Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A novel modeling method and implementation of floating memory elements

Zheng Ci-Yan Zhuang Chu-Yuan Li Ya Lian Ming-Jian Liang Yan Yu Dong-Sheng

Citation:

A novel modeling method and implementation of floating memory elements

Zheng Ci-Yan, Zhuang Chu-Yuan, Li Ya, Lian Ming-Jian, Liang Yan, Yu Dong-Sheng
PDF
HTML
Get Citation
  • Memristors, memcapacitors and meminductors are nonlinear circuit components with memory effects and belong to memory element (mem-element) system. Since there are many shortcomings in the existing available commercial memristor chips, and the physical realizations of memcapacitor and meminductor hardware are still in early stages, it is still difficult for researchers to obtain hardware mem-elements for research. In order to solve this problem, it is still necessary to build effective equivalent models of mem-elements to facilitate the research on their characteristics and applications. In this paper, a novel floating mem-element modeling method is proposed by connecting different passive circuit component to a universal interface while keeping the circuit topology unchanged. Compared with other floating universal mem-element models, the model built in this paper has simple structure, high working frequencies, thus making proposed models easier to implement. The feasibility and effectiveness of the mem-elements models based on the universal interface are successfully verified through theoretical analysis, PSPICE simulation results and hardware experimental results.
      Corresponding author: Li Ya, liya2829@gpnu.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 61801154, 62101142), the Science and Technology Program of Guangzhou, China (Grant Nos. 201904010302, 202102020874), the Featured Innovation Foundation of the Education Department of Guangdong Province, China (Grant Nos. 2021ZDZX1079, 2021KTSCX062), and the Doctoral Scientific Research Startup Fund of Guangdong Polytechnic Normal University, China (Grant No. 2021SDKYA009).
    [1]

    Chua L O 1971 IEEE Trans. Circuit Theory 18 507Google Scholar

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar

    [3]

    Ventra M D, Pershin Y V, Chua L O 2009 Proc. IEEE 97 1371Google Scholar

    [4]

    Mauro D, Marco M F, Fernando C, Chua L O 2021 IEEE Transactions on Circuits and Systems I: Regular Papers 68 14Google Scholar

    [5]

    Yuan F, Li Y 2019 Chaos 29 101101Google Scholar

    [6]

    Barraj I, Bahloul M A, Masmoudi M 2021 AEU-Inter. J. Electron. C. 132 153664Google Scholar

    [7]

    Wang M, Yu Y, Yang N, Yang C, Ma H 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA) Xi'an, China, June 19−21, 2019

    [8]

    Emara A A M, Aboudina M M, Fahmy H A H 2017 Microelectron. J. 64 39Google Scholar

    [9]

    Dalgaty T, Castellani N, Turck C, Harabi K E, Vianello E 2021 Nat. Electron. 4 151Google Scholar

    [10]

    Liu Z, Tang J, Gao B, Yao P, Wu H 2020 Nat. Commun. 11 4234Google Scholar

    [11]

    Corinto F, Marco M, Forti M, Chua L 2019 IEEE T. Cybernetics 50 4758Google Scholar

    [12]

    Yang Y 2020 Nat. Commun. 11 3399Google Scholar

    [13]

    Shang D S, Chai Y C, Cao Z X, Lu J, Sun Y 2015 Chin. Phys. B Sin. 24 68402Google Scholar

    [14]

    申见昕, 尚大山, 孙阳 2018 67 127501Google Scholar

    Shen J X, Shang D S, Sun Y 2018 Acta Phys. Sin. 67 127501Google Scholar

    [15]

    任宽, 张珂嘉, 秦溪子, 任焕鑫, 朱守辉, 杨峰, 孙柏, 赵勇, 张勇 2021 70 078701Google Scholar

    Ren K, Zhang K J, Qin X Z, Ren H X, Zhu S H, Yang F, Sun B, Zhao Y, Zhang Y 2021 Acta Phys. Sin. 70 078701Google Scholar

    [16]

    Han J, Song C, Gao S, Wang Y, Chen C, Pan F 2014 ACS Nano 8 10043Google Scholar

    [17]

    沈怡然, 李付鹏, 王光义 2020 电子与信息学报 42 844Google Scholar

    Shen Y R, Li F P, Wang G Y 2020 J. Electron. Infor. Technol. 42 844Google Scholar

    [18]

