Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dielectric, ferroelectric and high energy storage behavior of (1–x)K0.5Na0.5NbO3xBi(Mg0.5Ti0.5)O3 lead free relaxor ferroelectric ceramics

Du Jin-Hua Li Yong Sun Ning-Ning Zhao Ye Hao Xi-Hong

Citation:

Dielectric, ferroelectric and high energy storage behavior of (1–x)K0.5Na0.5NbO3xBi(Mg0.5Ti0.5)O3 lead free relaxor ferroelectric ceramics

Du Jin-Hua, Li Yong, Sun Ning-Ning, Zhao Ye, Hao Xi-Hong
PDF
HTML
Get Citation
  • Lead-free dielectric ceramics with high energy-storage density and efficiency are ideal energy materials for sustainable development of the enery resource. In this paper, (1–x)K0.5Na0.5NbO3xBi(Mg0.5Ti0.5)O3 ((1–x)KNN-xBMT, x = 0.05, 0.10, 0.15, 0.20) lead-free relaxor ferroelectric ceramics are prepared by the traditional solid-state method. The effects of BMT on the phase structure, microstructure, dielectric properties and energy storage behavior of KNN based ceramics are studied. With the increase of BMT content, the crystal structures of (1–x)KNN-xBMT ceramics gradually change from orthorhombic to pseudo-cubic phase, and transform into cubic phase finally. The addition of BMT can suppress grain growth of the ceramics, resulting in the average grain size decreasing from 850 to 195 nm when x increases from 0.05 to 0.20. Dielectric properties exhibit that the Curie temperature decreases with BMT content increasing, and dielectric peak at Curie temperature is broadened due to the addition of BMT. In addition, ferroelectric properties demonstrate that the addition of BMT reduces the remnant polarization (Pr) and coercive field (Ec) of the ceramics. The results indicate that (1–x)KNN-xBMT ceramics transform from ferroelectric to relaxor ferroelectric phase. Based on the calculation of hysteresis loop, the best energy storage performance is obtained at x = 0.15, of which the recoverable energy storage density (Wrec) and the energy storage efficiency (η) are 2.25 J·cm–3 and 84% at its dielectric breakdown strength of 275 kV·cm–1. Meanwhile, the ceramic with x = 0.15 exhibits good stability in a frequency range of 1–50 Hz, with an energy density variation of less than 5%, and temperature stability in a range of 25–125 ℃ with change of less than 8%. Moreover, based on direct measurement, the energy storage density (Wdis) of the ceramic with x = 0.15 is 1.54 J·cm–3, and the discharge time is only 88 ns. The research shows that (1–x)KNN-xBMT ceramics have a wide application prospect in the field of environmentally friendly capacitors with high energy storage density.
      Corresponding author: Hao Xi-Hong, xhhao@imust.cn
    [1]

    Dang Z M, Yuan J K, Zha J W, Zhou T, Li S T, Hu G H 2012 Prog. Mater. Sci. 57 660Google Scholar

    [2]

    Yao K, Chen S T, Rahimabady M, Mirshekarloo M S, Yu S H, Tay F E H, Sritharan T, Lu L 2011 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58 1968Google Scholar

    [3]

    Cao Y, Irwin P C, Younsi K 2004 IEEE Trans. Dielectr. Electr. Insul. 11 797Google Scholar

    [4]

    Park M H, Kim H J, Kim Y J, Moon T, Kim K D, Hwang C S 2014 Adv. Energy Mater. 4 1400610Google Scholar

    [5]

    Chu B J, Zhou X, Ren K L, Neese B, Lin M R, Wang Q, Bauer F, Zhang Q M 2006 Science 313 334Google Scholar

    [6]

    Khanchaitit P, Han K, Gadinski M R, Li Q, Wang Q 2013 Nat. Commun. 26 1Google Scholar

    [7]

    Li Q, Chen L, Gadinski M R, Zhang S, Zhang G, Li H, Haque A, Chen L, Jackson T, Wang Q 2015 Nature 523 576Google Scholar

    [8]

    Xu B, Íñiguez J, Bellaiche L 2017 Nat. Commun. 8 15682Google Scholar

    [9]

