-
Piezoelectric ceramics are mainly used in the electronic fields such as actuators, sensors, etc. However, at present the piezoelectric ceramics widely used are lead-based ceramics, which are detrimental to the environment. Based on the needs of environmental protection and social sustainable development, the research of lead-free piezoelectric ceramics becomes urgent. (K, Na) NbO3 (KNN) lead-free piezoelectric ceramics have attracted much attention due to their high piezoelectric coefficient and Curie temperature. However, temperature stability of ceramics is poor, which limits their applications. In this work, (1–x)(Na0.52K0.48)0.95Li0.05NbO3-xCaZrO3(NKLN-xCZ) ceramics with temperature stability are prepared by two-step synthesis. The effects of CaZrO3 on the phase structure, microstructure and electrical properties of KNN-based ceramics are studied. The results show that the appropriate introduction of CaZrO3 can improve the sintering properties of the samples and obtain dense ceramics. All the samples have typical perovskite structure without impurity. With the increase of CaZrO3, the temperature of orthorhombic(O)-Tetragonal (T) phase transition (TO-T) and Curie temperature (TC) move from high temperature to low temperature, while the transition temperature (TO-R) moves from low temperature to room temperature, and then, tetragonal (T) phase and rhombohedral (R) phase coexist in NKLN-xCZ ceramics as
$0.05 \leqslant x \leqslant0.06 $ . When x = 0.05, the ceramics have high Curie temperature (Tc = 373 ℃), and show good piezoelectric and ferroelectric properties (piezoelectric constant d33 = 198 pC/N, planar electromechanical coupling coefficient kp = 39%, εr = 1140, tanδ = 0.034, Pr = 21 μC/cm2, Ec = 18.2 kV/cm) because of the density of ceramics and existence of R-T phase boundary around room temperature. In addition, the relative permittivity of ceramics changes with the increase of frequency, which shows a certain relaxation behavior. The relaxation characteristics can be expressed by the modified Curie-Weiss law (1/εr–1/εr,m) = C(T–Tm)α. With the increase of CZ content, the dispersion coefficient α of ceramics increases (x = 0.07, α = 1.96), which can be ascribed to A-site cation disorder induced by the addition of CZ. The temperature range of phase transition is widened because of the diffused R-T phase transition. Therefore, the ceramics have temperature-stable electrical properties: the kp of NKLN-0.05CZ ceramics is kept at 34%–39% (variation of kp$\leqslant 13\% $ ) in a temperature range of –50–150 ℃. It provides methods and ideas for further exploring the temperature stability of KNN-based ceramics.-
Keywords:
- lead-free piezoceramics /
- (K, Na) NbO3 /
- R-T phase boundary /
- temperature stability
[1] Uchinoin K 1997 Piezoelectric Actuators and Ultrasonic Motors (Boston: Springer US) pp265−273
[2] Jaffe B, Cook W R, Jaffe H 1971 Piezoelectric ceramics (New York: Academic Press) pp1−5
[3] Guo R, Cross L E, Park S E, Noheda B, Cox D E, Shirane G 2000 Phys. Rev. Lett. 84 5423
Google Scholar
[4] Wang K, Shen Z Y, Zhang B P, Li J F 2014 J. Inorg. Mater. 29 13
Google Scholar
[5] Xiao D Q, Wu J G, Wu L, Zhu J G, Yu P, Lin D M, Liao Y W, Sun Y 2009 J. Mater. Sci. 44 5408
Google Scholar
[6] Zhang S, Xia R, Shrout T R 2007 J. Electroceram. 19 251
Google Scholar
[7] Rödel J, Jo W, Seifert K T, Anton E M, Granzow T, Damjanovic D 2009 J. Am. Ceram. Soc. 92 1153
Google Scholar
[8] Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84
Google Scholar
[9] Chen K, Xu G, Yang D, Wang X, Li J 2007 J. Appl. Phys. 101 044103
Google Scholar
[10] 陈超, 江向平, 卫巍, 李小红, 魏红斌, 宋福生 2011 60 107704
Google Scholar
Chen C, Jiang X P, Wei W, Li X H, Wei H B, Song F S 2011 Acta Phys. Sin 60 107704
Google Scholar
[11] Liang W, Wu W, Xiao D, Zhu J 2011 J. Am. Ceram. Soc. 94 4317
Google Scholar
[12] Zhang Y, Li L Y, Bai W F, Shen B, Zhai J W, Li B 2015 Rsc Adv. 5 19647
Google Scholar
[13] Zheng T, Wu J, Xiao D, Zhu J, Wang X, Xin L, Lou X 2015 ACS Appl. Mater. Interfaces 7 5927
Google Scholar
[14] Zhang Y, Shen B, Zhai J W, Zeng H R 2016 J. Am. Ceram. Soc. 99 752
Google Scholar
[15] 邢洁, 谭智, 郑婷, 吴家刚, 肖定全, 朱建国 2020 69 127707
Google Scholar
Xing J, Tan Z, Zheng T, Wu J G, Zhu J G 2020 Acta Phys. Sin. 69 127707
Google Scholar
[16] Zhang S J, Xia R, Shrout T R 2007 Appl. Phys. Lett. 91 132913
Google Scholar
[17] Yao F Z, Wang K, Jo W, Webber K G, Comyn T P, Ding J X, Xu B, Cheng L Q, Zheng M P, Hou Y D, Li J F 2016 Adv. Funct. Mater. 26 1217
Google Scholar
[18] Zhang M H, Wang K, Du Y J, Dai G, Sun W, Li G, Hu D, Thong H C, Zhao C, Xi X Q, Yue Z X, Li J F 2017 J. Am. Chem. Soc. 139 3889
Google Scholar
[19] Tao H, Wu H, Liu Y, Zhang Y, Wu J, Li F, Lyu X, Zhao C, Xiao D, Zhu J, Pennycook S J 2019 J. Am. Chem. Soc. 141 13987
Google Scholar
[20] Onoe M, Jumonji H 1967 J. Acoust. Soc. Am. 41 974
Google Scholar
[21] Liang W, Wu W, Xiao D, Zhu J, Wu J 2011 J. Mater. Sci. 46 6871
Google Scholar
[22] Zhang B, Wu J, Wang X, Cheng X, Zhu J, Xiao D 2013 Curr. Appl Phys. 13 1647
Google Scholar
[23] Zuo R, Fang X, Ye C, Li L 2007 J. Am. Ceram. Soc. 90 2424
Google Scholar
[24] Chen X, Zeng J, Kim D, Zheng L, Lou Q, Hong Park C, Li G 2019 Mater. Chem. Phys. 231 173
Google Scholar
[25] Chen X, Ruan X, Zhao K, He X, Zeng J, Li Y, Zheng L, Park C H, Li G 2015 J. Alloys Compd. 632 103
Google Scholar
[26] Zhao P, Zhang B P, Li J F 2007 Appl. Phys. Lett. 90 242909
Google Scholar
[27] Uchino K, Nomura S 1982 Ferroelectrics 44 55
-
-
[1] Uchinoin K 1997 Piezoelectric Actuators and Ultrasonic Motors (Boston: Springer US) pp265−273
[2] Jaffe B, Cook W R, Jaffe H 1971 Piezoelectric ceramics (New York: Academic Press) pp1−5
[3] Guo R, Cross L E, Park S E, Noheda B, Cox D E, Shirane G 2000 Phys. Rev. Lett. 84 5423
Google Scholar
[4] Wang K, Shen Z Y, Zhang B P, Li J F 2014 J. Inorg. Mater. 29 13
Google Scholar
[5] Xiao D Q, Wu J G, Wu L, Zhu J G, Yu P, Lin D M, Liao Y W, Sun Y 2009 J. Mater. Sci. 44 5408
Google Scholar
[6] Zhang S, Xia R, Shrout T R 2007 J. Electroceram. 19 251
Google Scholar
[7] Rödel J, Jo W, Seifert K T, Anton E M, Granzow T, Damjanovic D 2009 J. Am. Ceram. Soc. 92 1153
Google Scholar
[8] Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84
Google Scholar
[9] Chen K, Xu G, Yang D, Wang X, Li J 2007 J. Appl. Phys. 101 044103
Google Scholar
[10] 陈超, 江向平, 卫巍, 李小红, 魏红斌, 宋福生 2011 60 107704
Google Scholar
Chen C, Jiang X P, Wei W, Li X H, Wei H B, Song F S 2011 Acta Phys. Sin 60 107704
Google Scholar
[11] Liang W, Wu W, Xiao D, Zhu J 2011 J. Am. Ceram. Soc. 94 4317
Google Scholar
[12] Zhang Y, Li L Y, Bai W F, Shen B, Zhai J W, Li B 2015 Rsc Adv. 5 19647
Google Scholar
[13] Zheng T, Wu J, Xiao D, Zhu J, Wang X, Xin L, Lou X 2015 ACS Appl. Mater. Interfaces 7 5927
Google Scholar
[14] Zhang Y, Shen B, Zhai J W, Zeng H R 2016 J. Am. Ceram. Soc. 99 752
Google Scholar
[15] 邢洁, 谭智, 郑婷, 吴家刚, 肖定全, 朱建国 2020 69 127707
Google Scholar
Xing J, Tan Z, Zheng T, Wu J G, Zhu J G 2020 Acta Phys. Sin. 69 127707
Google Scholar
[16] Zhang S J, Xia R, Shrout T R 2007 Appl. Phys. Lett. 91 132913
Google Scholar
[17] Yao F Z, Wang K, Jo W, Webber K G, Comyn T P, Ding J X, Xu B, Cheng L Q, Zheng M P, Hou Y D, Li J F 2016 Adv. Funct. Mater. 26 1217
Google Scholar
[18] Zhang M H, Wang K, Du Y J, Dai G, Sun W, Li G, Hu D, Thong H C, Zhao C, Xi X Q, Yue Z X, Li J F 2017 J. Am. Chem. Soc. 139 3889
Google Scholar
[19] Tao H, Wu H, Liu Y, Zhang Y, Wu J, Li F, Lyu X, Zhao C, Xiao D, Zhu J, Pennycook S J 2019 J. Am. Chem. Soc. 141 13987
Google Scholar
[20] Onoe M, Jumonji H 1967 J. Acoust. Soc. Am. 41 974
Google Scholar
[21] Liang W, Wu W, Xiao D, Zhu J, Wu J 2011 J. Mater. Sci. 46 6871
Google Scholar
[22] Zhang B, Wu J, Wang X, Cheng X, Zhu J, Xiao D 2013 Curr. Appl Phys. 13 1647
Google Scholar
[23] Zuo R, Fang X, Ye C, Li L 2007 J. Am. Ceram. Soc. 90 2424
Google Scholar
[24] Chen X, Zeng J, Kim D, Zheng L, Lou Q, Hong Park C, Li G 2019 Mater. Chem. Phys. 231 173
Google Scholar
[25] Chen X, Ruan X, Zhao K, He X, Zeng J, Li Y, Zheng L, Park C H, Li G 2015 J. Alloys Compd. 632 103
Google Scholar
[26] Zhao P, Zhang B P, Li J F 2007 Appl. Phys. Lett. 90 242909
Google Scholar
[27] Uchino K, Nomura S 1982 Ferroelectrics 44 55
Catalog
Metrics
- Abstract views: 5532
- PDF Downloads: 86
- Cited By: 0