Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research status and progress of metal contacts of SiC power devices

Huang Ling-Qin Zhu Jing Ma Yue Liang Ting Lei Cheng Li Yong-Wei Gu Xiao-Gang

Citation:

Research status and progress of metal contacts of SiC power devices

Huang Ling-Qin, Zhu Jing, Ma Yue, Liang Ting, Lei Cheng, Li Yong-Wei, Gu Xiao-Gang
PDF
HTML
Get Citation
  • Silicon carbide (SiC) is a promising candidate for applications in high temperature, high voltage, high power, and low-power dissipation devices due to its unique properties like wide band gap, high critical electric field, and high thermal conductivity. However, one of the main bottlenecks hindering the SiC power devices from developing and being put into practical application is the fabrication of good metal/SiC contact. In this review, the research status of Ohmic contact and Schottky contact of SiC device are compared and analyzed. The complicated interface properties and uncontrollable barrier height at metal/SiC interface are revealed. In addition, the research status of metal/SiC contact barrier and interface state properties are analyzed, and the important significance of effective control of interface barrier is highlighted. Furthermore, the research progress of metal/SiC contact interface regulation technology is specially analyzed. The future development directions in the nature of metal/SiC interface states and interface control technology are finally prospected.
      Corresponding author: Liang Ting, liangtingnuc@163.com ; Gu Xiao-Gang, guxg@jsnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62074071)
    [1]

    Kimoto T, Cooper J A 2014 Fundamentals of Silicon Carbide Technology (Singapore: John Wiley & Sons Singapore Pte. Ltd) pp1−538

    [2]

    盛况, 郭清, 张军明, 钱照明 2012 中国电机工程学报 32 1

    Sheng K, Guo Q, Zhang J M, Qian Z M 2012 Proc. Chin. Soc. Elect. Eng. 32 1

    [3]

    She X, Huang A Q, Lucía Ó, Ozpineci B 2017 IEEE Trans. Ind. Electron. 64 8193Google Scholar

    [4]

    Zekentes K 2018 Advancing Silicon Carbide Electronics Technology I: Metal Contacts to Silicon Carbide: Physics, Technology, Applications (Millersville: Materials Research Forum LLC) pp1−238

    [5]

    Gao M M, Hu T T, Chen Z Z 2019 IEEE Trans. Electron Devices 66 3929Google Scholar

    [6]

    He Y J, Lv H L, Tang X Y, Song Q W, Zhang Y M, Han C, Guo T, He X N, Zhang Y M, Zhang Y M 2019 J. Alloys Compd. 805 999Google Scholar

    [7]

    Badila M, Brezeanu G, Millan J, Godignon P, Banu V 2002 Diamond Relat. Mater. 11 1258Google Scholar

    [8]

    Cheng J C, Tsui B Y 2017 IEEE Electron Device Lett. 38 1700Google Scholar

    [9]

    Omar S U, Sudarshan T S, Rana T A, Song H, Chandrashekhar M 2015 IEEE Trans. Electron Devices 62 615Google Scholar

    [10]

    Vivona M, Greco G, Bongiorno C, Nigro R L, Scalese S, Roccaforte F 2017 Appl. Surf. Sci. 420 331Google Scholar

    [11]

    Huang L Q, Liu B B, Zhu Q Z, Chen S H, Gao M C, Qin F W, Wang D J 2012 Appl. Phys. Lett. 100 263503Google Scholar

    [12]

    Huang L Q, Qin F W, Li S J, Wang D J 2013 Appl. Phys. Lett. 103 033520Google Scholar

    [13]

    Liu S B, He Z, Zheng L, Liu B, Zhang F, Dong L, Tian L X, Shen Z W, Wang J Z, Huang Y J, Fan Z C, Liu X F, Yan G G, Zhao W S, Wang L, Sun G S, Yang F H, Zeng Y P 2014 Appl. Phys. Lett. 105 122106Google Scholar

    [14]

    Wang Z T, Liu W, Wang C Q 2016 J. Electron. Mater. 45 267Google Scholar

    [15]

