-
针对室内通信系统, 设计了一款具有360°方位角连续扫描特性的圆形阵列天线. 圆形阵列天线由8个端射单极子八木天线阵元按旋转对称方式构成, 每个天线阵元包含一个激励单极子、一个反射器和4个引向器. 采用同幅同相激励时, 阵列天线可以工作于全向辐射模式; 采用扩展最大功率传输效率法计算最佳激励分布时, 阵列天线工作于定向辐射模式. 仿真和实验结果表明, 阵列天线工作于全向辐射模式的平均增益为3.78 dBi, 增益波动小于2.0 dBi; 阵列天线工作于定向辐射模式时的波束指向可以实现360°方位角连续扫描, 并保证了定向波束增益最大化和水平方位指向, 定向波束最大增益达到11.1 dBi, 方位角扫描增益波动小于0.4 dBi, 前后比大于12.5 dB. 设计的圆形阵列天线具有定向波束增益高、在方位角可连续扫描等技术优势, 可用于未来室内小基站系统.
-
关键词:
- 单极子八木天线 /
- 圆形阵列天线 /
- 波束扫描 /
- 扩展最大功率传输效率法
In this paper, a 360° continuously scanning circular array antenna is presented. The circular array consists of eight Yagi-Uda monopoles, each one consisting of a driver, a reflector and four directors. When the circular array is fed identically, an azimuthal omnidirectional pattern is obtained. When the circular array is fed with an optimized distribution of excitations that is calculated by the expanded method of maximum power transmission efficiency, an azimuthal directional pattern with maximum directional gain is obtained. The measurement and simulation results indicate that the average gain of the omnidirectional pattern is about 3.78 dBi with azimuthal fluctuation of less than 2.0 dBi, and the maximum gain of the directional pattern is about 11.1 dBi with azimuthal continuously scanning fluctuation of less than 0.4 dBi and front-to-back ratio of larger than 12.5 dB. The reported circular array antenna is featured by high directional gain and 360° azimuthal beam continuous scanning, and it has potential applications in indoor communications.-
Keywords:
- Yagi-Uda monopole /
- circular array antenna /
- beam scanning /
- expanded method of maximum power transmission efficiency
[1] Bellofiore S, Balanis C A, Foutz J, Spanisa A S 2002 IEEE Antennas Propag. Mag. 44 145
Google Scholar
[2] 蒋基恒, 余世星, 寇娜, 丁召, 张正平 2021 70 238401
Google Scholar
Jiang J H, Yu S X, Kou N, Ding Z Zhang Z P 2021 Acta Phys. Sin. 70 238401
Google Scholar
[3] 胡昌海, 王任, 陈传升, 王秉中 2021 70 098401
Google Scholar
Hu C H, Wang R, Chen C S, Wang B Z 2021 Acta Phys. Sin. 70 098401
Google Scholar
[4] Yang X D, Geyi W, Sun H C 2017 IEEE Antennas Wirel. Propag. Lett. 16 1824
Google Scholar
[5] Wan W, Wen G Y, Gao S 2018 IEEE Access 6 16092
Google Scholar
[6] Wen S C, Xu Y Z, Dong Y D 2021 IEEE Antennas Wirel. Propag. Lett. 20 488
Google Scholar
[7] Miao X B, Wan W, Duan Z, Wen G Y 2019 IEEE Antennas Wirel. Propag. Lett. 18 752
Google Scholar
[8] Taillefer E, Hirata A, Ohira T 2005 IEEE Trans. Antennas Propag. 53 678
Google Scholar
[9] Lu J W, Irelan D, Schlub R 2005 IEEE Trans. Antennas Propag. 53 2437
Google Scholar
[10] Liu H T, Gao S, Hong Loh T 2011 IEEE Antennas Wirel. Propag. Lett. 10 1349
Google Scholar
[11] Liu H T, Gao S, Hong Loh T 2012 IEEE Trans. Antennas Propag. 60 1540
Google Scholar
[12] Juan Y, Che W Q, Yang W C, Chen Z N 2017 IEEE Antennas Wirel. Propag. Lett. 16 557
