Jack B, Leach J Frankearnold S 2009 New J. Phys 10 6456
Google Scholar
[28] Shi Y, Wu Q W, Ming J, 2021 IEEE Access 9 63122
Google Scholar
Catalog
Metrics
- Abstract views: 6718
- PDF Downloads: 170
- Cited By: 0