    Wang D W, Fan Z M, Zhou D, Khesro A, Murakami S, Feteira A, Zhao Q L, Tan X L, Reaney L M 2018 J. Mater. Chem. A 6 4133Google Scholar

    [10]

    Wu J Y, Mahajan A, Riekehr L, Zhang H F, Yang B, Meng N, Zhang Z, Yan H X 2018 Nano Energy 50 723Google Scholar

    [11]

    Parizi S S, Mellinger A, Caruntu G 2014 ACS Appl. Mater. Interfaces 6 17506Google Scholar

    [12]

    Liu X H, Li Y, Hao X H 2019 J. Mater. Chem. A 7 11858Google Scholar

    [13]

    Shen B Z, Li Y, Hao X H 2019 ACS Appl. Mater. Interfaces 11 34117Google Scholar

    [14]

    Chen L M, Sun N N, Li Y, Zhang Q W, Zhang L W, Hao X H 2018 J. Am. Ceram. Soc. 101 2313Google Scholar

    [15]

    Palneedi H, Peddigari M, Hwang G T, Jeong D Y, Ryu J 2018 Adv. Funct. Mater. 28 1803665Google Scholar

    [16]

    He C J, An Y, Deng C G, Gu X R, Wang J M, Wu T, Liu Y W, Lu Y G 2019 Mod. Phys. Lett. B 33 1950323Google Scholar

    [17]

    Yao Y, Li Y, Sun N N, Du J H, Li X W, Zhang L W, Zhang Q W, Hao X H 2018 Ceram. Int. 44 5961Google Scholar

    [18]

    An Y, He C J, Deng C G, Chen Z Y, Chen H B, Wu T, Lu Y G, Gu X R, Wang J M, Liu Y W, Li Z Q 2020 Ceram. Int. 46 4664Google Scholar

    [19]

    Sun N N, Li Y, Zhang Q W, Hao X H 2018 J. Mater. Chem. C 6 10693Google Scholar

    [20]

    Hu Q Y, Jin L, Wang T, Li C C, Xing Z, Wei X Y 2015 J. Alloys Compd. 640 416Google Scholar

    [21]

    Wang T, Jin L, Li C C, Hu Q Y, Wei X Y 2015 J. Am. Ceram. Soc. 98 559Google Scholar

    [22]

    Shen Z B, Wang X H, LuoB C, Li L T 2015 J. Mater. Chem. A 3 18146Google Scholar

    [23]

    Zhou M X, Liang R H, Zhou Z Y, Dong X L 2018 J. Mater. Chem. A 6 17896Google Scholar

    [24]

    Zheng D G, Zuo R Z, Zhang D S, Li Y 2015 J. Am. Ceram. Soc. 98 2692Google Scholar

    [25]

    Cao W P, Li W L, Dai X F, Zhang T D, Sheng J, Hou Y F, Fei W D 2016 J. Eur. Ceram. Soc. 36 593Google Scholar

    [26]

    Tian Y, Jin L, Hu Q Y, Yu K, Zhuang Y Y, Viola G, Abrahams I, Xu Z, Wei X, Yan H X 2019 J. Mater. Chem. A 7 834Google Scholar

    [27]

    Tian Y, Jin L, Zhang H F, Xu Z, Wei X Y, Viola G, Abrahams I, Yan H X 2017 J. Mater. Chem. A 5 17525Google Scholar

    [28]

    Zhao L, Liu Q, Gao J, Zhang S J, Li J F 2017 Adv. Mater. 29 1701824Google Scholar

    [29]

    Qiao X S, Zhang X S, Wu D, Chao X L, Yang Z P 2018 J. Adv. Dielectr. 8 1830006Google Scholar

    [30]

    Shao T Q, Du H L, Ma H, Qu S B, Wang J, Wang J F, Wei X Y, Xu Z 2017 J. Mater. Chem. A 5 554Google Scholar

    [31]

    Qu B Y, Du H L, Yang Z T 2016 J. Mater. Chem. C 4 1795Google Scholar

    [32]

    Yang Z T, Du H L, Qu S B, Hou Y D, Ma H, Wang J F, Wang J, Wei X Y, Xu Z 2016 J. Mater. Chem. A 4 13778Google Scholar