Google Scholar
[13] Ababil Hossain M, Bahceci I, Cetiner B A 2017 IEEE Trans. Antennas Propag. 65 6444
Google Scholar
[14] Yang Y, Zhu X 2018 IEEE Trans. Antennas Propag. 66 600
Google Scholar
[15] Fan H J, Liang X L, Geng J P, Jin R H, Zhou X L 2016 IEEE Trans. Antennas Propag. 64 3228
Google Scholar
[16] Ge L, Li M J, Li Y J, Wong H, Luk K M 2018 IEEE Trans. Antennas Propag. 66 1747
Google Scholar
[17] Shahidul Alam M, Abbosh A 2016 IET Microw. Antennas Propag. 10 1030
Google Scholar
[18] Jin G P, Li M L, Liu D, Zeng G J 2018 IEEE Antennas Wirel. Propag. Lett. 17 1664
Google Scholar
[19] Wang P Y, Jin T, Meng F Y, Lyu Y L, Erni D, Wu Q, Zhu L 2018 IEEE Trans. Antennas Propag. 66 627
Google Scholar
[20] Kahar M, Kanti Mandal M 2021 IEEE Trans. Antennas Propag. 69 3538
Google Scholar
[21] Zhu H L, Wai Cheung S, lp Yuk T 2015 IET Microw. Antennas Propag. 9 1331
Google Scholar
[22] Tang M C, Ziolkowski R W 2015 IET Microw. Antennas Propag. 9 1363
Google Scholar
[23] 韩亚娟, 张介秋, 李勇峰, 王甲富, 屈绍波, 张安学 2016 65 147301
Google Scholar
Han Y J, Zhang J Q, Li Y F, Wang F J, Qu S B, Zhang A X 2016 Acta Phys. Sin. 65 147301
Google Scholar
[24] Tang M C, Duan Y L, Wu Z T, Chen X M, Li M, Ziolkowski R W 2019 IEEE Trans. Antennas Propag. 67 1467
Google Scholar
[25] Wen Y B, Qin P Y, Wei G M, Ziolkowski R W 2022 IEEE Trans. Antennas Propag. 70 6042
Google Scholar
[26] Schlub R, Lu J W, Ohira T 2003 IEEE Trans. Antennas Propag. 51 3033
Google Scholar
[27] Schlub R, Thiel D V 2004 IEEE Trans. Antennas Propag. 52 1343
Google Scholar
[28] Shan L, Wen G Y 2014 IEEE Trans. Antennas Propag. 62 5565
Google Scholar
[29] 王身云, 郑淏予, 李阳 2020 69 218402
Google Scholar
Wang S Y, Zheng H Y, Li Y 2020 Acta Phys. Sin. 69 218402
Google Scholar
[30] Wen G Y 2021 IEEE Open J. Antennas Propag. 2 412
Google Scholar
[31] Wang S Y, Jin X R, Liu P, Geyi W 2022 IEEE Antennas Wirel. Propag. Lett. 21 2512
Google Scholar
-
表 1 带开槽局部地板结构的圆形阵列天线结构参数
Table 1. Parameters of the circular array antenna with slotted partial ground.
Parameter Values/mm Parameter Values/mm h1 35.0 l2 2.5 h2 22.5 l3 4.0 h3 22.0 l4 26.8 R 120.0 l5 61.2 d1 29.0 w1 10.6 d2 22.0 w2 1.3 d3 16.0 w3 15.0 l1 13.0 w4 2.0 表 2 不同方位定向波束的圆形阵列天线激励分布(最佳幅值和相位)
Table 2. Excitations (optimum amplitude and phase) of the circular array antenna for different directional beams.
Port Azimuthal angle/(°) 0 15 30 45 1 0.74,∠–96° 0.71,∠–118° 0.60,∠–106° 0.43,∠–119° 2 0.44,∠0° 0.60,∠–80° 0.70,∠–144° 0.75,∠146° 3 0.16,∠114° 0.19,∠26° 0.29,∠–25° 0.43,∠–119° 4 0.10,∠16° 0.09,∠–99° 0.12,∠131° 0.16,∠–7° 5 0, ∠178° 0.03,∠155° 0.04,∠–44° 0.09,∠–116° 6 0.10,∠12° 0.03,∠–18° 0.03,∠106° 0.05,∠56° 7 0.17,∠113° 0.13,∠156° 0.10,∠–155° 0.09,∠–111° 8 0.44,∠0° 0.27,∠0° 0.20,∠0° 0.16,∠0° 表 3 圆形阵列天线性能对比
Table 3. Comparison of the recent work with reported circular arrays.
