-
Due to excellent piezoelectric properties and electromechanical coupling properties, lead-based piezoelectric ceramics represented by lead zirconate titanate Pb(ZrxTi1–x)O3 (PZT) are widely used in science and technology, industry, military and daily life. However, the content of Pb in PZT-based ceramics exceeds 60% (mass ratio), which will cause serious damage to human ecological environment in the process of their production, use and waste treatment. Therefore, the development of lead-free piezoelectric ceramics has become one of the hot research spots. Potassium sodium niobate (K0.5Na0.5)NbO3 (KNN) lead-free piezoelectric ceramics are considered as one of the most promising material systems to substitute for lead-based piezoelectric ceramics because of their good piezoelectric properties and higher Curie temperature. Through many years of researches, the piezoelectric properties of modified KNN based lead-free piezoelectric ceramics have approached to or even exceeded those of some lead-based piezoelectric ceramics. Combining with our relevant work, we comprehensively review the research progress of high piezoelectric activity of KNN based lead-free piezoelectric ceramics, especially focus on the research progress of high-performance potassium sodium niobate lead-free piezoelectric ceramics, preparation technology and related theoretical mechanisms. The future research direction and prospect of KNN-based lead-free piezoelectric ceramics are also presented.
-
Keywords:
- lead-free piezoelectric ceramics /
- potassium sodium niobate /
- origin /
- high piezoelectric property
[1] Xiao D Q 2011 J. Adv. Dielectr. 01 33Google Scholar
[2] Aksel E, Jones J L 2010 Sensors 10 1935Google Scholar
[3] Rödel J, Webber K G, Dittmer R, Jo W, Kimura M, Damjanovic D 2015 J. Eur Ceram. Soc. 35 1659Google Scholar
[4] Vats G, Vaish R 2014 Int. J. Appl. Ceram. Tec. 11 883Google Scholar
[5] Thong H C, Zhao C L, Zhou Z, Wu C F, Liu Y X, Du Z Z, Li J F, Gong W, Wang K 2019 Mater. Today 29 37Google Scholar
[6] Wang K, Malič B, Wu J G 2018 MRS Bull. 43 607Google Scholar
[7] Lv X., Zhu J G, Xiao D Q, Zhang X X, Wu J G 2020 Chem. Soc. Rev. 49 671Google Scholar
[8] Wu J G, Xiao D Q, Zhu J G 2015 Chem. Rev. 115 2559Google Scholar
[9] Gou Q, Wu J G, Li A Q, Wu B, Xiao D Q, Zhu J G 2012 J. Alloy. Comp. 521 4Google Scholar
[10] Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84Google Scholar
[11] Li P, Zhai J W, Shen Bo, Zhang S J, Li X L, Zhu F Y, Zhang X M 2018 Adv. Mater. 30 1705171Google Scholar
[12] Tao H, Wu H J, Liu Y, Zhang Y, Wu J G, Li F, Lyu X, Zhao C L, Xiao D Q, Zhu J G, Pennycook S J 2019 J. Am. Chem. Soc. 141 13987Google Scholar