    [33]

    Yang Z T, Gao F, Du H L, Jin L, Yan L L, Hu Q Y, Yu Y, Qu S B, Wei X Y, Xu Z, Wang Y J 2019 Nano Energy 58 768Google Scholar

    [34]

    Kosec M, Bobnar V, Hrovat M, Bernard J, Malic B, Holc J 2004 J. Mater. Res. 19 1849Google Scholar

    [35]

    Malic B, Koruza J, Hrescak J, Bernard J, Wang K, Fisher J, Bencan A 2015 Materials 8 8117Google Scholar

    [36]

    Hao X H, Wang Y, Zhang L, Zhang L W 2013 Appl. Phys. Lett. 102 163903Google Scholar

    [37]

    杜红亮, 杨泽田, 高峰, 靳立, 程花蕾, 屈少波 2018 无机材料学报 33 1046Google Scholar

    Du H L, Yang Z T, Gao F, Jin L, Cheng H L, Qu S B 2018 J. Inorg. Mater. 33 1046Google Scholar

    [38]

    Chen L M, Hao X H, Zhang Q W, An S L 2016 J. Mater. Sci.- Mater Electron. 27 4534Google Scholar

    [39]

    Chen X F, Zhang H L, Cao F, Wang G S 2009 J. Appl. Phys. 106 034105Google Scholar

    [40]

    Zhang H, Chen X, Cao F, Wang G, Dong X, Hu Z, Du T 2010 J. Am. Ceram. Soc. 93 4015Google Scholar

    [41]

    Ahn C W, Amarsanaa G, Won S S, Chae S A, Lee D S, Kim I W 2015 ACS Appl. Mater. Interfaces 7 26381Google Scholar

    [42]

    Zhang Q M, Li C, Liu H W, Tang Q 2015 J. Am. Ceram. Soc. 98 366Google Scholar

    [43]

    Xu R, Xu Z, Feng Y J, He H L, Tian J J, Huang D 2016 J. Am. Ceram. Soc. 99 2984Google Scholar

    [44]

    李华梅, 李东杰, 陈学锋, 曹菲, 董显林 2008 57 7298Google Scholar

    Li H M, Li D J, Chen X F, Cao F, Dong X L 2008 Acta Phys. Sin. 57 7298Google Scholar

    [45]

    Xu R, Xu Z, Feng Y J, Wei X Y, Tian J J, Huang D 2016 J. Appl. Phys. 119 224103Google Scholar

    [46]

    Zhu M K, Liu L Y, Hou Y D, Wang H, Yan H 2007 J. Am. Ceram. Soc. 90 120Google Scholar

    [47]

    Qu B Y, Du H L, Yang Z T, Liu Q H 2017 J. Am. Ceram. Soc. 100 1517Google Scholar

    [48]

    Deng C G, He C J, Chen Z Y, Chen H B, Mao R, Liu Y W, Zhu K J, Gao H F, Ding Y 2019 J. Appl. Phys. 126 085702Google Scholar

    [49]

    陈威, 曹万强 2012 61 097701Google Scholar

    Chen W, Cao W Q 2012 Acta Phys. Sin. 61 097701Google Scholar

    [50]

    Lv X, Wu J G 2019 J. Mater. Chem. C 7 2037Google Scholar

    [51]

    Li J L, Li F, Xu Z, Zhang S J 2018 Adv. Mater. 30 1802155Google Scholar

    [52]

    Xu R, Tian J J, Zhu Q S, Zhao T, Feng Y J, Wei X Y, Xu Z 2017 J. Am. Ceram. Soc. 100 3618Google Scholar

  • 图 1  通过组分掺杂减小晶粒尺寸获得铌酸钾钠陶瓷高储能密度的示意图

    Figure 1.  Schematic diagram showing the increase of Wrec through decreasing the grain size by doping BMT in KNN ceramics.

    图 2  直接测试系统的电路示意图

    Figure 2.  Circuit diagram of direct test system.

    图 3  (1–x)KNN-xBMT 陶瓷的XRD图

    Figure 3.  XRD patterns of (1–x)KNN-xBMT ceramics.