    Huang L Q, Xia M L, Gu X G 2020 J. Cryst. Growth. 531 125353Google Scholar

    [16]

    Addamiano A 1970 US Patent 3 510 733

    [17]

    Hamad V A, Tannous T A, Soueidan M, Gremillard L, Zaatar Y 2020 Microelectron. Reliab. 110 113694Google Scholar

    [18]

    Zhang Y M, Guo T, Tang X Y, Yang J, He Y J, Zhang Y M 2018 J. Alloys Compd. 731 1267Google Scholar

    [19]

    Kragh-Buetow K C, Okojie R S, Lukco D, Mohney S E 2015 Semicond. Sci. Technol. 30 105019Google Scholar

    [20]

    Okojie R S, Lukco D 2016 J. Appl. Phys. 120 215301Google Scholar

    [21]

    Joo S J, Baek S, Kim S C, Lee J S 2013 J. Electron. Mater. 42 2897Google Scholar

    [22]

    Shimizu H, Shima A, Shimamoto Y, Iwamuro N 2017 Jpn. J. Appl. Phys. 56 04CR15Google Scholar

    [23]

    Sung W, Baliga B J 2016 IEEE Electron Device Lett. 37 1605Google Scholar

    [24]

    Hertel S, Waldmann D, Jobst J, Albert A, Albrecht M, Reshanov S, Sch Ner A, Krieger M, Weber H B 2012 Nat. Commun. 3 957Google Scholar

    [25]

    Kumar S V, Amaral M R, Lukas K, Lars K, Giovanni A 2018 Mater. Sci. Forum 924 413Google Scholar

    [26]

    Wu Y, Ji L F, Lin Z Y, Hong M H, Wang S C, Zhang Y Z 2019 Curr. Appl. Phys. 19 521Google Scholar

    [27]

    Li F, Sharma Y, Walker D, Hindmarsh S, Mawby P 2016 IEEE Electron Device Lett. 37 1189Google Scholar

    [28]

    Wu S Y, Campbell R B 1974 Solid-State Electronics 17 683

    [29]

    Wahab Q, Ellison A, Henry A, Janzén E, Hallin C, Di Persio J, Martinez R 2000 Appl. Phys. Lett. 76 2725Google Scholar

    [30]

    Li J L, Li Y, Wang L, Xu Y, Yang F, Han P, Ji X L 2019 Chin. Phys. B 28 027303Google Scholar

    [31]

    Pristavu G, Brezeanu G, Badila M, Pascu R, Danila M, Godignon P 2015 Appl. Phys. Lett. 106 223704

    [32]

    Cowley A M, Sze S M 1965 Jpn. J. Appl. Phys. 36 3212Google Scholar

    [33]

    Tsui B Y, Cheng J C, Yen C T, Lee C Y 2017 Solid-State Electron. 133 83Google Scholar

    [34]

    Yang Z Y, Wang Y, Li X J, Yang J Q, Shi D K, Cao F 2021 Microelectron. Eng. 239 111531

    [35]

    Song Q W, Zhang Y M, Zhang Y M, Cheng F P, Tang X Y 2011 Chin. Phys. B 20 057301Google Scholar

    [36]

    Lee K Y, Huang Y H 2012 IEEE Trans. Electron Devices 59 694Google Scholar

    [37]

    Han L C, Shen H J, Liu K A, Wang Y Y, Tang Y D, Yun B, Xu H Y 2014 Chin. Phys. B 23 127302Google Scholar

    [38]

    Dong S X, Bai Y, Tang Y D, Chen H, Tian X L, Yang C Y, Liu X Y 2018 Chin. Phys. B 27 97305Google Scholar

    [39]

    Dhar S, Seitz O, Halls M D, Choi S, Chabal Y J, Feldman L C 2009 J. Am. Chem. Soc. 131 16808Google Scholar

    [40]

    Hashimoto K, Doi T, Shibayama S, Nakatsuka O 2020 Jpn. J. Appl. Phys. 59 SGGD16Google Scholar

    [41]