    Knowm Inc https://knowm.org/downloads/Knowm_Memeistors.pdf [2019-10-6]

    [19]

    Yuan F, Li Y, Wang G, Dou G, Chen G 2019 Entropy 21 188Google Scholar

    [20]

    Vista J, Ranjan A 2019 IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 39 2020Google Scholar

    [21]

    Pu Y, Yu B A 2019 IEEE/CAA J. Automat. Sin. 7 237Google Scholar

    [22]

    Gupta S, Rai S K 2020 Wireless Pers. Commun. 113 773Google Scholar

    [23]

    Yesil A, Babacan Y 2020 IEEE Transactions on Circuits and Systems II: Express Briefs 68 1443Google Scholar

    [24]

    Sozen H, Cam U 2020 J. Circuit. Syst. Comput. 29 2050247Google Scholar

    [25]

    Pershin Y V, Ventra M 2011 Electron. Lett. 47 243Google Scholar

    [26]

    Yu D S, Liang Y, Iu HHC, Hu Y H 2014 Chin. Phys. B 23 070702Google Scholar

    [27]

    Fouda M E, Radwan A G 2012 Electron. Lett. 48 1454Google Scholar

    [28]

    梁燕, 于东升, 陈昊 2013 62 158501Google Scholar

    Liang Y, Yu D S, Chen H 2013 Acta Phys. Sin. 62 158501Google Scholar

    [29]

    李志军, 向林波, 肖文润 2017 电子与信息学报 39 1626Google Scholar

    Li Z J, Xiang L B, Xiao W R 2017 J. Electron. Infor. Technol. 39 1626Google Scholar

    [30]

    Zhao Q, Wang C, Zhang X 2019 Chaos 29 013141Google Scholar

    [31]

    Zheng C Y, Yu D S, Hu HHC, Fernando, T, Sun T T, Eshraghian J K, Guo H D 2019 IEEE T. Circuits I. 66 4793Google Scholar

    [32]

    Yu D S, Zhao X, Sun T, Iu HHC, Fernando T 2019 IEEE Transactions on Circuits and Systems II: Express Briefs 67 1334Google Scholar

    [33]

    Sharma P K, Ranjan R K, Khateb F, Kumngern M 2020 IEEE Access 8 171397Google Scholar

    [34]

    Wang C, Liu X, Hu X 2017 Chaos 27 033114Google Scholar

    [35]

    Korneev I A, Semenov V V 2017 Chaos: An Interdisciplinary J. Nonlinear Sci. 27 081104Google Scholar

    [36]

    Lin T, Iu HHC, Wang X, Wang X 2015 Int. J. Numer. Model. El. 28 275Google Scholar

    [37]

    Wang G, Shi C, Wang X, Yuan F 2017 Math. Probl. Eng. 2017 6504969Google Scholar

    [38]

    Fouda M E, Radwan A G 2014 Circuits, Syst. Signal Process. 33 1573Google Scholar

  • 图 1  通用模拟器设计

    Figure 1.  Design of a universal emulator for building models of mem-elements.

    图 2  忆阻器模型的PSPICE仿真结果 (a) 不同频率激励下的忆阻器${v_{{\text{AB}}}}\text-{i_{{\text{AB}}}}$特性曲线; (b) 不同频率激励下的忆阻器忆导值$W_{\text{m}}$${v_{{\text{AB}}}}$的关系图; (c) 在Uo = 1 V, f = 100 kHz下, ${v_{{\text{AB}}}}$, ${i_{{\text{AB}}}}$, $ {\phi _{{\text{AB}}}}_{} $(用$v_{C_1}$表示)和$W_{\text{m}}$的时域波形图

    Figure 2.  Measured simulation results of the proposed memristor emulator: (a) Pinched hysteresis loops under different working frequencies; (b) variation curves of the memductance $W_{\text{m}}$ plotted against the terminal voltage ${v_{{\text{AB}}}}$; (c) time-domain wave-forms of ${v_{{\text{AB}}}}$, ${i_{{\text{AB}}}}$, $ {\phi _{{\text{AB}}}} $(represented by $v_{C_1}$) and the memductance $W_{\text{m}}$ when Uo = 1 V, f = 100 kHz.