    图 4  (1–x)KNN-xBMT 陶瓷的表面形貌SEM图, 插图为含有平均粒径的粒径分布图 (a) x = 0.05; (b) x = 0.10; (c) x = 0.15; (d) x = 0.20

    Figure 4.  SEM images of the (1–x)KNN-xBMT ceramics with their grain size distribution and average grain size inserted: (a) x = 0.05; (b) x = 0.10; (c) x = 0.15; (d) x = 0.20.

    图 5  (a) (1 – x)KNN-xBMT陶瓷在–150 ℃至300 ℃以及KNN陶瓷在25 ℃至500 ℃的介电常数随温度的变化; (b) ln(1/εr–1/εm) 随ln(TTm)的变化

    Figure 5.  (a) Dielectric constant as a function of temperature in a temperature range of –150 ℃ to 300 ℃ for (1 – x)KNN-xBMT ceramics and 25 ℃ to 500 ℃ for pure KNN ceramics; (b) plots of ln(1/εr–1/εm) versus ln(TTm) of the (1–x)KNN-xBMT ceramics.

    图 6  (1–x)KNN-xBMT 陶瓷在60 kV·cm–1电场下P-E曲线和电流回线(I-E) (a) x = 0; (b) x = 0.05; (c) x = 0.10; (d) x = 0.15; (e) x = 0.20

    Figure 6.  P-E loop and I-E curves under 60 kV·cm–1 electric field of the (1–x)KNN-xBMT ceramics: (a) x = 0; (b) x = 0.05; (c) x = 0.10; (d) x = 0.15; (e) x = 0.20.

    图 7  (1–x)KNN-xBMT陶瓷在击穿电场下的(a) P-E图以及(b)储能密度和储能效率; (1–x)KNN-xBMT陶瓷在185 kV·cm-1电场下的(c) P-E图以及(d)储能密度和储能效率

    Figure 7.  (a) P-E loops, (b) Wrec and η of (1–x)KNN-xBMT ceramics at the maximum applied electric fields; (c) P-E loops, (d) Wrec and η of (1–x)KNN-xBMT ceramics under 200 kV·cm–1 electric fields.

    图 8  0.85KNN-0.15BMT陶瓷在不同电场下的(a) P-E图以及(b)储能密度和储能效率; 在不同频率下的(c) P-E图和(d)储能密度和储能效率; 在不同温度下的(e) P-E图和(f)储能密度和储能效率

    Figure 8.  (a) P-E loops and (b) Wrec and η under different electric fields, (c) P-E loops and (d) Wrec and η at different frequencies, (e) P-E loops and (f) Wrec and η at different temperatures of 0.85KNN-0.15BMT ceramics.

    图 9  (1–x)KNN-xBMT陶瓷在最大击穿电场下直接测试的(a)放电电流随时间的变化, (b)放电储能密度和放电速率t90以及(c) WdisWrec比较图; 0.85KNN-0.15BMT陶瓷在不同电场下直接测试的(d)放电电流随时间的变化, (e) 放电储能密度Wdis以及(f) WdisWrec比较图

    Figure 9.  (a) Pulsed discharge current curves, (b) discharge energy density Wdis and discharge time t90, and (c) comparative figures of Wdis and Wrec under breakdown electric field of the (1–x)KNN-xBMT ceramics; (d) pulsed discharge current curves, (e) discharge energy density Wdis, and (f) the comparative figures of Wdis and Wrec under different electric fields of the 0.85KNN-0.15BMT ceramic

    表 1  0.85 KNN-0.15 BMT陶瓷与其他部分无铅陶瓷储能性能的比较

    Table 1.  Comparison of energy storage properties of 0.85 KNN-0.15 BMT ceramics and other lead-free ceramics.

