-
Piezoelectric ceramics are mainly used in the electronic fields such as actuators, sensors, etc. However, at present the piezoelectric ceramics widely used are lead-based ceramics, which are detrimental to the environment. Based on the needs of environmental protection and social sustainable development, the research of lead-free piezoelectric ceramics becomes urgent. (K, Na) NbO3 (KNN) lead-free piezoelectric ceramics have attracted much attention due to their high piezoelectric coefficient and Curie temperature. However, temperature stability of ceramics is poor, which limits their applications. In this work, (1–x)(Na0.52K0.48)0.95Li0.05NbO3-xCaZrO3(NKLN-xCZ) ceramics with temperature stability are prepared by two-step synthesis. The effects of CaZrO3 on the phase structure, microstructure and electrical properties of KNN-based ceramics are studied. The results show that the appropriate introduction of CaZrO3 can improve the sintering properties of the samples and obtain dense ceramics. All the samples have typical perovskite structure without impurity. With the increase of CaZrO3, the temperature of orthorhombic(O)-Tetragonal (T) phase transition (TO-T) and Curie temperature (TC) move from high temperature to low temperature, while the transition temperature (TO-R) moves from low temperature to room temperature, and then, tetragonal (T) phase and rhombohedral (R) phase coexist in NKLN-xCZ ceramics as
$0.05 \leqslant x \leqslant0.06 $ . When x = 0.05, the ceramics have high Curie temperature (Tc = 373 ℃), and show good piezoelectric and ferroelectric properties (piezoelectric constant d33 = 198 pC/N, planar electromechanical coupling coefficient kp = 39%, εr = 1140, tanδ = 0.034, Pr = 21 μC/cm2, Ec = 18.2 kV/cm) because of the density of ceramics and existence of R-T phase boundary around room temperature. In addition, the relative permittivity of ceramics changes with the increase of frequency, which shows a certain relaxation behavior. The relaxation characteristics can be expressed by the modified Curie-Weiss law (1/εr–1/εr,m) = C(T–Tm)α. With the increase of CZ content, the dispersion coefficient α of ceramics increases (x = 0.07, α = 1.96), which can be ascribed to A-site cation disorder induced by the addition of CZ. The temperature range of phase transition is widened because of the diffused R-T phase transition. Therefore, the ceramics have temperature-stable electrical properties: the kp of NKLN-0.05CZ ceramics is kept at 34%–39% (variation of kp$\leqslant 13\% $ ) in a temperature range of –50–150 ℃. It provides methods and ideas for further exploring the temperature stability of KNN-based ceramics.-
Keywords:
- lead-free piezoceramics /
- (K, Na) NbO3 /
- R-T phase boundary /
- temperature stability
[1] Uchinoin K 1997 Piezoelectric Actuators and Ultrasonic Motors (Boston: Springer US) pp265−273
[2] Jaffe B, Cook W R, Jaffe H 1971 Piezoelectric ceramics (New York: Academic Press) pp1−5
[3] Guo R, Cross L E, Park S E, Noheda B, Cox D E, Shirane G 2000 Phys. Rev. Lett. 84 5423Google Scholar
[4] Wang K, Shen Z Y, Zhang B P, Li J F 2014 J. Inorg. Mater. 29 13Google Scholar
[5] Xiao D Q, Wu J G, Wu L, Zhu J G, Yu P, Lin D M, Liao Y W, Sun Y 2009 J. Mater. Sci. 44 5408Google Scholar
[6] Zhang S, Xia R, Shrout T R 2007 J. Electroceram. 19 251Google Scholar
[7] Rödel J, Jo W, Seifert K T, Anton E M, Granzow T, Damjanovic D 2009 J. Am. Ceram. Soc. 92 1153Google Scholar
[8] Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84Google Scholar
[9] Chen K, Xu G, Yang D, Wang X, Li J 2007 J. Appl. Phys. 101 044103Google Scholar
[10] 陈超, 江向平, 卫巍, 李小红, 魏红斌, 宋福生 2011 60 107704Google Scholar
Chen C, Jiang X P, Wei W, Li X H, Wei H B, Song F S 2011 Acta Phys. Sin 60 107704Google Scholar
[11] Liang W, Wu W, Xiao D, Zhu J 2011 J. Am. Ceram. Soc. 94 4317Google Scholar
[12] Zhang Y, Li L Y, Bai W F, Shen B, Zhai J W, Li B 2015 Rsc Adv. 5 19647Google Scholar
[13] Zheng T, Wu J, Xiao D, Zhu J, Wang X, Xin L, Lou X 2015 ACS Appl. Mater. Interfaces 7 5927Google Scholar
[14] Zhang Y, Shen B, Zhai J W, Zeng H R 2016 J. Am. Ceram. Soc. 99 752Google Scholar