    图 3  忆容器模型的PSPICE仿真结果 (a) 不同频率激励下的忆容器${v_{{\text{AB}}}}\text-{q_{{\text{AB}}}}$(用${v_{{\text{AB}}}} \text- \left( {{{ - }}{v_{C2}}} \right)$表示)特性曲线; (b)不同频率激励下的忆容器忆容值$ {C_{\text{m}}} $${v_{{\text{AB}}}}$的关系图; (c) 在Uo = 1 V, $ f $= 80 kHz下, ${v_{{\text{AB}}}}$${q_{{\text{AB}}}}$(用${{ - }}{v_{C2}}$表示)、$ {\phi _{{\text{AB}}}} $(用${v_{C_1}}$表示)和$ {C_{\text{m}}} $的时域波形图

    Figure 3.  Measured simulation results of the proposed memcapacitor emulator: (a) Pinched hysteresis loops under different working frequencies; (b) variation curves of the memcapacitance$ {C_{\text{m}}} $plotted against the terminal voltage $ {v_{{\text{AB}}}} $; (c) time-domain wave-forms of $ {v_{{\text{AB}}}} $, $ {q_{{\text{AB}}}} $(represented by${{ - }}{v_{C_2}}$), $ {\phi _{{\text{AB}}}} $(represented by${v_{C_1}}$) and the memcapacitance $ {C_{\text{m}}} $when Uo = 1 V, $ f $= 80 kHz.

    图 4  忆感器模型的PSPICE仿真结果 (a) 不同频率激励下的忆感器${\phi _{{\text{AB}}}} \text- {i_{{\text{AB}}}}$(用${i_1} \text- {i_{{\text{AB}}}}$表示)特性曲线; (b)不同频率激励下忆感器的忆感值倒数$ L_{\text{m}}^{ - 1} $$ {\phi _{{\text{AB}}}} $(用${i_1}$表示)的关系图; (c) 当Uo = 1 V, $ f $= 100 kHz时, ${i_{{\text{AB}}}}$, ${\rho _{{\text{AB}}}}$(用${v_{C_1}}$表示)、$ {\phi _{{\text{AB}}}} $$ L_{\text{m}}^{ - 1} $的时域波形图

    Figure 4.  Measured simulation results of the proposed meminductor emulator: (a) Pinched hysteresis loops under different working frequencies; (b) variation curves of the inverse meminductance $ L_{\text{m}}^{ - 1} $ plotted against the flux$ {\phi _{{\text{AB}}}} $(represented by $ i_1 $); (c) time-domain wave-forms of $ {i_{{\text{AB}}}} $, ${\rho _{{\text{AB}}}}$(represented by${v_{C_1}}$), $ {\phi _{{\text{AB}}}} $and the inverse meminductance $ L_{\text{m}}^{ - 1} $ when Uo = 1 V, $ f $= 100 kHz.

    图 5  通用模拟器硬件实验电路实现

    Figure 5.  Implementation of the universal emulator in hardware experiment.

    图 6  在通用模拟器的Z1Z2接入不同的电阻、电容和电感元件组合, 分别实现忆阻器、忆容器和忆感器模型的硬件实验电路 (a) 忆阻器; (b) 忆容器; (c) 忆感器

    Figure 6.  The experimental breadboard implementation of (a) memristor, (b) memcapacitor, (c) meminductor models based on the universal emulator by connecting different combinations of resistor, capacitor or inductor to Z1 and Z2.

    图 7  忆阻器模型的硬件电路实验结果 (a) 不同频率激励下的忆阻器${v_{{\text{AB}}}} \text- {i_{{\text{AB}}}}$(用${v_{{\text{AB}}}} \text- ({{ - }}{v_{R_3}})$表示)特性曲线; (b)不同频率激励下的忆阻器忆导值$ {W_{\text{m}}} $${v_{{\text{AB}}}}$的关系图; (c)在Uo = 3 V, $ f $ = 100 kHz下, $ {v_{{\text{AB}}}} $, $ {i_{{\text{AB}}}} $(用${{ - }}{v_{R_3}}$表示)、$ {\phi _{{\text{AB}}}} $(用${v_{C_1}}$表示)和$ {W_{\text{m}}} $的时域波形图

    Figure 7.  Experimental results of the proposed memristor emulator: (a) Pinched hysteresis loops under different working frequencies; (b) variation curves of the memductance $ {W_{\text{m}}} $ plotted against the terminal voltage $ {v_{{\text{AB}}}} $; (c) time-domain wave-forms of ${v_{{\text{AB}}}}$, ${i_{{\text{AB}}}}$(represented by${{ - }}{v_{R_3}}$), $ {\phi _{{\text{AB}}}} $(represented by${v_{C_1}}$) and the memductance $ {W_{\text{m}}} $when Uo = 3 V, $ f $ = 100 kHz.