    Material systermWrec/J·cm–3η/%BDS /kV·cm–1Wdis/J·cm–3t90/nsReference
    0.88BT-0.12BMT1.8188224[20]
    0.85BT-0.15BY0.50100[22]
    0.61BF-0.33BT-0.06BMN1.5675125[24]
    0.7BNT-0.3ST + 0.05MnO20.9674.695[25]
    0.8KNN-0.2SSN2.0281.4295[31]
    0.85KNN-0.15ST4.0352400[32]
    0.85KNN-0.15BMT2.25842751.5488This work
    DownLoad: CSV
    Baidu
  • [1]

    Dang Z M, Yuan J K, Zha J W, Zhou T, Li S T, Hu G H 2012 Prog. Mater. Sci. 57 660Google Scholar

    [2]

    Yao K, Chen S T, Rahimabady M, Mirshekarloo M S, Yu S H, Tay F E H, Sritharan T, Lu L 2011 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58 1968Google Scholar

    [3]

    Cao Y, Irwin P C, Younsi K 2004 IEEE Trans. Dielectr. Electr. Insul. 11 797Google Scholar

    [4]

    Park M H, Kim H J, Kim Y J, Moon T, Kim K D, Hwang C S 2014 Adv. Energy Mater. 4 1400610Google Scholar

    [5]

    Chu B J, Zhou X, Ren K L, Neese B, Lin M R, Wang Q, Bauer F, Zhang Q M 2006 Science 313 334Google Scholar

    [6]

    Khanchaitit P, Han K, Gadinski M R, Li Q, Wang Q 2013 Nat. Commun. 26 1Google Scholar

    [7]

    Li Q, Chen L, Gadinski M R, Zhang S, Zhang G, Li H, Haque A, Chen L, Jackson T, Wang Q 2015 Nature 523 576Google Scholar

    [8]

    Xu B, Íñiguez J, Bellaiche L 2017 Nat. Commun. 8 15682Google Scholar

    [9]

    Wang D W, Fan Z M, Zhou D, Khesro A, Murakami S, Feteira A, Zhao Q L, Tan X L, Reaney L M 2018 J. Mater. Chem. A 6 4133Google Scholar

    [10]

    Wu J Y, Mahajan A, Riekehr L, Zhang H F, Yang B, Meng N, Zhang Z, Yan H X 2018 Nano Energy 50 723Google Scholar

    [11]

    Parizi S S, Mellinger A, Caruntu G 2014 ACS Appl. Mater. Interfaces 6 17506Google Scholar

    [12]

    Liu X H, Li Y, Hao X H 2019 J. Mater. Chem. A 7 11858Google Scholar

    [13]

    Shen B Z, Li Y, Hao X H 2019 ACS Appl. Mater. Interfaces 11 34117Google Scholar

    [14]

    Chen L M, Sun N N, Li Y, Zhang Q W, Zhang L W, Hao X H 2018 J. Am. Ceram. Soc. 101 2313Google Scholar

    [15]

    Palneedi H, Peddigari M, Hwang G T, Jeong D Y, Ryu J 2018 Adv. Funct. Mater. 28 1803665Google Scholar

    [16]

    He C J, An Y, Deng C G, Gu X R, Wang J M, Wu T, Liu Y W, Lu Y G 2019 Mod. Phys. Lett. B 33 1950323Google Scholar

    [17]

    Yao Y, Li Y, Sun N N, Du J H, Li X W, Zhang L W, Zhang Q W, Hao X H 2018 Ceram. Int. 44 5961Google Scholar

    [18]

    An Y, He C J, Deng C G, Chen Z Y, Chen H B, Wu T, Lu Y G, Gu X R, Wang J M, Liu Y W, Li Z Q 2020 Ceram. Int. 46 4664Google Scholar

    [19]

    Sun N N, Li Y, Zhang Q W, Hao X H 2018 J. Mater. Chem. C 6 10693Google Scholar

    [20]

    Hu Q Y, Jin L, Wang T, Li C C, Xing Z, Wei X Y 2015 J. Alloys Compd. 640 416Google Scholar

    [21]

    Wang T, Jin L, Li C C, Hu Q Y, Wei X Y 2015 J. Am. Ceram. Soc. 98 559Google Scholar

    [22]

    Shen Z B, Wang X H, LuoB C, Li L T 2015 J. Mater. Chem. A 3 18146Google Scholar

    [23]

    Zhou M X, Liang R H, Zhou Z Y, Dong X L 2018 J. Mater. Chem. A 6 17896Google Scholar

    [24]

    Zheng D G, Zuo R Z, Zhang D S, Li Y 2015 J. Am. Ceram. Soc. 98 2692Google Scholar

    [25]