[15] 邢洁, 谭智, 郑婷, 吴家刚, 肖定全, 朱建国 2020 69 127707Google Scholar
Xing J, Tan Z, Zheng T, Wu J G, Zhu J G 2020 Acta Phys. Sin. 69 127707Google Scholar
[16] Zhang S J, Xia R, Shrout T R 2007 Appl. Phys. Lett. 91 132913Google Scholar
[17] Yao F Z, Wang K, Jo W, Webber K G, Comyn T P, Ding J X, Xu B, Cheng L Q, Zheng M P, Hou Y D, Li J F 2016 Adv. Funct. Mater. 26 1217Google Scholar
[18] Zhang M H, Wang K, Du Y J, Dai G, Sun W, Li G, Hu D, Thong H C, Zhao C, Xi X Q, Yue Z X, Li J F 2017 J. Am. Chem. Soc. 139 3889Google Scholar
[19] Tao H, Wu H, Liu Y, Zhang Y, Wu J, Li F, Lyu X, Zhao C, Xiao D, Zhu J, Pennycook S J 2019 J. Am. Chem. Soc. 141 13987Google Scholar
[20] Onoe M, Jumonji H 1967 J. Acoust. Soc. Am. 41 974Google Scholar
[21] Liang W, Wu W, Xiao D, Zhu J, Wu J 2011 J. Mater. Sci. 46 6871Google Scholar
[22] Zhang B, Wu J, Wang X, Cheng X, Zhu J, Xiao D 2013 Curr. Appl Phys. 13 1647Google Scholar
[23] Zuo R, Fang X, Ye C, Li L 2007 J. Am. Ceram. Soc. 90 2424Google Scholar
[24] Chen X, Zeng J, Kim D, Zheng L, Lou Q, Hong Park C, Li G 2019 Mater. Chem. Phys. 231 173Google Scholar
[25] Chen X, Ruan X, Zhao K, He X, Zeng J, Li Y, Zheng L, Park C H, Li G 2015 J. Alloys Compd. 632 103Google Scholar
[26] Zhao P, Zhang B P, Li J F 2007 Appl. Phys. Lett. 90 242909Google Scholar
[27] Uchino K, Nomura S 1982 Ferroelectrics 44 55
-
-
[1] Uchinoin K 1997 Piezoelectric Actuators and Ultrasonic Motors (Boston: Springer US) pp265−273
[2] Jaffe B, Cook W R, Jaffe H 1971 Piezoelectric ceramics (New York: Academic Press) pp1−5
[3] Guo R, Cross L E, Park S E, Noheda B, Cox D E, Shirane G 2000 Phys. Rev. Lett. 84 5423Google Scholar
[4] Wang K, Shen Z Y, Zhang B P, Li J F 2014 J. Inorg. Mater. 29 13Google Scholar
[5] Xiao D Q, Wu J G, Wu L, Zhu J G, Yu P, Lin D M, Liao Y W, Sun Y 2009 J. Mater. Sci. 44 5408Google Scholar
[6] Zhang S, Xia R, Shrout T R 2007 J. Electroceram. 19 251Google Scholar
[7] Rödel J, Jo W, Seifert K T, Anton E M, Granzow T, Damjanovic D 2009 J. Am. Ceram. Soc. 92 1153Google Scholar
[8] Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84Google Scholar
[9] Chen K, Xu G, Yang D, Wang X, Li J 2007 J. Appl. Phys. 101 044103Google Scholar
[10] 陈超, 江向平, 卫巍, 李小红, 魏红斌, 宋福生 2011 60 107704Google Scholar
Chen C, Jiang X P, Wei W, Li X H, Wei H B, Song F S 2011 Acta Phys. Sin 60 107704Google Scholar
[11] Liang W, Wu W, Xiao D, Zhu J 2011 J. Am. Ceram. Soc. 94 4317Google Scholar
[12] Zhang Y, Li L Y, Bai W F, Shen B, Zhai J W, Li B 2015 Rsc Adv. 5 19647Google Scholar
[13] Zheng T, Wu J, Xiao D, Zhu J, Wang X, Xin L, Lou X 2015 ACS Appl. Mater. Interfaces 7 5927Google Scholar
[14] Zhang Y, Shen B, Zhai J W, Zeng H R 2016 J. Am. Ceram. Soc. 99 752Google Scholar
[15] 邢洁, 谭智, 郑婷, 吴家刚, 肖定全, 朱建国 2020 69 127707Google Scholar
Xing J, Tan Z, Zheng T, Wu J G, Zhu J G 2020 Acta Phys. Sin. 69 127707Google Scholar
[16] Zhang S J, Xia R, Shrout T R 2007 Appl. Phys. Lett. 91 132913Google Scholar
[17] Yao F Z, Wang K, Jo W, Webber K G, Comyn T P, Ding J X, Xu B, Cheng L Q, Zheng M P, Hou Y D, Li J F 2016 Adv. Funct. Mater. 26 1217Google Scholar
[18] Zhang M H, Wang K, Du Y J, Dai G, Sun W, Li G, Hu D, Thong H C, Zhao C, Xi X Q, Yue Z X, Li J F 2017 J. Am. Chem. Soc. 139 3889Google Scholar
[19] Tao H, Wu H, Liu Y, Zhang Y, Wu J, Li F, Lyu X, Zhao C, Xiao D, Zhu J, Pennycook S J 2019 J. Am. Chem. Soc. 141 13987Google Scholar
[20] Onoe M, Jumonji H 1967 J. Acoust. Soc. Am. 41 974Google Scholar
[21] Liang W, Wu W, Xiao D, Zhu J, Wu J 2011 J. Mater. Sci. 46 6871Google Scholar
[22] Zhang B, Wu J, Wang X, Cheng X, Zhu J, Xiao D 2013 Curr. Appl Phys. 13 1647Google Scholar
[23] Zuo R, Fang X, Ye C, Li L 2007 J. Am. Ceram. Soc. 90 2424Google Scholar
[24] Chen X, Zeng J, Kim D, Zheng L, Lou Q, Hong Park C, Li G 2019 Mater. Chem. Phys. 231 173Google Scholar
[25] Chen X, Ruan X, Zhao K, He X, Zeng J, Li Y, Zheng L, Park C H, Li G 2015 J. Alloys Compd. 632 103Google Scholar
[26] Zhao P, Zhang B P, Li J F 2007 Appl. Phys. Lett. 90 242909Google Scholar
[27] Uchino K, Nomura S 1982 Ferroelectrics 44 55
Catalog
Metrics
- Abstract views: 4943
- PDF Downloads: 82
- Cited By: 0