搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四方和正交以及单斜相K0.5Na0.5NbO3的结构稳定性和电子结构的第一性原理研究

刘士余 余大书 吕跃凯 李德军 曹茂盛

引用本文:
Citation:

四方和正交以及单斜相K0.5Na0.5NbO3的结构稳定性和电子结构的第一性原理研究

刘士余, 余大书, 吕跃凯, 李德军, 曹茂盛

First-principles study of structural stability and electronic properties of tetragonal and orthorhombic as well as monoclinic K0.5Na0.5NbO3

Liu Shi-Yu, Yu Da-Shu, Lü Yue-Kai, Li De-Jun, Cao Mao-Sheng
PDF
导出引用
  • 采用基于密度泛函理论框架下的第一性原理超原胞方法和虚晶近似方法, 在局域密度近似和广义梯度近似下, 对四方和正交以及单斜相K0.5Na0.5NbO3的能量和原子结 构以及电子结构进行了系统的研究. 计算结果表明三种K0.5Na0.5NbO3相的能量差别较小, 这与实验上它们之间容易发生相转化是一致的. 进一步发现单斜相的能量比四方相和正交相低, 说明单斜相结构更加稳定, 并且理论计算的结构参数与实验值符合得很好. 电子结构结果也表明单斜相的键合作用比四方相和正交相键合作用更强, 进一步说明单斜相结构更加稳定.
    The energetic stability, structural and electronic properties of tetragonal, orthorhombic, as well as monoclinic K0.5Na0.5NbO3 are systematically studied using first-principles supercell model and virtual crystal approximation based on density functional theory with local density approximation and generalized gradient approximation. Our calculated results show that the total energy differences among the three K0.5Na0.5NbO3 phases are small, which are well consistent with the easy phase equilibrium at the phase boundary in the experiments. Furthermore, we also find that the total energy of the monoclinic phase is lower than that of the other two phases, which suggests that the monoclinic structure is energetically more stable than the others. Moreover, the calculated structural parameters are in good agreement with experimental values. In addition, the electronic structure results show that the bonding interaction in the monoclinic structure is stronger than that in the other structures, also indicating that the monoclinic structure is the most stable one.
    • 基金项目: 国家自然科学基金(批准号: 11104203, 11075116, 51272176, 51072024, 51132002)和天津师范大学引进人才基金(批准号: 5RL100)资助的 课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104203, 11075116, 51272176, 51072024, 51132002), and the Foundation of Introduction of Talent of Tianjin Normal University (Grant No. 5RL100).
    [1]

    Cohen R E 1992 Nature (London) 358 136

    [2]

    Lin H B, Cao M S, Yuan J, Wang D W, Zhao Q L, Wang F C 2008 Chin. Phys. B 17 4323

    [3]

    Wang D W, Zhang D Q, Yuan J, Zhao Q L, Liu H M, Wang Z Y, Cao M S 2009 Chin. Phys. B 18 2596

    [4]

    Wang D W, Jin H B, Yuan J, Wen B L, Zhao Q L, Zhang D Q, Cao M S 2010 Chin. Phys. Lett. 27 047701

    [5]

    Wang D W, Cao M S, Yuan J, Zhao Q L, Li H B, Zhang D Q, Agathopoulos S 2011 J. Am. Ceram. Soc. 94 647

    [6]

    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature (London) 432 84

    [7]

    Zhang D Q, Qin Z C, Yang X Y, Zhu H B, Cao M S 2011 J. Sol-Gel. Sci. Technol. 57 31

    [8]

    Ahtee M, Glazer A M 1976 Acta Crystallogr: Sect A 32 434

    [9]

    Wu L, Zhang J L, Wang C L, Li J C 2008 J. Appl. Phys. 103 084116

    [10]

    Dai Y J, Zhang X W, Chen K P 2009 Appl. Phys. Lett. 94 042905

    [11]

    Tellier J, Malic B, Dkhil B, Jenko D, Cilensek J, Kosec M 2009 Solid State Sci. 11 320

    [12]