[13] Egerton L, Dillond D M 1959 J. Am. Chem. Soc. 42 5Google Scholar
[14] Qin Y L, Zhang J L, Yao W Z, Lu C J, Zhang S J 2016 ACS Appl. Mater. Interfaces 8 7257Google Scholar
[15] Wang Y Y, Wu J G, Xiao D Q, Wu W J, Zhang B, Wu L, Zhu J G 2008 J. Am. Ceram. Soc. 91 2772Google Scholar
[16] Tan C K I, Shannigrahi S, Yao K, Ma J 2015 J. Electroceram. 35 19Google Scholar
[17] Pang X M, Qiu J H, Zhu K J 2014 J. Adv. Ceram. 3 147Google Scholar
[18] Wang Y Y, Wu J G, Xiao D Q, Zhu J M, Jin Y, Zhu J G, Yu P, Wu L, Li X 2007 J. Appl. Phys. 102 054101Google Scholar
[19] Wu W J, Wang Z, Xiao D Q, Ma J, Wu J G, Li J, Liang W F, Zhu J G 2013 Integr. Ferroelectr. 141 82Google Scholar
[20] Wu W J, Xiao D Q, Wu J G, Liang W F, Li J, Zhu J G 2011 J. Alloy. Comp. 509 L284Google Scholar
[21] Wu J G, Xiao D Q, Wang Y Y, Zhu J G, Yu P 2008 J. Appl. Phys. 103 024102Google Scholar
[22] Wu B, Ma J, Wu W J, Chen M, Ding Y C 2018 Ceram. Inter. 44 1172Google Scholar
[23] Wen Y, Fan G F, Hao M M, Wang Y J, Chen X, Zhang Q W, Lv W Z 2019 J. Electron. Mater. 49 931Google Scholar
[24] Xing J, Tan Z, Yuan J, Jiang L M, Chen Q, Wu J G, Zhang W, Xiao D Q, Zhu J G 2016 RSC Adv. 6 57210Google Scholar
[25] Tang X, Chen T, Liu Y H, Zhang J W, Zhang T, Wang G C, Zhou J F 2016 J. Alloy. Comp. 672 277Google Scholar
[26] Yang Y, Wang H, Li Y, Zheng Q J, Liao J, Jie W J, Lin D M 2019 Dalton Trans. 48 10676Google Scholar
[27] Wu W J, Chen M, Wu B, Ding Y C, Liu C Q 2017 J. Alloy. Comp. 695 1175Google Scholar
[28] Lv X, Wu J G, Xiao D Q, Tao H, Yuan Y, Zhu J G, Wang X J, Lou X J 2015 Dalton Trans. 44 4440Google Scholar
[29] Zhong H Y, Xiao HNY, Jiao N, Guo Y P 2019 J. Am. Ceram. Soc. 102 6422Google Scholar
[30] Li F L, Tan Z, Xing J, Jiang L M, Wu B, Wu J G, Xiao D Q, Zhu J G 2017 J. Mater. Sci.- Mater. El. 28 8803Google Scholar
[31] Li F L, Gou Q, Xing J, Tan Z, Jiang L M, Xie L X, Wu J G, Zhang W, Xiao D Q, Zhu J G 2017 J. Mater. Sci.- Mater. El. 28 18090Google Scholar
[32] Lv X, Li Z Y, Wu J G, Xi J W, Gong M, Xiao D Q, Zhu J G 2016 Mater. Design 109 609Google Scholar
[33] Lv X, Wu J G, Yang S, Xiao D Q, Zhu J G 2016 ACS Appl. Mater. Interfaces 8 18943Google Scholar
[34] Zhou C M, Zhang J L, Yao W Z, Liu D K, He G H 2020 J. Alloy. Comp. 820 153411Google Scholar
[35] Wu B, Ma J, Gou Q, Wu W J, Chen M 2019 J. Am. Ceram. Soc. 103 1698Google Scholar
[36] Shi C Y, Ma J, Wu J, Chen K, Wu B 2020 Ceram. Inter. 46 7Google Scholar
[37] Wang X P, Wu J G, Xiao D Q, Zhu J G, Cheng X J, Zheng T, Zhang B Y, Lou X J, Wang X J 2014 J. Am. Chem. Soc. 136 2905Google Scholar
[38] Wang X P, Wu J G, Xiao D Q, Cheng X J, Zheng T, Zhang B Y, Lou X J, Zhu J G 2014 J. Mater. Chem. A 2 4122Google Scholar