    图 8  忆容器模型的硬件实验结果 (a) 不同频率激励下的忆容器${v_{{\text{AB}}}}\text-{q_{{\text{AB}}}}$(用${v_{{\text{AB}}}}{{\text-}}\left( { - {v_{C_2}}} \right)$表示)特性曲线; (b)不同频率激励下的忆容器忆容值$ {C_{\text{m}}} $${v_{{\text{AB}}}}$的关系图; (c) 在Uo = 3 V, $ f $ = 80 kHz下${v_{{\text{AB}}}}$, ${q_{{\text{AB}}}}$(用${{ - }}{v_{C_2}}$表示)、$ {\phi _{{\text{AB}}}} $(用${v_{C_1}}$表示)和$ {C_{\text{m}}} $的时域波形图

    Figure 8.  Experimental results of the proposed memcapacitor emulator: (a) Pinched hysteresis loops under different working frequencies; (b) variation curves of the memcapacitance $ {C_{\text{m}}} $ plotted against the terminal voltage ${v_{{\text{AB}}}}$; (c) time-domain wave-forms of ${v_{{\text{AB}}}}$, ${q_{{\text{AB}}}}$(represented by ${{ - }}{v_{C_2}}$), $ {\phi _{{\text{AB}}}} $(represented by ${v_{C_1}}$) and the memcapacitance $ {C_{\text{m}}} $ when Uo = 3 V, $ f $ = 80 kHz.

    图 9  忆感器模型的硬件实验结果 (a) 不同频率激励下的忆感器${\phi _{{\text{AB}}}}\text-{i_{{\text{AB}}}}$(用$( - {v_{R1}}){{\text- (}} - {v_{R2}})$表示)特性曲线; (b)不同频率激励下忆感器的忆感值倒数$L_{\text{m}}^{{{ - 1}}}$$ {\phi _{{\text{AB}}}} $(用$ - {v_{R1}} $表示)的关系图; (c) 在Uo = 3 V, $ f $ = 80 kHz下$ {i_{{\text{AB}}}} $(用$- {v_{R_2}}$表示)、$ {\phi _{{\text{AB}}}} $(用$- {v_{R_1}}$表示)、$ {\rho _{{\text{AB}}}} $(用${v_{C_1}}$表示)和$L_{\text{m}}^{ - 1}$的时域波形图

    Figure 9.  Experimental results of the proposed meminductor emulator: (a) Pinched hysteresis loops under different working frequencies; (b) variation curves of the inverse meminductance $L_{{{\rm{m}}}}^{{{ - 1}}}$ plotted against the flux $ {\phi _{{\text{AB}}}} $(represented by${{ - }}{v_{R_1}}$) ; (c) time-domain wave-forms of ${i_{{\text{AB}}}}$(represented by${{ - }}{v_{R_2}}$), ${\rho _{{\text{AB}}}}$(represented by${v_{C_1}}$), $ {\phi _{{\text{AB}}}} $(represented by$- {v_{R_1}}$), $ {\rho _{{\text{AB}}}} $(represented by ${v_{C_1}}$) and the inverse meminductance $L_{\text{m}}^{{{ - 1}}}$ when Uo = 3 V, $ f $ = 80 kHz.

    表 1  基于通用模拟器的记忆元件模型对应特征比较

    Table 1.  Comparison of characteristics of different kinds of mem-element models based on the proposed universal emulator.

    记忆元件类型忆阻器忆容器忆感器
    电路拓扑结构通用模拟器
    阻抗元件$ {Z_1} $电阻$ {R_{\text{2}}} $电阻$ {R_{\text{2}}} $电感$ {L_{\text{1}}} $
    阻抗元件$ {Z_{\text{2}}} $电阻$ {R_{\text{3}}} $电容$ {C_{\text{2}}} $电阻$ {R_{\text{2}}} $
    内部状态变量$q {\text{-}} \phi$$\sigma {\text{-}} \phi$$q {\text{-}} \rho$
    本构方程$ W\left( {{\phi _{{\text{AB}}}}} \right) = {\alpha _1}{\phi _{{\text{AB}}}} + {\beta _1} $$C_{\text{m} }\left( { {\phi _{ {\text{AB} } } }} \right) = {\alpha _2}{\phi _{ {\text{AB} } } } + {\beta _2}$$L{_ {\text{m} }^{ - 1} }\left( { {\rho _{ {\text{AB} } } }} \right) = {\alpha _3}{\rho _{ {\text{AB} } } } + {\beta _3}$
    $ {\alpha _x} $值${\alpha _{\text{1} } } = \dfrac{ { {R_{\text{1} } } }}{ {10 R_{\text{2} }^{\text{2} }{R_{\text{3} } }{C_{\text{1} } } }}$${\alpha _{\text{2} } } = \dfrac{ { {R_{\text{1} } }{C_{\text{2} } } }}{ {10 R_{\text{2} }^{\text{2} }{C_{\text{1} } } }}$${\alpha _{\text{3} } } = \dfrac{ { {R_{\text{1} } } }}{ {10 L_{\text{1} }^{\text{2} }{R_{\text{2} } }{C_{\text{1} } } }}$
    $ {\beta _x} $值$ {\beta _{\text{1} } } = - \dfrac{ { {R_{\text{1} } } } }{ { {\text{10} }{R_{\text{2} } }{R_{\text{3} } } } }V_{\text{s} } $$ {\beta _{\text{2} } } = - \dfrac{ { {R_{\text{1} } }{C_{\text{2} } } } }{ { {\text{10} }{R_{\text{2} } } } }V_{\text{s} } $${\beta _{\text{3} } } = - \dfrac{ { {R_{\text{1} } } }}{ { {\text{10} }{L_{\text{1} } }{R_{\text{2} } } }}{V_{\text{s} } }$
    DownLoad: CSV
    Baidu
  • [1]

    Chua L O 1971 IEEE Trans. Circuit Theory 18 507Google Scholar

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar

    [3]

    Ventra M D, Pershin Y V, Chua L O 2009 Proc. IEEE 97 1371Google Scholar

    [4]

    Mauro D, Marco M F, Fernando C, Chua L O 2021 IEEE Transactions on Circuits and Systems I: Regular Papers 68 14Google Scholar

    [5]

    Yuan F, Li Y 2019 Chaos 29 101101Google Scholar

    [6]

    Barraj I, Bahloul M A, Masmoudi M 2021 AEU-Inter. J. Electron. C. 132 153664Google Scholar

    [7]

    Wang M, Yu Y, Yang N, Yang C, Ma H 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA) Xi'an, China, June 19−21, 2019

    [8]

    Emara A A M, Aboudina M M, Fahmy H A H 2017 Microelectron. J. 64 39Google Scholar

    [9]

    Dalgaty T, Castellani N, Turck C, Harabi K E, Vianello E 2021 Nat. Electron. 4 151Google Scholar

    [10]

    Liu Z, Tang J, Gao B, Yao P, Wu H 2020 Nat. Commun. 11 4234Google Scholar

    [11]

    Corinto F, Marco M, Forti M, Chua L 2019 IEEE T. Cybernetics 50 4758Google Scholar

    [12]

    Yang Y 2020 Nat. Commun. 11 3399Google Scholar

    [13]

    Shang D S, Chai Y C, Cao Z X, Lu J, Sun Y 2015 Chin. Phys. B Sin. 24 68402Google Scholar

    [14]

    申见昕, 尚大山, 孙阳 2018 67 127501Google Scholar

    Shen J X, Shang D S, Sun Y 2018 Acta Phys. Sin. 67 127501Google Scholar

    [15]

    任宽, 张珂嘉, 秦溪子, 任焕鑫, 朱守辉, 杨峰, 孙柏, 赵勇, 张勇 2021 70 078701Google Scholar

    Ren K, Zhang K J, Qin X Z, Ren H X, Zhu S H, Yang F, Sun B, Zhao Y, Zhang Y 2021 Acta Phys. Sin. 70 078701Google Scholar

    [16]

    Han J, Song C, Gao S, Wang Y, Chen C, Pan F 2014 ACS Nano 8 10043Google Scholar

    [17]

    沈怡然, 李付鹏, 王光义 2020 电子与信息学报 42 844Google Scholar

    Shen Y R, Li F P, Wang G Y 2020 J. Electron. Infor. Technol. 42 844Google Scholar

    [18]