    Zaremba G, Adamus Z, Jung W, Kaminska E, Borysiewicz M A, Korwin-Mikke K 2012 Mater. Sci. Eng. 177 1323Google Scholar

    [42]

    Heine V 1965 Phys. Rev. 138 1689Google Scholar

    [43]

    Mönch W 1994 Control of Semiconductor Interfaces (Amsterdam: Elsevier) pp169−174

    [44]

    Tung R T 2000 Phys. Rev. Lett. 84 6078Google Scholar

    [45]

    Aboelfotoh M O, Fröjdh C, Petersson C S 2003 Phys. Rev. B 67 075312Google Scholar

    [46]

    Gao M, Tsukimoto S, Goss S H, Tumakha S P, Onishi T, Murakami M, Brillson L J 2007 J. Electron. Mater. 36 277Google Scholar

    [47]

    Nakayama T 2019 International Workshop on Junction Technology (IWJT) Kyoto, Japan, June 6–7, 2019 pp1–5

    [48]

    Tsui B Y, Cheng J C, Lee L S, Lee C Y, Tsai M J 2014 Jpn. J. Appl. Phys. 53 04EP10Google Scholar

    [49]

    Brillson L J 2007 J. Vac. Sci. Technol., A 25 943Google Scholar

    [50]

    Roccaforte F, Bongiorno C, Via F L, Raineri V 2004 Appl. Phy. Lett. 85 6152Google Scholar

    [51]

    Çınar K, Coşkun C, Gür E, Aydoğan Ş 2009 Nucl. Instrum. Methods Phys. Res., Sect. B 267 87Google Scholar

    [52]

    Kozlovski V V, Lebedev A A, Levinshtein M E, Rumyantsev S L, Palmour J W 2017 Appl. Phy. Lett. 110 199

    [53]

    Wang D, Hu R, Chen G, Tang C, Ma Y, Gong M, Yu G, Gao S, Li Y, Huang M, Yang Z 2021 Nucl. Instrum. Meth. B 491 52Google Scholar

    [54]

    Adelmann B, Hürner A, Schlegel T, Bauer A J, Frey L, Hellmann R 2013 J. Laser Micro/Nanoeng. 8 97Google Scholar

    [55]

    Lin Z Y, Ji L F, Wu Y, Hu L T, Yan T Y, Sun Z Y 2019 Appl. Surf. Sci. 469 68Google Scholar

    [56]

    Zhou Z W, Zhang Z Z, He W W, Hao J Y, Sun J, Zhang F, Zheng Z D 2020 Mater. Sci. Forum 1004 712Google Scholar

    [57]

    Gorji M S, Cheong K Y 2015 Crit. Rev. Solid State Mater. Sci. 40 197Google Scholar

    [58]

    Kang M S, Ahn J J, Moon K S, Koo S M 2012 Nanoscale Res. Lett. 7 75Google Scholar

    [59]

    Zheng H, Mahajan B K, Su S C, Mukherjee S, Gangopadhyay K, Gangopadhyay S 2016 Sci. Rep. 6 25234Google Scholar

    [60]

    Gorji M S, Cheong K Y 2015 Appl. Phy. A 118 315Google Scholar

    [61]

    Choi G, Yoon H H, Jung S, Jeon Y, Lee J Y, Bahng W, Park K 2015 Appl. Phys. Lett. 107 1480

    [62]

    Huang L Q, Xia M L, Ma Y, Gu X G 2020 J. Appl. Phys. 127 225301Google Scholar

    [63]

    Shi D K, Wang Y, Wu X, Yang Z Y, Li X J, Yang J Q, Cao F 2021 Solid-State Electron. 180 107992Google Scholar

    [64]

    Triendl F, Pfusterschmied G, Berger C, Schwarz S, Artner W, Schmid U 2021 Thin Solid Films 721 138539Google Scholar

    [65]

    Seyller T 2004 J. Phys. Condens. Matter 16 S1755Google Scholar

    [66]

    Losurdo M, Bruno G, Brown A, Kim T H 2004 Appl. Phy. Lett. 84 4011Google Scholar

    [67]