[39] Tao H, Wu J G, Zheng T, Wang X J, Lou X J 2015 J. Appl. Phys. 118 044102Google Scholar
[40] Zhou J S, Wang K, Yao F Z, Zheng T, Wu J G, Xiao D Q, Zhu J G, Li J F 2015 J. Mater. Chem. C 3 8780Google Scholar
[41] Xing J, Tan Z, Jiang L M, Chen Q, Wu J G, Zhang W, Xiao D Q, Zhu J G 2016 J. Appl. Phys. 119 034101Google Scholar
[42] Zheng T, Wu H J, Yuan Y, Lv X, Li Q, Men T L, Zhao C L, Xiao D Q, Wu J G, Wang K, Li J F, Gu Y L, Zhu J G, Pennycook S J 2017 Energy Environ. Sci. 10 528Google Scholar
[43] Wu B, Wu H J, Wu J G, Xiao D Q, Zhu J G, Pennycook S J 2016 J. Am. Chem. Soc. 138 15459Google Scholar
[44] Yang W W, Li P, Li F, Liu X, Shen B, Zhai J W 2019 Ceram. Inter. 45 2275Google Scholar
[45] Xu K, Li J, Lv X, Wu J G, Zhang X X, Xiao D Q, Zhu J G 2016 Adv. Mater. 28 8519Google Scholar
[46] Wu B, Ma J, Wu W J, Chen M 2020 J. Mater. Chem. C 8 2838Google Scholar
[47] Yang W W, Li P, Wu S H, Li F, Shen B, Zhai J W 2020 Ceram. Inter. 46 6Google Scholar
[48] Liu Q, Zhang Y C, Gao J, Zhou Z, Wang H, Wang K, Zhang X W, Li L T, Li J F 2018 Energy Environ. Sci. 11 3531Google Scholar
[49] Feng W, Cen Z Y, Liang S Y, Luo B C, Zhang Y, Zhen Y C, Wang X H, Li L T 2019 J. Alloy. Comp. 786 498Google Scholar
[50] Hreščak J, Dražić G, Deluca M, Arčon I, Kodre A, Dapiaggi M, Rojac T, Malič B, Bencan A 2017 J. Eur Ceram. Soc. 37 2073Google Scholar
[51] Cen Z Y, Yu Y, Zhao P Y, Chen L L, Zhu C Q, Li L T, Wang X H 2019 J. Mater. Chem. C 7 1379Google Scholar
[52] Sun X X, Zhang J W, Lv X, Zhang X X, Liu Y, Li F, Wu J G 2019 J. Mater. Chem. A 7 16803Google Scholar
[53] Qin Y L, Zhang J L, Tan Y Q, Yao W Z, Wang C L, Zhang S J 2014 J. Eur Ceram. Soc. 34 4177Google Scholar
[54] Yao W Z, Zhang J L, Wang X M, Zhou C M, Sun X, Zhan J 2019 J. Eur Ceram. Soc. 39 287Google Scholar
[55] Zhou C M, Zhang J L, Yao W Z, Wang X M, Liu D K, Sun X 2018 J. Appl. Phys. 124 164101Google Scholar
[56] López-Juárez R, Novelo-Peralta O, González-García F, Rubio-Marcos F, Villafuerte-Castrejón M-E 2011 J. Eur Ceram. Soc. 31 1861Google Scholar
[57] Xing J, Tan Z, Chen X Y, Jiang L M, Wang W W, Deng X, Wu B, Wu J G, Xiao D Q, Zhu J G 2019 Inorg. Chem. 58 428Google Scholar
[58] Huan Y, Wei T, Wang Z X, Lei Y C, Chen F L, Wang X H 2019 J. Eur Ceram. Soc. 39 1002Google Scholar
[59] Ding Y, Zheng T, Zhao C L, Wu J G 2019 J. Appl. Phys. 126 124101Google Scholar
[60] Zhao C L, Wu B, Wang K, Li J F, Xiao D Q, Zhu J G, Wu J G 2018 J. Mater. Chem. A 6 23736Google Scholar
[61] Qin Y L, Zhang J L, Gao Y, Tan Y Q, Wang C L 2013 J. Appl. Phys. 113 204107Google Scholar
[62] Liu Q, Zhang Y C, Zhao L, Gao J, Zhou Z, Wang K, Zhang X W, Li L T, Li J F 2018 J. Mater. