Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Temperature-stable electrical properties of CaZrO3-modified (Na, K)NbO3-based lead-free piezoceramics

Chen Xiao-Ming Wang Ming-Yan Karaki Tomoaki Li Guo-Rong

Citation:

Temperature-stable electrical properties of CaZrO3-modified (Na, K)NbO3-based lead-free piezoceramics

Chen Xiao-Ming, Wang Ming-Yan, Karaki Tomoaki, Li Guo-Rong
cstr: 32037.14.aps.70.20210440
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Piezoelectric ceramics are mainly used in the electronic fields such as actuators, sensors, etc. However, at present the piezoelectric ceramics widely used are lead-based ceramics, which are detrimental to the environment. Based on the needs of environmental protection and social sustainable development, the research of lead-free piezoelectric ceramics becomes urgent. (K, Na) NbO3 (KNN) lead-free piezoelectric ceramics have attracted much attention due to their high piezoelectric coefficient and Curie temperature. However, temperature stability of ceramics is poor, which limits their applications. In this work, (1–x)(Na0.52K0.48)0.95Li0.05NbO3-xCaZrO3(NKLN-xCZ) ceramics with temperature stability are prepared by two-step synthesis. The effects of CaZrO3 on the phase structure, microstructure and electrical properties of KNN-based ceramics are studied. The results show that the appropriate introduction of CaZrO3 can improve the sintering properties of the samples and obtain dense ceramics. All the samples have typical perovskite structure without impurity. With the increase of CaZrO3, the temperature of orthorhombic(O)-Tetragonal (T) phase transition (TO-T) and Curie temperature (TC) move from high temperature to low temperature, while the transition temperature (TO-R) moves from low temperature to room temperature, and then, tetragonal (T) phase and rhombohedral (R) phase coexist in NKLN-xCZ ceramics as $0.05 \leqslant x \leqslant0.06 $. When x = 0.05, the ceramics have high Curie temperature (Tc = 373 ℃), and show good piezoelectric and ferroelectric properties (piezoelectric constant d33 = 198 pC/N, planar electromechanical coupling coefficient kp = 39%, εr = 1140, tanδ = 0.034, Pr = 21 μC/cm2, Ec = 18.2 kV/cm) because of the density of ceramics and existence of R-T phase boundary around room temperature. In addition, the relative permittivity of ceramics changes with the increase of frequency, which shows a certain relaxation behavior. The relaxation characteristics can be expressed by the modified Curie-Weiss law (1/εr–1/εr,m) = C(TTm)α. With the increase of CZ content, the dispersion coefficient α of ceramics increases (x = 0.07, α = 1.96), which can be ascribed to A-site cation disorder induced by the addition of CZ. The temperature range of phase transition is widened because of the diffused R-T phase transition. Therefore, the ceramics have temperature-stable electrical properties: the kp of NKLN-0.05CZ ceramics is kept at 34%–39% (variation of kp $\leqslant 13\% $) in a temperature range of –50–150 ℃. It provides methods and ideas for further exploring the temperature stability of KNN-based ceramics.
      Corresponding author: Chen Xiao-Ming, chen-xm123@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52162015), the Science and Technology Fund of Education Bureau of Guizhou Province, China (Grant No. [2020]1Y204), the Natural Science Foundation of Department of Education of Guizhou Province, China (Grant No. KY [2018]253), and the Doctor Starting Foundation of Guizhou Institute of Technology, China (Grant No. XJGC20190920)
    [1]

    Uchinoin K 1997 Piezoelectric Actuators and Ultrasonic Motors (Boston: Springer US) pp265−273

    [2]

    Jaffe B, Cook W R, Jaffe H 1971 Piezoelectric ceramics (New York: Academic Press) pp1−5

    [3]

    Guo R, Cross L E, Park S E, Noheda B, Cox D E, Shirane G 2000 Phys. Rev. Lett. 84 5423Google Scholar

    [4]

    Wang K, Shen Z Y, Zhang B P, Li J F 2014 J. Inorg. Mater. 29 13Google Scholar

    [5]

    Xiao D Q, Wu J G, Wu L, Zhu J G, Yu P, Lin D M, Liao Y W, Sun Y 2009 J. Mater. Sci. 44 5408Google Scholar

    [6]

    Zhang S, Xia R, Shrout T R 2007 J. Electroceram. 19 251Google Scholar

    [7]

    Rödel J, Jo W, Seifert K T, Anton E M, Granzow T, Damjanovic D 2009 J. Am. Ceram. Soc. 92 1153Google Scholar

    [8]

    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84Google Scholar

    [9]

    Chen K, Xu G, Yang D, Wang X, Li J 2007 J. Appl. Phys. 101 044103Google Scholar

    [10]

    陈超, 江向平, 卫巍, 李小红, 魏红斌, 宋福生 2011 60 107704Google Scholar

    Chen C, Jiang X P, Wei W, Li X H, Wei H B, Song F S 2011 Acta Phys. Sin 60 107704Google Scholar

    [11]

    Liang W, Wu W, Xiao D, Zhu J 2011 J. Am. Ceram. Soc. 94 4317Google Scholar

    [12]