    Huang L Q, Gu X G 2019 Semicond. Sci. Technol. 34 015011Google Scholar

    [68]

    Huang L Q, Gu X G 2019 J. Appl. Phys. 125 025301Google Scholar

    [69]

    Cichoň S, Machác P, Barda B, Sofer Z 2011 Microelectron. Eng. 88 553Google Scholar

    [70]

    Kwietniewski N, Sochacki M, Szmidt J, Guziewicz M, Kaminska E, Piotrowska A 2008 Appl. Surf. Sci. 254 8106Google Scholar

  • 图 1  (a) 经激光辐射的Au/4H-SiC接触I-V特性曲线; (b) 相应的肖特基势垒高度值柱状图[55]

    Figure 1.  (a) I-V curve of Au/4H-SiC contacts with laser irradiation; (b) histograms of corresponding Schottky barrier height values[55].

    图 2  Ni/TiO2/p-type 4H-SiC接触 (a) 结构及 (b) 能带图[61]

    Figure 2.  Schematic illustration of the contact (a) structure and (b) energy band diagram of Ni/TiO2/p-type 4H-SiC[61].

    图 3  经不同表面处理后的XPS (a) Si 2p; (b) C 1s谱[67]

    Figure 3.  XPS spectra of p-type 4H-SiC surfaces with different pretreatments: (a) Si 2p spectra; (b) C 1s spectra[67].

    Baidu
  • [1]

    Kimoto T, Cooper J A 2014 Fundamentals of Silicon Carbide Technology (Singapore: John Wiley & Sons Singapore Pte. Ltd) pp1−538

    [2]

    盛况, 郭清, 张军明, 钱照明 2012 中国电机工程学报 32 1

    Sheng K, Guo Q, Zhang J M, Qian Z M 2012 Proc. Chin. Soc. Elect. Eng. 32 1

    [3]

    She X, Huang A Q, Lucía Ó, Ozpineci B 2017 IEEE Trans. Ind. Electron. 64 8193Google Scholar

    [4]

    Zekentes K 2018 Advancing Silicon Carbide Electronics Technology I: Metal Contacts to Silicon Carbide: Physics, Technology, Applications (Millersville: Materials Research Forum LLC) pp1−238

    [5]

    Gao M M, Hu T T, Chen Z Z 2019 IEEE Trans. Electron Devices 66 3929Google Scholar

    [6]

    He Y J, Lv H L, Tang X Y, Song Q W, Zhang Y M, Han C, Guo T, He X N, Zhang Y M, Zhang Y M 2019 J. Alloys Compd. 805 999Google Scholar

    [7]

    Badila M, Brezeanu G, Millan J, Godignon P, Banu V 2002 Diamond Relat. Mater. 11 1258Google Scholar

    [8]

    Cheng J C, Tsui B Y 2017 IEEE Electron Device Lett. 38 1700Google Scholar

    [9]

    Omar S U, Sudarshan T S, Rana T A, Song H, Chandrashekhar M 2015 IEEE Trans. Electron Devices 62 615Google Scholar

    [10]

    Vivona M, Greco G, Bongiorno C, Nigro R L, Scalese S, Roccaforte F 2017 Appl. Surf. Sci. 420 331Google Scholar

    [11]

    Huang L Q, Liu B B, Zhu Q Z, Chen S H, Gao M C, Qin F W, Wang D J 2012 Appl. Phys. Lett. 100 263503Google Scholar

    [12]

    Huang L Q, Qin F W, Li S J, Wang D J 2013 Appl. Phys. Lett. 103 033520Google Scholar

    [13]

    Liu S B, He Z, Zheng L, Liu B, Zhang F, Dong L, Tian L X, Shen Z W, Wang J Z, Huang Y J, Fan Z C, Liu X F, Yan G G, Zhao W S, Wang L, Sun G S, Yang F H, Zeng Y P 2014 Appl. Phys. Lett. 105 122106Google Scholar

    [14]