    Dai Y J, Zhang X W, Zhou G Y 2007 Appl. Phys. Lett. 90 362903

    [13]

    Zhao J B, Du H L, Qu S B, Zhang H M, Xu Z 2011 Acta Phys. Sin. 60 107701 (in Chinese) [赵静波, 杜红亮, 屈绍波, 张红梅, 徐卓 2011 60 107701]

    [14]

    Zhao J B, Du H L, Qu S B, Zhang H M, Xu Z 2011 Chin. Phys. B 20 067701

    [15]

    Wang B K, Tian X X, Xu Z, Qu S B, Li Z R 2012 Acta Phys. Sin. 61 197703 (in Chinese) [王斌科, 田晓霞, 徐卓, 屈绍波, 李振荣 2012 61 197703]

    [16]

    Chen C, Jiang X P, Wei W, Li X H, Wei H B, Song F S 2011 Acta Phys. Sin. 60 107704 (in Chinese) [陈超, 江向平, 卫巍, 李小红, 魏红斌, 宋福生 2011 60 107704]

    [17]

    Ming B Q, Wang J F, Zang G Z, Wang C M, Gai Z G, Du J, Zheng L M 2008 Acta Phys. Sin. 57 5962 (in Chinese) [明保全, 王矜奉, 臧国忠, 王春明, 盖志刚, 杜鹃, 郑立梅 2008 57 5962]

    [18]

    Song X P, Zhang Y G, Luo X J, Xu L F, Cao W Q, Yang C P 2011 Acta Phys. Sin. 58 4980 (in Chinese) [宋学平, 张永光, 罗晓婧, 徐玲芳, 曹万强, 杨昌平 2009 58 4980]

    [19]

    Shao Q S, Liu S Y, Zhao H, Yu D S, Cao M S 2013 Acta Phys. Sin. 61 047103 (in Chinese) [邵庆生, 刘士余, 赵辉, 余大书, 曹茂盛 2013 61 047103]

    [20]

    Liu S Y, Yu D S, L Y K, Li D J, Li Y, Cao M S 2012 Chin. Phys. B 22 017702

    [21]

    Liu S Y, Shang J X, Wang F H, Liu S, Zhang Y, Xu H B 2009 Phys. Rev. B 80 085414

    [22]

    Lu Z S, Ma D W, Zhang J, Xu G L, Yang Z X 2012 Chin. Phys. B 21 047505

    [23]

    Li M, Zhang J Y, Zhang Y, Wang T M 2012 Chin. Phys. B 21 067302

    [24]

    Wang Y J, Wang C Y, Wang S Y 2011 Chin. Phys. B 20 036810

    [25]

    Segall M D, Lindan P L D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717

    [26]

    Milman V, Winkler B, White J A, Pickard C J, Payne M C, Akhmatskaya E V, Nobes R H 2000 Int. J. Quantum. Chem. 77 895

    [27]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [28]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048

    [29]

    Perdew J P, Wang Y 1986 Phys. Rev. B 33 8800

    [30]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

  • [1]

    Cohen R E 1992 Nature (London) 358 136

    [2]

    Lin H B, Cao M S, Yuan J, Wang D W, Zhao Q L, Wang F C 2008 Chin. Phys. B 17 4323

    [3]

    Wang D W, Zhang D Q, Yuan J, Zhao Q L, Liu H M, Wang Z Y, Cao M S 2009 Chin. Phys. B 18 2596

    [4]

    Wang D W, Jin H B, Yuan J, Wen B L, Zhao Q L, Zhang D Q, Cao M S 2010 Chin. Phys. Lett. 27 047701

    [5]

    Wang D W, Cao M S, Yuan J, Zhao Q L, Li H B, Zhang D Q, Agathopoulos S 2011 J. Am. Ceram. Soc. 94 647

    [6]

    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature (London) 432 84

    [7]

    Zhang D Q, Qin Z C, Yang X Y, Zhu H B, Cao M S 2011 J. Sol-Gel. Sci. Technol. 57 31

    [8]

    Ahtee M, Glazer A M 1976 Acta Crystallogr: Sect A 32 434

    [9]

    Wu L, Zhang J L, Wang C L, Li J C 2008 J. Appl. Phys. 103 084116

    [10]

    Dai Y J, Zhang X W, Chen K P 2009 Appl. Phys. Lett. 94 042905

    [11]

    Tellier J, Malic B, Dkhil B, Jenko D, Cilensek J, Kosec M 2009 Solid State Sci. 11 320

    [12]

    Dai Y J, Zhang X W, Zhou G Y 2007 Appl. Phys. Lett. 90 362903

    [13]

    Zhao J B, Du H L, Qu S B, Zhang H M, Xu Z 2011 Acta Phys. Sin. 60 107701 (in Chinese) [赵静波, 杜红亮, 屈绍波, 张红梅, 徐卓 2011 60 107701]

    [14]

    Zhao J B, Du H L, Qu S B, Zhang H M, Xu Z 2011 Chin. Phys. B 20 067701

    [15]

    Wang B K, Tian X X, Xu Z, Qu S B, Li Z R 2012 Acta Phys. Sin. 61 197703 (in Chinese) [王斌科, 田晓霞, 徐卓, 屈绍波, 李振荣 2012 61 197703]

    [16]

    Chen C, Jiang X P, Wei W, Li X H, Wei H B, Song F S 2011 Acta Phys. Sin. 60 107704 (in Chinese) [陈超, 江向平, 卫巍, 李小红, 魏红斌, 宋福生 2011 60 107704]

    [17]

    Ming B Q, Wang J F, Zang G Z, Wang C M, Gai Z G, Du J, Zheng L M 2008 Acta Phys. Sin. 57 5962 (in Chinese) [明保全, 王矜奉, 臧国忠, 王春明, 盖志刚, 杜鹃, 郑立梅 2008 57 5962]

    [18]

    Song X P, Zhang Y G, Luo X J, Xu L F, Cao W Q, Yang C P 2011 Acta Phys. Sin. 58 4980 (in Chinese) [宋学平, 张永光, 罗晓婧, 徐玲芳, 曹万强, 杨昌平 2009 58 4980]

    [19]

    Shao Q S, Liu S Y, Zhao H, Yu D S, Cao M S 2013 Acta Phys. Sin. 61 047103 (in Chinese) [邵庆生, 刘士余, 赵辉, 余大书, 曹茂盛 2013 61 047103]

    [20]

    Liu S Y, Yu D S, L Y K, Li D J, Li Y, Cao M S 2012 Chin. Phys. B 22 017702

    [21]

    Liu S Y, Shang J X, Wang F H, Liu S, Zhang Y, Xu H B 2009 Phys. Rev. B 80 085414

    [22]

    Lu Z S, Ma D W, Zhang J, Xu G L, Yang Z X 2012 Chin. Phys. B 21 047505

    [23]

    Li M, Zhang J Y, Zhang Y, Wang T M 2012 Chin. Phys. B 21 067302

    [24]

    Wang Y J, Wang C Y, Wang S Y 2011 Chin. Phys. B 20 036810

    [25]

    Segall M D, Lindan P L D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717

    [26]

    Milman V, Winkler B, White J A, Pickard C J, Payne M C, Akhmatskaya E V, Nobes R H 2000 Int. J. Quantum. Chem. 77 895

    [27]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [28]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048

    [29]