Ref. Working frequency bands/GHz Size of the circular array
($ {\lambda _0} \times {\lambda _0} $)No. of the antenna element No. of beams for
360° coverageRealized maximum gain/dBi [5] 0.783—0.886 0.9×0.9 4 16 6.0 [7] 2.32—2.78 0.64×0.64 8 8 8.4 [15] 4.78—5.19 1.9×1.9 6 12 9.2 [16] 1.65—2.75 0.51×0.51 4 4 5.4 [17] 2.35—2.61 0.64×0.64 8 8 4.5 [18] 2.25—3.16 0.61×0.61 4 4 4.1 [19] 0.7—1.2 0.43×0.43 6 6 3.1 [20] 8.8—11.2 3.02×3.02 8 8 5.2 This work 3.26—3.73 2.72×2.72 8 Continuous 11.1 -
[1] Bellofiore S, Balanis C A, Foutz J, Spanisa A S 2002 IEEE Antennas Propag. Mag. 44 145
Google Scholar
[2] 蒋基恒, 余世星, 寇娜, 丁召, 张正平 2021 70 238401
Google Scholar
Jiang J H, Yu S X, Kou N, Ding Z Zhang Z P 2021 Acta Phys. Sin. 70 238401
Google Scholar
[3] 胡昌海, 王任, 陈传升, 王秉中 2021 70 098401
Google Scholar
Hu C H, Wang R, Chen C S, Wang B Z 2021 Acta Phys. Sin. 70 098401
Google Scholar
[4] Yang X D, Geyi W, Sun H C 2017 IEEE Antennas Wirel. Propag. Lett. 16 1824
Google Scholar
[5] Wan W, Wen G Y, Gao S 2018 IEEE Access 6 16092
Google Scholar
[6] Wen S C, Xu Y Z, Dong Y D 2021 IEEE Antennas Wirel. Propag. Lett. 20 488
Google Scholar
[7] Miao X B, Wan W, Duan Z, Wen G Y 2019 IEEE Antennas Wirel. Propag. Lett. 18 752
Google Scholar
[8] Taillefer E, Hirata A, Ohira T 2005 IEEE Trans. Antennas Propag. 53 678
Google Scholar
[9] Lu J W, Irelan D, Schlub R 2005 IEEE Trans. Antennas Propag. 53 2437
Google Scholar
[10] Liu H T, Gao S, Hong Loh T 2011 IEEE Antennas Wirel. Propag. Lett. 10 1349
Google Scholar
[11] Liu H T, Gao S, Hong Loh T 2012 IEEE Trans. Antennas Propag. 60 1540
Google Scholar
[12] Juan Y, Che W Q, Yang W C, Chen Z N 2017 IEEE Antennas Wirel. Propag. Lett. 16 557
Google Scholar
[13] Ababil Hossain M, Bahceci I, Cetiner B A 2017 IEEE Trans. Antennas Propag. 65 6444
Google Scholar
[14] Yang Y, Zhu X 2018 IEEE Trans. Antennas Propag. 66 600
Google Scholar
[15] Fan H J, Liang X L, Geng J P, Jin R H, Zhou X L 2016 IEEE Trans. Antennas Propag. 64 3228
Google Scholar
[16] Ge L, Li M J, Li Y J, Wong H, Luk K M 2018 IEEE Trans. Antennas Propag. 66 1747
Google Scholar
[17] Shahidul Alam M, Abbosh A 2016 IET Microw. Antennas Propag. 10 1030
Google Scholar
[18] Jin G P, Li M L, Liu D, Zeng G J 2018 IEEE Antennas Wirel. Propag. Lett. 17 1664
Google Scholar
[19] Wang P Y, Jin T, Meng F Y, Lyu Y L, Erni D, Wu Q, Zhu L 2018 IEEE Trans. Antennas Propag. 66 627
Google Scholar
[20] Kahar M, Kanti Mandal M 2021 IEEE Trans. Antennas Propag. 69 3538
Google Scholar
[21] Zhu H L, Wai Cheung S, lp Yuk T 2015 IET Microw. Antennas Propag. 9 1331
Google Scholar
[22] Tang M C, Ziolkowski R W 2015 IET Microw. Antennas Propag. 9 1363
Google Scholar
[23] 韩亚娟, 张介秋, 李勇峰, 王甲富, 屈绍波, 张安学 2016 65 147301
Google Scholar
Han Y J, Zhang J Q, Li Y F, Wang F J, Qu S B, Zhang A X 2016 Acta Phys. Sin. 65 147301
Google Scholar
[24] Tang M C, Duan Y L, Wu Z T, Chen X M, Li M, Ziolkowski R W 2019 IEEE Trans. Antennas Propag. 67 1467
Google Scholar
[25] Wen Y B, Qin P Y, Wei G M, Ziolkowski R W 2022 IEEE Trans. Antennas Propag. 70 6042
Google Scholar
[26] Schlub R, Lu J W, Ohira T 2003 IEEE Trans. Antennas Propag. 51 3033
Google Scholar
[27] Schlub R, Thiel D V 2004 IEEE Trans. Antennas Propag. 52 1343
Google Scholar
[28] Shan L, Wen G Y 2014 IEEE Trans. Antennas Propag. 62 5565
Google Scholar
[29] 王身云, 郑淏予, 李阳 2020 69 218402
Google Scholar
Wang S Y, Zheng H Y, Li Y 2020 Acta Phys. Sin. 69 218402
Google Scholar
[30] Wen G Y 2021 IEEE Open J. Antennas Propag. 2 412
Google Scholar
[31] Wang S Y, Jin X R, Liu P, Geyi W 2022 IEEE Antennas Wirel. Propag. Lett. 21 2512
Google Scholar
计量
- 文章访问数: 5500
- PDF下载量: 99
- 被引次数: 0