    Wang Z T, Liu W, Wang C Q 2016 J. Electron. Mater. 45 267Google Scholar

    [15]

    Huang L Q, Xia M L, Gu X G 2020 J. Cryst. Growth. 531 125353Google Scholar

    [16]

    Addamiano A 1970 US Patent 3 510 733

    [17]

    Hamad V A, Tannous T A, Soueidan M, Gremillard L, Zaatar Y 2020 Microelectron. Reliab. 110 113694Google Scholar

    [18]

    Zhang Y M, Guo T, Tang X Y, Yang J, He Y J, Zhang Y M 2018 J. Alloys Compd. 731 1267Google Scholar

    [19]

    Kragh-Buetow K C, Okojie R S, Lukco D, Mohney S E 2015 Semicond. Sci. Technol. 30 105019Google Scholar

    [20]

    Okojie R S, Lukco D 2016 J. Appl. Phys. 120 215301Google Scholar

    [21]

    Joo S J, Baek S, Kim S C, Lee J S 2013 J. Electron. Mater. 42 2897Google Scholar

    [22]

    Shimizu H, Shima A, Shimamoto Y, Iwamuro N 2017 Jpn. J. Appl. Phys. 56 04CR15Google Scholar

    [23]

    Sung W, Baliga B J 2016 IEEE Electron Device Lett. 37 1605Google Scholar

    [24]

    Hertel S, Waldmann D, Jobst J, Albert A, Albrecht M, Reshanov S, Sch Ner A, Krieger M, Weber H B 2012 Nat. Commun. 3 957Google Scholar

    [25]

    Kumar S V, Amaral M R, Lukas K, Lars K, Giovanni A 2018 Mater. Sci. Forum 924 413Google Scholar

    [26]

    Wu Y, Ji L F, Lin Z Y, Hong M H, Wang S C, Zhang Y Z 2019 Curr. Appl. Phys. 19 521Google Scholar

    [27]

    Li F, Sharma Y, Walker D, Hindmarsh S, Mawby P 2016 IEEE Electron Device Lett. 37 1189Google Scholar

    [28]

    Wu S Y, Campbell R B 1974 Solid-State Electronics 17 683

    [29]

    Wahab Q, Ellison A, Henry A, Janzén E, Hallin C, Di Persio J, Martinez R 2000 Appl. Phys. Lett. 76 2725Google Scholar

    [30]

    Li J L, Li Y, Wang L, Xu Y, Yang F, Han P, Ji X L 2019 Chin. Phys. B 28 027303Google Scholar

    [31]

    Pristavu G, Brezeanu G, Badila M, Pascu R, Danila M, Godignon P 2015 Appl. Phys. Lett. 106 223704

    [32]

    Cowley A M, Sze S M 1965 Jpn. J. Appl. Phys. 36 3212Google Scholar

    [33]

    Tsui B Y, Cheng J C, Yen C T, Lee C Y 2017 Solid-State Electron. 133 83Google Scholar

    [34]

    Yang Z Y, Wang Y, Li X J, Yang J Q, Shi D K, Cao F 2021 Microelectron. Eng. 239 111531

    [35]

    Song Q W, Zhang Y M, Zhang Y M, Cheng F P, Tang X Y 2011 Chin. Phys. B 20 057301Google Scholar

    [36]

    Lee K Y, Huang Y H 2012 IEEE Trans. Electron Devices 59 694Google Scholar

    [37]

    Han L C, Shen H J, Liu K A, Wang Y Y, Tang Y D, Yun B, Xu H Y 2014 Chin. Phys. B 23 127302Google Scholar

    [38]

    Dong S X, Bai Y, Tang Y D, Chen H, Tian X L, Yang C Y, Liu X Y 2018 Chin. Phys. B 27 97305Google Scholar

    [39]

    Dhar S, Seitz O, Halls M D, Choi S, Chabal Y J, Feldman L C 2009 J. Am. Chem. Soc. 131 16808Google Scholar

    [40]

    Hashimoto K, Doi T, Shibayama S, Nakatsuka O 2020 Jpn. J. Appl. Phys. 59 SGGD16Google Scholar