    Cao W P, Li W L, Dai X F, Zhang T D, Sheng J, Hou Y F, Fei W D 2016 J. Eur. Ceram. Soc. 36 593Google Scholar

    [26]

    Tian Y, Jin L, Hu Q Y, Yu K, Zhuang Y Y, Viola G, Abrahams I, Xu Z, Wei X, Yan H X 2019 J. Mater. Chem. A 7 834Google Scholar

    [27]

    Tian Y, Jin L, Zhang H F, Xu Z, Wei X Y, Viola G, Abrahams I, Yan H X 2017 J. Mater. Chem. A 5 17525Google Scholar

    [28]

    Zhao L, Liu Q, Gao J, Zhang S J, Li J F 2017 Adv. Mater. 29 1701824Google Scholar

    [29]

    Qiao X S, Zhang X S, Wu D, Chao X L, Yang Z P 2018 J. Adv. Dielectr. 8 1830006Google Scholar

    [30]

    Shao T Q, Du H L, Ma H, Qu S B, Wang J, Wang J F, Wei X Y, Xu Z 2017 J. Mater. Chem. A 5 554Google Scholar

    [31]

    Qu B Y, Du H L, Yang Z T 2016 J. Mater. Chem. C 4 1795Google Scholar

    [32]

    Yang Z T, Du H L, Qu S B, Hou Y D, Ma H, Wang J F, Wang J, Wei X Y, Xu Z 2016 J. Mater. Chem. A 4 13778Google Scholar

    [33]

    Yang Z T, Gao F, Du H L, Jin L, Yan L L, Hu Q Y, Yu Y, Qu S B, Wei X Y, Xu Z, Wang Y J 2019 Nano Energy 58 768Google Scholar

    [34]

    Kosec M, Bobnar V, Hrovat M, Bernard J, Malic B, Holc J 2004 J. Mater. Res. 19 1849Google Scholar

    [35]

    Malic B, Koruza J, Hrescak J, Bernard J, Wang K, Fisher J, Bencan A 2015 Materials 8 8117Google Scholar

    [36]

    Hao X H, Wang Y, Zhang L, Zhang L W 2013 Appl. Phys. Lett. 102 163903Google Scholar

    [37]

    杜红亮, 杨泽田, 高峰, 靳立, 程花蕾, 屈少波 2018 无机材料学报 33 1046Google Scholar

    Du H L, Yang Z T, Gao F, Jin L, Cheng H L, Qu S B 2018 J. Inorg. Mater. 33 1046Google Scholar

    [38]

    Chen L M, Hao X H, Zhang Q W, An S L 2016 J. Mater. Sci.- Mater Electron. 27 4534Google Scholar

    [39]

    Chen X F, Zhang H L, Cao F, Wang G S 2009 J. Appl. Phys. 106 034105Google Scholar

    [40]

    Zhang H, Chen X, Cao F, Wang G, Dong X, Hu Z, Du T 2010 J. Am. Ceram. Soc. 93 4015Google Scholar

    [41]

    Ahn C W, Amarsanaa G, Won S S, Chae S A, Lee D S, Kim I W 2015 ACS Appl. Mater. Interfaces 7 26381Google Scholar

    [42]

    Zhang Q M, Li C, Liu H W, Tang Q 2015 J. Am. Ceram. Soc. 98 366Google Scholar

    [43]

    Xu R, Xu Z, Feng Y J, He H L, Tian J J, Huang D 2016 J. Am. Ceram. Soc. 99 2984Google Scholar

    [44]

    李华梅, 李东杰, 陈学锋, 曹菲, 董显林 2008 57 7298Google Scholar

    Li H M, Li D J, Chen X F, Cao F, Dong X L 2008 Acta Phys. Sin. 57 7298Google Scholar

    [45]

    Xu R, Xu Z, Feng Y J, Wei X Y, Tian J J, Huang D 2016 J. Appl. Phys. 119 224103Google Scholar

    [46]

    Zhu M K, Liu L Y, Hou Y D, Wang H, Yan H 2007 J. Am. Ceram. Soc. 90 120Google Scholar

    [47]

    Qu B Y, Du H L, Yang Z T, Liu Q H 2017 J. Am. Ceram. Soc. 100 1517Google Scholar

    [48]

    Deng C G, He C J, Chen Z Y, Chen H B, Mao R, Liu Y W, Zhu K J, Gao H F, Ding Y 2019 J. Appl. Phys. 126 085702Google Scholar

    [49]

    陈威, 曹万强 2012 61 097701Google Scholar

    Chen W, Cao W Q 2012 Acta Phys. Sin. 61 097701Google Scholar

    [50]

    Lv X, Wu J G 2019 J. Mater. Chem. C 7 2037Google Scholar

    [51]

    Li J L, Li F, Xu Z, Zhang S J 2018 Adv. Mater. 30 1802155Google Scholar

    [52]

    Xu R, Tian J J, Zhu Q S, Zhao T, Feng Y J, Wei X Y, Xu Z 2017 J. Am. Ceram. Soc. 100 3618Google Scholar

  • [1] Chen Xiao-Ming, Li Guo-Rong. Large electrostrictive coefficients of BaTiO3-based lead-free ceramics. Acta Physica Sinica, 2022, 71(16): 167701. doi: 10.7498/aps.71.20220451
    [2] Bai Gang, Han Yu-Hang, Gao Cun-Fa. Phase transitions and electrocaloric effects of (111)-oriented K0.5Na0.5NbO3 epitaxial films: effect of external stress and misfit strains. Acta Physica Sinica, 2022, 71(9): 097701. doi: 10.7498/aps.71.20220234
    [3] Chen Xiao-Ming, Wang Ming-Yan, Karaki Tomoaki, Li Guo-Rong. Temperature-stable electrical properties of CaZrO3-modified (Na, K)NbO3-based lead-free piezoceramics. Acta Physica Sinica, 2021, 70(19): 197701. doi: 10.7498/aps.70.20210440
    [4] Wei Xiao-Wei, Tao Hong, Zhao Chun-Lin, Wu Jia-Gang. Piezoelectric and electrocaloric properties of high performance potassium sodium niobate-based lead-free ceramics. Acta Physica Sinica, 2020, 69(21): 217705. doi: 10.7498/aps.69.20200540
    [5] Xu Ze, Lou Lu-Yao, Zhao Chun-Lin, Tang Hao-Cheng, Liu Yi-Xuan, Li Zhao, Qi Xiao-Mei, Zhang Bo-Ping, Li Jing-Feng, Gong Wen, Wang Ke. Effect of manganese doping on ferroelectric and piezoelectric properties of KNbO3 and (K0.5Na0.5)NbO3 lead-free ceramics. Acta Physica Sinica, 2020, 69(12): 127705. doi: 10.7498/aps.69.20200277
    [6] Wang Jiao, Liu Shao-Hui, Zhou Meng, Hao Hao-Shan, Zhai Ji-Wei. Effects of suface hydroxylated strontium titanate nanofibers on dielectric and energy storage properties of polyvinylidene fluoride composites. Acta Physica Sinica, 2020, 69(21): 218101. doi: 10.7498/aps.69.20200592
    [7] Leng Sen-Lin, Shi Wei, Long Yu, Li Guo-Rong. Impedance and dielectric spectroscopy analysis of high TC lead-free BaTiO3-(Bi1/2Na1/2)TiO3 positive temperature coefficient resistivity ceramics. Acta Physica Sinica, 2014, 63(4): 047102. doi: 10.7498/aps.63.047102
    [8] Liu Shi-Yu, Yu Da-Shu, Lü Yue-Kai, Li De-Jun, Cao Mao-Sheng. First-principles study of structural stability and electronic properties of tetragonal and orthorhombic as well as monoclinic K0.5Na0.5NbO3. Acta Physica Sinica, 2013, 62(17): 177102. doi: 10.7498/aps.62.177102
    [9] Yuan Chang-Lai, Zhou Xiu-Juan, Xuan Min-Jie, Xu Ji-Wen, Yang Yun, Liu Xin-Yu. Preparation and magnetoelectric characteristics of K0.5Na0.5NbO3-LiSbO3-BiFeO3/CuFe2O4 composite ceramics. Acta Physica Sinica, 2013, 62(4): 047501. doi: 10.7498/aps.62.047501
    [10] Wang Bin-Ke, Tian Xiao-Xia, Xu Zhuo, Qu Shao-Bo, Li Zhen-Rong. Preparation and performances of KNN-based lead-free transparent ceramics. Acta Physica Sinica, 2012, 61(19): 197703. doi: 10.7498/aps.61.197703
    [11] Chen Wei, Cao Wan-Qiang. Study on glassy characteristics of dispersion transition in relaxor ferroelectrics. Acta Physica Sinica, 2012, 61(9): 097701. doi: 10.7498/aps.61.097701
    [12] Shang Yu-Li, Shu Ming-Fei, Chen Wei, Cao Wan-Qiang. Phenomenological analysis for dielectric dispersion of donor doped barium titanate based relaxor ferroelectric. Acta Physica Sinica, 2012, 61(19): 197701. doi: 10.7498/aps.61.197701
    [13] Liu Peng, Zhang Dan. Dielectric relaxation of (Pb(1-3x/2)Lax)(Zr0.5Sn0.3Ti0.2)O3 antiferroelectric ceramics induced by lanthanum doping. Acta Physica Sinica, 2011, 60(1): 017701. doi: 10.7498/aps.60.017701
    [14] Chen Chao, Jiang Xiang-Ping, Wei Wei, Li Xiao-Hong, Wei Hong-Bin, Song Fu-Sheng. Micro-morphology and dielectric properties for (K0.45Na0.55)NbO3 lead-free piezoelectric crystal. Acta Physica Sinica, 2011, 60(10): 107704. doi: 10.7498/aps.60.107704
    [15] Song Xue-Ping, Zhang Yong-Guang, Luo Xiao-Jing, Xu Ling-Fang, Cao Wan-Qiang, Yang Chang-Ping. Relaxor ferroelectricity of (1-x)(K0.5Na0.5)NbO3-xSrTiO3 ceramics. Acta Physica Sinica, 2009, 58(7): 4980-4986. doi: 10.7498/aps.58.4980
    [16] Zhao Su-Chuan, Li Guo-Rong, Zhang Li-Na, Wang Tian-Bao, Ding Ai-Li. Dielectric properties of Na0.25K0.25Bi0.5TiO3 lead-free ceramics. Acta Physica Sinica, 2006, 55(7): 3711-3715. doi: 10.7498/aps.55.3711
    [17] Zhao Ming-Lei, Wang Chun-Lei, Wang Jin-Feng, Chen Hong-Cun, Zhong Wei-Lie. Enhanced piezoelectric properties of (Bi0.5Na0.5)1-xBax TiO3 lead-free ceramics by sol-gel method. Acta Physica Sinica, 2004, 53(7): 2357-2362. doi: 10.7498/aps.53.2357
    [18] Zhu Jun, Lu Wang-Ping, Liu Qiu-Chao, Mao Xiang-Yu, Hui Rong, Chen Xiao-Bing. Study of properties of lanthanum doped SrBi4Ti4O15 ferroelectric ceramics. Acta Physica Sinica, 2003, 52(6): 1524-1528. doi: 10.7498/aps.52.1524
    [19] Zhu Jun, Lu Wang-Ping, Liu Qiu-Chao, Mao Xiang-Yu, Hui Rong, Chen Xiao-Bing. A study on the properties of (Bi, La)4Ti3O12- Sr(Bi, La)4Ti4O15 intergrowth ferroelectrics. Acta Physica Sinica, 2003, 52(10): 2627-2631. doi: 10.7498/aps.52.2627
    [20] GUO CHANG-LIN, WU YU-QIN, WANG TIAN-BAO. X-RAY STUDY ON THE PHASE BOUNDARY OF FERROELECTRIC CERAMICS OF K0.5Bi0.5TiO3—Na0.5Bi0.5TiO3 SYSTEM. Acta Physica Sinica, 1982, 31(8): 1119-1122. doi: 10.7498/aps.31.1119
Metrics
  • Abstract views:  9121
  • PDF Downloads:  321
  • Cited By: 0
Publishing process
  • Received Date:  12 February 2020
  • Accepted Date:  29 March 2020
  • Published Online:  20 June 2020

/

返回文章
返回
Baidu
map