    Zhang Y, Li L Y, Bai W F, Shen B, Zhai J W, Li B 2015 Rsc Adv. 5 19647Google Scholar

    [13]

    Zheng T, Wu J, Xiao D, Zhu J, Wang X, Xin L, Lou X 2015 ACS Appl. Mater. Interfaces 7 5927Google Scholar

    [14]

    Zhang Y, Shen B, Zhai J W, Zeng H R 2016 J. Am. Ceram. Soc. 99 752Google Scholar

    [15]

    邢洁, 谭智, 郑婷, 吴家刚, 肖定全, 朱建国 2020 69 127707Google Scholar

    Xing J, Tan Z, Zheng T, Wu J G, Zhu J G 2020 Acta Phys. Sin. 69 127707Google Scholar

    [16]

    Zhang S J, Xia R, Shrout T R 2007 Appl. Phys. Lett. 91 132913Google Scholar

    [17]

    Yao F Z, Wang K, Jo W, Webber K G, Comyn T P, Ding J X, Xu B, Cheng L Q, Zheng M P, Hou Y D, Li J F 2016 Adv. Funct. Mater. 26 1217Google Scholar

    [18]

    Zhang M H, Wang K, Du Y J, Dai G, Sun W, Li G, Hu D, Thong H C, Zhao C, Xi X Q, Yue Z X, Li J F 2017 J. Am. Chem. Soc. 139 3889Google Scholar

    [19]

    Tao H, Wu H, Liu Y, Zhang Y, Wu J, Li F, Lyu X, Zhao C, Xiao D, Zhu J, Pennycook S J 2019 J. Am. Chem. Soc. 141 13987Google Scholar

    [20]

    Onoe M, Jumonji H 1967 J. Acoust. Soc. Am. 41 974Google Scholar

    [21]

    Liang W, Wu W, Xiao D, Zhu J, Wu J 2011 J. Mater. Sci. 46 6871Google Scholar

    [22]

    Zhang B, Wu J, Wang X, Cheng X, Zhu J, Xiao D 2013 Curr. Appl Phys. 13 1647Google Scholar

    [23]

    Zuo R, Fang X, Ye C, Li L 2007 J. Am. Ceram. Soc. 90 2424Google Scholar

    [24]

    Chen X, Zeng J, Kim D, Zheng L, Lou Q, Hong Park C, Li G 2019 Mater. Chem. Phys. 231 173Google Scholar

    [25]

    Chen X, Ruan X, Zhao K, He X, Zeng J, Li Y, Zheng L, Park C H, Li G 2015 J. Alloys Compd. 632 103Google Scholar

    [26]

    Zhao P, Zhang B P, Li J F 2007 Appl. Phys. Lett. 90 242909Google Scholar

    [27]

    Uchino K, Nomura S 1982 Ferroelectrics 44 55

  • 图 1  NKLN-xCZ陶瓷的表面形貌 (a) x = 0; (b) x = 0.04; (c) x = 0.05; (d) x = 0.09

    Figure 1.  SEM surface micrographs of NKLN-xCZ ceramics: (a) x = 0; (b) x = 0.04; (c) x = 0.05; (d) x = 0.09.

    图 2  NKLN-xCZ陶瓷密度

    Figure 2.  Density of the NKLN-xCZ ceramics.

    图 3  (a) NKLN-xCZ陶瓷晶相结构; (b) NKLN-xCZ陶瓷在40°−50°特征峰

    Figure 3.  (a) X-ray diffraction patterns of NKLN-xCZ ceramics; (b) the magnification for NKLN-CZ ceramics in the range of 40°−50°.

    图 4  在–100到200 ℃温度范围内NKLN-xCZ陶瓷的介温曲线(1 kHz)

    Figure 4.  Temperature dependence of dielectric constant and dielectric loss for NKLN-.CZ ceramics measured at 1 kHz in the temperature range from –100 to 200 ℃.

    图 5  (a)−(c)在30到500 ℃温度范围内NKLN-xCZ陶瓷介温曲线; (d) NKLN-xCZ陶瓷ln(1/εr–1/εm)与ln(TTm)关系曲线

    Figure 5.  (a)−(c) Temperature dependence of dielectric constant for NKLN-xCZ ceramics in the temperature range from 30 to 500 ℃; (d) plots of ln(1/εr–1/εm) as a function of ln(TTm) for the NKLN-xCZ ceramics.

    图 6  NKLN-xCZ陶瓷的相图

    Figure 6.  Phase diagram of NKLN-xCZ ceramics.

    图 7  NKLN-xCZ陶瓷的铁电性能

    Figure 7.  Ferroelectric properties of NKLN-xCZ ceramics

    图 8  NKLN-xCZ陶瓷的压电与介电性能

    Figure 8.  piezoelectric and dielectric properties of NKLN-xCZ ceramics.

    图 9  (a)NKLN-0.05 CZ陶瓷性能温度稳定性; (b)−(f) NKLN–0.05 CZ陶瓷谐振-反谐振图谱(T = –50, 25, 50, 100, 150 ℃)

    Figure 9.  (a) The temperature-stable electrical properties of NKLN-0.05 CZ ceramics; (b)−(f) impedance as a function of frequency of NKLN-0.05 CZ ceramics (T = –50, 25, 50, 100, 150 ℃).

    Baidu
  • [1]

    Uchinoin K 1997 Piezoelectric Actuators and Ultrasonic Motors (Boston: Springer US) pp265−273

    [2]

    Jaffe B, Cook W R, Jaffe H 1971 Piezoelectric ceramics (New York: Academic Press) pp1−5

    [3]

    Guo R, Cross L E, Park S E, Noheda B, Cox D E, Shirane G 2000 Phys. Rev. Lett. 84 5423Google Scholar

    [4]

    Wang K, Shen Z Y, Zhang B P, Li J F 2014 J. Inorg. Mater. 29 13Google Scholar

    [5]

    Xiao D Q, Wu J G, Wu L, Zhu J G, Yu P, Lin D M, Liao Y W, Sun Y 2009 J. Mater. Sci. 44 5408Google Scholar

    [6]

    Zhang S, Xia R, Shrout T R 2007 J. Electroceram. 19 251Google Scholar

    [7]

    Rödel J, Jo W, Seifert K T, Anton E M, Granzow T, Damjanovic D 2009 J. Am. Ceram. Soc. 92 1153Google Scholar

    [8]

    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84Google Scholar

    [9]

    Chen K, Xu G, Yang D, Wang X, Li J 2007 J. Appl. Phys. 101 044103Google Scholar

    [10]

    陈超, 江向平, 卫巍, 李小红, 魏红斌, 宋福生 2011 60 107704Google Scholar

    Chen C, Jiang X P, Wei W, Li X H, Wei H B, Song F S 2011 Acta Phys. Sin 60 107704Google Scholar

    [11]

    Liang W, Wu W, Xiao D, Zhu J 2011 J. Am. Ceram. Soc. 94 4317Google Scholar

    [12]

    Zhang Y, Li L Y, Bai W F, Shen B, Zhai J W, Li B 2015 Rsc Adv. 5 19647Google Scholar

    [13]

    Zheng T, Wu J, Xiao D, Zhu J, Wang X, Xin L, Lou X 2015 ACS Appl. Mater. Interfaces 7 5927Google Scholar

    [14]

    Zhang Y, Shen B, Zhai J W, Zeng H R 2016 J. Am. Ceram. Soc. 99 752Google Scholar

    [15]

    邢洁, 谭智, 郑婷, 吴家刚, 肖定全, 朱建国 2020 69 127707Google Scholar

    Xing J, Tan Z, Zheng T, Wu J G, Zhu J G 2020 Acta Phys. Sin. 69 127707Google Scholar

    [16]

    Zhang S J, Xia R, Shrout T R 2007 Appl. Phys. Lett. 91 132913Google Scholar

    [17]

    Yao F Z, Wang K, Jo W, Webber K G, Comyn T P, Ding J X, Xu B, Cheng L Q, Zheng M P, Hou Y D, Li J F 2016 Adv. Funct. Mater. 26 1217Google Scholar

    [18]

    Zhang M H, Wang K, Du Y J, Dai G, Sun W, Li G, Hu D, Thong H C, Zhao C, Xi X Q, Yue Z X, Li J F 2017 J. Am. Chem. Soc. 139 3889Google Scholar

    [19]

    Tao H, Wu H, Liu Y, Zhang Y, Wu J, Li F, Lyu X, Zhao C, Xiao D, Zhu J, Pennycook S J 2019 J. Am. Chem. Soc. 141 13987Google Scholar

    [20]

    Onoe M, Jumonji H 1967 J. Acoust. Soc. Am. 41 974Google Scholar

    [21]

    Liang W, Wu W, Xiao D, Zhu J, Wu J 2011 J. Mater. Sci. 46 6871Google Scholar

    [22]

    Zhang B, Wu J, Wang X, Cheng X, Zhu J, Xiao D 2013 Curr. Appl Phys. 13 1647Google Scholar

    [23]

    Zuo R, Fang X, Ye C, Li L 2007 J. Am. Ceram. Soc. 90 2424Google Scholar

    [24]

    Chen X, Zeng J, Kim D, Zheng L, Lou Q, Hong Park C, Li G 2019 Mater. Chem. Phys. 231 173Google Scholar

    [25]

    Chen X, Ruan X, Zhao K, He X, Zeng J, Li Y, Zheng L, Park C H, Li G 2015 J. Alloys Compd. 632 103Google Scholar

    [26]

    Zhao P, Zhang B P, Li J F 2007 Appl. Phys. Lett. 90 242909Google Scholar

    [27]

    Uchino K, Nomura S 1982 Ferroelectrics 44 55

Metrics
  • Abstract views:  7200
  • PDF Downloads:  99
  • Cited By: 0
Publishing process
  • Received Date:  08 March 2021
  • Accepted Date:  02 June 2021
  • Available Online:  07 June 2021
  • Published Online:  05 October 2021
  • /

    返回文章
    返回
    Baidu
    map