    [41]

    Zaremba G, Adamus Z, Jung W, Kaminska E, Borysiewicz M A, Korwin-Mikke K 2012 Mater. Sci. Eng. 177 1323Google Scholar

    [42]

    Heine V 1965 Phys. Rev. 138 1689Google Scholar

    [43]

    Mönch W 1994 Control of Semiconductor Interfaces (Amsterdam: Elsevier) pp169−174

    [44]

    Tung R T 2000 Phys. Rev. Lett. 84 6078Google Scholar

    [45]

    Aboelfotoh M O, Fröjdh C, Petersson C S 2003 Phys. Rev. B 67 075312Google Scholar

    [46]

    Gao M, Tsukimoto S, Goss S H, Tumakha S P, Onishi T, Murakami M, Brillson L J 2007 J. Electron. Mater. 36 277Google Scholar

    [47]

    Nakayama T 2019 International Workshop on Junction Technology (IWJT) Kyoto, Japan, June 6–7, 2019 pp1–5

    [48]

    Tsui B Y, Cheng J C, Lee L S, Lee C Y, Tsai M J 2014 Jpn. J. Appl. Phys. 53 04EP10Google Scholar

    [49]

    Brillson L J 2007 J. Vac. Sci. Technol., A 25 943Google Scholar

    [50]

    Roccaforte F, Bongiorno C, Via F L, Raineri V 2004 Appl. Phy. Lett. 85 6152Google Scholar

    [51]

    Çınar K, Coşkun C, Gür E, Aydoğan Ş 2009 Nucl. Instrum. Methods Phys. Res., Sect. B 267 87Google Scholar

    [52]

    Kozlovski V V, Lebedev A A, Levinshtein M E, Rumyantsev S L, Palmour J W 2017 Appl. Phy. Lett. 110 199

    [53]

    Wang D, Hu R, Chen G, Tang C, Ma Y, Gong M, Yu G, Gao S, Li Y, Huang M, Yang Z 2021 Nucl. Instrum. Meth. B 491 52Google Scholar

    [54]

    Adelmann B, Hürner A, Schlegel T, Bauer A J, Frey L, Hellmann R 2013 J. Laser Micro/Nanoeng. 8 97Google Scholar

    [55]

    Lin Z Y, Ji L F, Wu Y, Hu L T, Yan T Y, Sun Z Y 2019 Appl. Surf. Sci. 469 68Google Scholar

    [56]

    Zhou Z W, Zhang Z Z, He W W, Hao J Y, Sun J, Zhang F, Zheng Z D 2020 Mater. Sci. Forum 1004 712Google Scholar

    [57]

    Gorji M S, Cheong K Y 2015 Crit. Rev. Solid State Mater. Sci. 40 197Google Scholar

    [58]

    Kang M S, Ahn J J, Moon K S, Koo S M 2012 Nanoscale Res. Lett. 7 75Google Scholar

    [59]

    Zheng H, Mahajan B K, Su S C, Mukherjee S, Gangopadhyay K, Gangopadhyay S 2016 Sci. Rep. 6 25234Google Scholar

    [60]

    Gorji M S, Cheong K Y 2015 Appl. Phy. A 118 315Google Scholar

    [61]

    Choi G, Yoon H H, Jung S, Jeon Y, Lee J Y, Bahng W, Park K 2015 Appl. Phys. Lett. 107 1480

    [62]

    Huang L Q, Xia M L, Ma Y, Gu X G 2020 J. Appl. Phys. 127 225301Google Scholar

    [63]

    Shi D K, Wang Y, Wu X, Yang Z Y, Li X J, Yang J Q, Cao F 2021 Solid-State Electron. 180 107992Google Scholar

    [64]

    Triendl F, Pfusterschmied G, Berger C, Schwarz S, Artner W, Schmid U 2021 Thin Solid Films 721 138539Google Scholar

    [65]

    Seyller T 2004 J. Phys. Condens. Matter 16 S1755Google Scholar

    [66]

    Losurdo M, Bruno G, Brown A, Kim T H 2004 Appl. Phy. Lett. 84 4011Google Scholar

    [67]

    Huang L Q, Gu X G 2019 Semicond. Sci. Technol. 34 015011Google Scholar

    [68]

    Huang L Q, Gu X G 2019 J. Appl. Phys. 125 025301Google Scholar

    [69]

    Cichoň S, Machác P, Barda B, Sofer Z 2011 Microelectron. Eng. 88 553Google Scholar

    [70]

    Kwietniewski N, Sochacki M, Szmidt J, Guziewicz M, Kaminska E, Piotrowska A 2008 Appl. Surf. Sci. 254 8106Google Scholar

  • [1] Li Jing-Hui, Cao Sheng-Guo, Han Jia-Ning, Li Zhan-Hai, Zhang Zhen-Hua. Electrical contact properties of 2D metal-semiconductor heterojunctions composed of different phases of NbS2 and GeS2. Acta Physica Sinica, 2024, 73(13): 137102. doi: 10.7498/aps.73.20240530
    [2] Tang Jia-Xin, Li Zhan-Hai, Deng Xiao-Qing, Zhang Zhen-Hua. Electrical contact characteristics and regulatory effects of GaN/VSe2 van der Waals heterojunction. Acta Physica Sinica, 2023, 72(16): 167101. doi: 10.7498/aps.72.20230191
    [3] Huang Min, Li Zhan-Hai, Cheng Fang. Tunable electronic structures and interface contact in graphene/C3N van der Waals heterostructures. Acta Physica Sinica, 2023, 72(14): 147302. doi: 10.7498/aps.72.20230318
    [4] Bi Si-Han, Song Jian-Jun, Zhang Dong, Zhang Shi-Qi. A Ge-based dual channel rectified single ended Schottky barrier field effect transistor for 2.45 GHz microwave wireless energy transmission. Acta Physica Sinica, 2022, 71(20): 208401. doi: 10.7498/aps.71.20220855
    [5] Liang Qian, Qian Guo-Lin, Luo Xiang-Yan, Liang Yong-Chao, Xie Quan. Modulation of MoSH/WSi2N4 Schottky-junction barrier by external electric field and biaxial strain. Acta Physica Sinica, 2022, 71(21): 217301. doi: 10.7498/aps.71.20220882
    [6] Wang Su-Jie, Li Shu-Qiang, Wu Xiao-Ming, Chen Fang, Jiang Feng-Yi. Study on the effect of thermal annealing process on ohmic contact performance of AuGeNi/n-AlGaInP. Acta Physica Sinica, 2020, 69(4): 048103. doi: 10.7498/aps.69.20191720
    [7] Guo Li-Juan, Hu Ji-Song, Ma Xin-Guo, Xiang Ju. Interfacial interaction and Schottky contact of two-dimensional WS2/graphene heterostructure. Acta Physica Sinica, 2019, 68(9): 097101. doi: 10.7498/aps.68.20190020
    [8] Wang Chen, Xu Yi-Hong, Li Cheng, Lin Hai-Jun, Zhao Ming-Jie. Improved performance of Al/n+Ge Ohmic contact andGe n+/p diode by two-step annealing method. Acta Physica Sinica, 2019, 68(17): 178501. doi: 10.7498/aps.68.20190699
    [9] Lu Wu-Yue, Zhang Yong-Ping, Chen Zhi-Zhan, Cheng Yue, Tan Jia-Hui, Shi Wang-Zhou. Effect of different annealing treatment methods on the Ni/SiC contact interface properties. Acta Physica Sinica, 2015, 64(6): 067303. doi: 10.7498/aps.64.067303
    [10] Zhu Yan-Xu, Cao Wei-Wei, Xu Chen, Deng Ye, Zou De-Shu. Effect of different ohmic contact pattern on GaN HEMT electrical properties. Acta Physica Sinica, 2014, 63(11): 117302. doi: 10.7498/aps.63.117302