    Knowm Inc https://knowm.org/downloads/Knowm_Memeistors.pdf [2019-10-6]

    [19]

    Yuan F, Li Y, Wang G, Dou G, Chen G 2019 Entropy 21 188Google Scholar

    [20]

    Vista J, Ranjan A 2019 IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 39 2020Google Scholar

    [21]

    Pu Y, Yu B A 2019 IEEE/CAA J. Automat. Sin. 7 237Google Scholar

    [22]

    Gupta S, Rai S K 2020 Wireless Pers. Commun. 113 773Google Scholar

    [23]

    Yesil A, Babacan Y 2020 IEEE Transactions on Circuits and Systems II: Express Briefs 68 1443Google Scholar

    [24]

    Sozen H, Cam U 2020 J. Circuit. Syst. Comput. 29 2050247Google Scholar

    [25]

    Pershin Y V, Ventra M 2011 Electron. Lett. 47 243Google Scholar

    [26]

    Yu D S, Liang Y, Iu HHC, Hu Y H 2014 Chin. Phys. B 23 070702Google Scholar

    [27]

    Fouda M E, Radwan A G 2012 Electron. Lett. 48 1454Google Scholar

    [28]

    梁燕, 于东升, 陈昊 2013 62 158501Google Scholar

    Liang Y, Yu D S, Chen H 2013 Acta Phys. Sin. 62 158501Google Scholar

    [29]

    李志军, 向林波, 肖文润 2017 电子与信息学报 39 1626Google Scholar

    Li Z J, Xiang L B, Xiao W R 2017 J. Electron. Infor. Technol. 39 1626Google Scholar

    [30]

    Zhao Q, Wang C, Zhang X 2019 Chaos 29 013141Google Scholar

    [31]

    Zheng C Y, Yu D S, Hu HHC, Fernando, T, Sun T T, Eshraghian J K, Guo H D 2019 IEEE T. Circuits I. 66 4793Google Scholar

    [32]

    Yu D S, Zhao X, Sun T, Iu HHC, Fernando T 2019 IEEE Transactions on Circuits and Systems II: Express Briefs 67 1334Google Scholar

    [33]

    Sharma P K, Ranjan R K, Khateb F, Kumngern M 2020 IEEE Access 8 171397Google Scholar

    [34]

    Wang C, Liu X, Hu X 2017 Chaos 27 033114Google Scholar

    [35]

    Korneev I A, Semenov V V 2017 Chaos: An Interdisciplinary J. Nonlinear Sci. 27 081104Google Scholar

    [36]

    Lin T, Iu HHC, Wang X, Wang X 2015 Int. J. Numer. Model. El. 28 275Google Scholar

    [37]

    Wang G, Shi C, Wang X, Yuan F 2017 Math. Probl. Eng. 2017 6504969Google Scholar

    [38]