    Perdew J P, Wang Y 1986 Phys. Rev. B 33 8800

    [30]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

  • [1] 夏文强, 赵彦, 刘振智, 鲁晓刚. 应变诱发四方相小角度对称倾侧晶界位错反应的晶体相场模拟.  , 2022, 71(9): 096102. doi: 10.7498/aps.71.20212278
    [2] 魏晓薇, 陶红, 赵纯林, 吴家刚. 高性能铌酸钾钠基无铅陶瓷的压电和电卡性能.  , 2020, 69(21): 217705. doi: 10.7498/aps.69.20200540
    [3] 邢洁, 谭智, 郑婷, 吴家刚, 肖定全, 朱建国. 铌酸钾钠基无铅压电陶瓷的高压电活性研究进展.  , 2020, 69(12): 127707. doi: 10.7498/aps.69.20200288
    [4] 刘泳, 徐志军, 范立群, 伊文涛, 闫春燕, 马杰, 王坤鹏. 多效应铌酸钾钠基透明铁电陶瓷的制备及性能.  , 2020, 69(24): 247702. doi: 10.7498/aps.69.20201317
    [5] 鲁桃, 王瑾, 付旭, 徐彪, 叶飞宏, 冒进斌, 陆云清, 许吉. 采用密度泛函理论与分子动力学对聚甲基丙烯酸甲酯双折射性的理论计算.  , 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [6] 朱洪强, 冯庆. 光学气敏材料金红石相二氧化钛(110)面吸附CO分子的微观特性机理研究.  , 2014, 63(13): 133101. doi: 10.7498/aps.63.133101
    [7] 余本海, 陈东. 用密度泛函理论研究氮化硅新相的电子结构、光学性质和相变.  , 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [8] 马丽莎, 张前程, 程琳. Zn吸附到含有氧空位(VO)以及羟基(-OH)的锐钛矿相TiO2(101)表面电子结构的第一性原理计算.  , 2013, 62(18): 187101. doi: 10.7498/aps.62.187101
    [9] 郑树文, 范广涵, 李述体, 张涛, 苏晨. Be1-xMgxO合金的能带特性与相结构稳定性研究.  , 2012, 61(23): 237101. doi: 10.7498/aps.61.237101
    [10] 王斌科, 田晓霞, 徐卓, 屈绍波, 李振荣. 铌酸钾钠基无铅透明陶瓷制备及性能.  , 2012, 61(19): 197703. doi: 10.7498/aps.61.197703
    [11] 邵庆生, 刘士余, 赵辉, 余大书, 曹茂盛. 三方和四方相PbZr0.5Ti0.5O3 的结构稳定性和电子结构的第一性原理研究.  , 2012, 61(4): 047103. doi: 10.7498/aps.61.047103
    [12] 濮春英, 唐鑫, 吕海峰, 张庆瑜. 掺Cd氧化锌的电子结构及相结构稳定性的第一性原理研究.  , 2011, 60(3): 037101. doi: 10.7498/aps.60.037101
    [13] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究.  , 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [14] 邢海英, 范广涵, 杨学林, 张国义. 金属有机化学气相淀积技术制备GaMnN薄膜材料光学性质研究.  , 2010, 59(1): 504-507. doi: 10.7498/aps.59.504
    [15] 杨培芳, 胡娟梅, 滕波涛, 吴锋民, 蒋仕宇. Rh在单壁碳纳米管上吸附的密度泛函理论研究.  , 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [16] 明保全, 王矜奉, 臧国忠, 王春明, 盖志刚, 杜 鹃, 郑立梅. 铌酸钾钠基无铅压电陶瓷的X射线衍射与相变分析.  , 2008, 57(9): 5962-5967. doi: 10.7498/aps.57.5962
    [17] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究.  , 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [18] 卢红亮, 徐 敏, 陈 玮, 任 杰, 丁士进, 张 卫. 四角晶相HfO2(001)表面原子和电子结构研究.  , 2006, 55(3): 1374-1378. doi: 10.7498/aps.55.1374
    [19] 叶贞成, 蔡 钧, 张书令, 刘洪来, 胡 英. 方阱链流体在固液界面分布的密度泛函理论研究.  , 2005, 54(9): 4044-4052. doi: 10.7498/aps.54.4044
    [20] 张端明, 严文生, 钟志成, 杨凤霞, 郑克玉, 李智华. PZT四方相区介电常数εr与晶格畸变关系的研究.  , 2004, 53(5): 1316-1320. doi: 10.7498/aps.53.1316
计量
  • 文章访问数:  7732
  • PDF下载量:  1293
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-26
  • 修回日期:  2013-05-30
  • 刊出日期:  2013-09-05

/

返回文章
返回
Baidu
map