    [11] Huang Ya-Ping, Yun Feng, Ding Wen, Wang Yue, Wang Hong, Zhao Yu-Kun, Zhang Ye, Guo Mao-Feng, Hou Xun, Liu Shuo. The reflectivity and ohmic contact resistivity of Ni/Ag/Ti/Au in contact with p-GaN. Acta Physica Sinica, 2014, 63(12): 127302. doi: 10.7498/aps.63.127302
    [12] Li Xiao-Jing, Zhao De-Gang, He Xiao-Guang, Wu Liang-Liang, Li Liang, Yang Jing, Le Ling-Cong, Chen Ping, Liu Zong-Shun, Jiang De-Sheng. Influence of different annealing temperature and atmosphere on the Ni/Au Ohmic contact to p-GaN. Acta Physica Sinica, 2013, 62(20): 206801. doi: 10.7498/aps.62.206801
    [13] Wang Xiao-Yong, Chong Ming, Zhao De-Gang, Su Yan-Mei. Two-dimensional hole gas in p-GaN/p-AlxGa1-xN heterojunctions and its influence on Ohmic contact. Acta Physica Sinica, 2012, 61(21): 217302. doi: 10.7498/aps.61.217302
    [14] Pan Shu-Wan, Qi Dong-Feng, Chen Song-Yan, Li Cheng, Huang Wei, Lai Hong-Kai. Se ultrathin film growth on Si(100) substrate and its application in Ti/n-Si(100) ohmic contact. Acta Physica Sinica, 2011, 60(9): 098108. doi: 10.7498/aps.60.098108
    [15] Wang Guang-Xu, Jiang Feng-Yi, Feng Fei-Fei, Liu Jun-Lin, Qiu Chong. N-polar n-type ohmic contact of GaN-based LED on Si substrate. Acta Physica Sinica, 2010, 59(8): 5706-5709. doi: 10.7498/aps.59.5706
    [16] Huang Wei, Chen Zhi-Zhan, Chen Yi, Shi Er-Wei, Zhang Jing-Yu, Liu Qing-Feng, Liu Qian. Effect of Ni thickness on the contact properties of Ni/6H-SiC analyzed by combinatorial method. Acta Physica Sinica, 2010, 59(5): 3466-3472. doi: 10.7498/aps.59.3466
    [17] Huang Wei, Chen Zhi-Zhan, Chen Bo-Yuan, Zhang Jing-Yu, Yan Cheng-Feng, Xiao Bing, Shi Er-Wei. Effect of hydrofluoric acid etching time on Ni/6H-SiC contacts. Acta Physica Sinica, 2009, 58(5): 3443-3447. doi: 10.7498/aps.58.3443
    [18] Tang Xiao-Yan, Zhang Yi-Men, Zhang Yu-Ming. The threshold voltage of SiC Schottky barrier source/drain MOSFET. Acta Physica Sinica, 2009, 58(1): 494-497. doi: 10.7498/aps.58.494
    [19] Wang Yuan, Zhang Yi-Men, Zhang Yu-Ming, Tang Xiao-Yan. A simulation study of 6H-SiC Schottky barrier source/drain MOSFET. Acta Physica Sinica, 2003, 52(10): 2553-2557. doi: 10.7498/aps.52.2553
    [20] WANG YIN-YUE, ZHEN CONG-MIAN, GONG HENG-XIANG, YAN ZHI-JUN, WANG YA-FAN, LIU XUE-QIN, YANG YING-HU, HE SHAN-HU. MEASUREMENT OF THE SPECIFIC CONTACT RESISTANCE OF Au/Ti/p-DIAMOND USING TRANSMIS SION LINE MODEL. Acta Physica Sinica, 2000, 49(7): 1348-1351. doi: 10.7498/aps.49.1348
Metrics
  • Abstract views:  7873
  • PDF Downloads:  301
  • Cited By: 0
Publishing process
  • Received Date:  11 April 2021
  • Accepted Date:  27 June 2021
  • Available Online:  15 August 2021
  • Published Online:  20 October 2021

/

返回文章
返回
Baidu
map