    Fouda M E, Radwan A G 2014 Circuits, Syst. Signal Process. 33 1573Google Scholar

  • [1] Guo Hui-Meng, Liang Yan, Dong Yu-Jiao, Wang Guang-Yi. Simplification of Chua corsage memristor and hardware implementation of its neuron circuit. Acta Physica Sinica, 2023, 72(7): 070501. doi: 10.7498/aps.72.20222013
    [2] Wu Chang-Chun, Zhou Pu-Jun, Wang Jun-Jie, Li Guo, Hu Shao-Gang, Yu Qi, Liu Yang. Memristor based spiking neural network accelerator architecture. Acta Physica Sinica, 2022, 71(14): 148401. doi: 10.7498/aps.71.20220098
    [3] Experimental Study on Retrieval efficiency of Duan-Lukin-Cirac-Zoller Quantum Memory by Optical Cavity-Enhanced. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210881
    [4] Ji Yi-Ru, Chu Yan-Bang, Xian Le-De, Yang Wei, Zhang Guang-Yu. From magic angle twisted bilayer graphene to moiré superlattice quantum simulator. Acta Physica Sinica, 2021, 70(11): 118101. doi: 10.7498/aps.70.20210476
    [5] Shao Nan,  Zhang Sheng-Bing,  Shao Shu-Yuan. Mathematical model of memristor with sensory memory. Acta Physica Sinica, 2019, 68(1): 018501. doi: 10.7498/aps.68.20181577
    [6] Liu Ru-Xin, Dong Rui-Xin, Yan Xun-Ling, Xiao Xia. Memory capacitance behavior at single resistance state in memristor and multi-state characteristic. Acta Physica Sinica, 2019, 68(6): 068502. doi: 10.7498/aps.68.20181836
    [7] Wang Xiao-Yuan, Yu Jun, Wang Guang-Yi. Simulink modeling of memristor, memcapacitor, meminductor and their characteristics analysis. Acta Physica Sinica, 2018, 67(9): 098501. doi: 10.7498/aps.67.20172674
    [8] Yuan Feng, Liu Chuan, Geng Zheng, Cui Yan-Guang, Wang Lin, Wan Jian-Feng, Zhang Ji-Hua, Rong Yong-Hua. Study on surface relief related to reverse martensitic transformation in Mn-based high-temperature antiferromagnetic shape memory alloy. Acta Physica Sinica, 2015, 64(1): 016801. doi: 10.7498/aps.64.016801
    [9] Li Zhi-Jun, Zeng Yi-Cheng, Tan Zhi-Ping. A universal emulator of mem-elements. Acta Physica Sinica, 2014, 63(9): 098501. doi: 10.7498/aps.63.098501
    [10] Yang Li-Jian, Liu Bin, Gao Song-Wei, Chen Li-Jia. First-principles caculation and experimental study of metal magnetic memory effects. Acta Physica Sinica, 2013, 62(8): 086201. doi: 10.7498/aps.62.086201
    [11] Wang Ying, Cheng Yong-Zhi, Nie Yan, Gong Rong-Zhou. Design and experiments of low-frequency broadband metamaterial absorber based on lumped elements. Acta Physica Sinica, 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [12] Liang Yan, Yu Dong-Sheng, Chen Hao. A novel meminductor emulator based on analog circuits. Acta Physica Sinica, 2013, 62(15): 158501. doi: 10.7498/aps.62.158501
    [13] Xin Jing-Tao, Gao Chun-Qing, Li Chen, Wang Zheng. Propagation of helical beams through amplitude diffractive optical elements and the measurement of topological charge. Acta Physica Sinica, 2012, 61(17): 174202. doi: 10.7498/aps.61.174202
    [14] Xu Yu-Ming, Bao Bo-Cheng, Xu Qiang. Grid-scroll hyperchaotic system based on microcontroller digital hardware implementation. Acta Physica Sinica, 2010, 59(9): 5959-5965. doi: 10.7498/aps.59.5959
    [15] Zhang Chao-Xia, Yu Si-Min. Wireless chaotic speech communication via digital signal processor ——system design and hardware implementation. Acta Physica Sinica, 2010, 59(5): 3017-3026. doi: 10.7498/aps.59.3017
    [16] Li Ya, Zhang Zheng-Ming, Tao Zhi-Jie. A hyperchaotic sixth-order Chua’s circuit and its hardware implementation. Acta Physica Sinica, 2009, 58(10): 6818-6822. doi: 10.7498/aps.58.6818
    [17] Li Ya, Yu Si-Min, Dai Qing-Yun, Liu Ming-Hua, Liu Qing. A novel approach for Chua’s circuit design and its hardware implementation. Acta Physica Sinica, 2006, 55(8): 3938-3944. doi: 10.7498/aps.55.3938
    [18] Zhang Dong-Ke, Zhang Ye-Wen, He Li, Li Hong-Qiang, Chen Hong. Experimental verification of the characteristic of one-dimensional metamaterials by use of lumped-elements L-C. Acta Physica Sinica, 2005, 54(2): 768-772. doi: 10.7498/aps.54.768
    [19] Zeng Li, Lou Cai-Yun, Zhang En-Yao. Theoretical study of polarization mode dispersion emulators. Acta Physica Sinica, 2005, 54(3): 1241-1246. doi: 10.7498/aps.54.1241
    [20] YE BI-QING, MA ZHONG-LIN, LING JUN-DA. MODE-VOLUME MATCHING OF OSCILLATING MODES OF LASER CONTAINING SEVERAL ACTIVE ELEMENTS. Acta Physica Sinica, 1979, 28(1): 15-20. doi: 10.7498/aps.28.15
Metrics
  • Abstract views:  5309
  • PDF Downloads:  114
  • Cited By: 0
Publishing process
  • Received Date:  30 May 2021
  • Accepted Date:  13 July 2021
  • Available Online:  17 August 2021
  • Published Online:  05 December 2021

/

返回文章
返回
Baidu
map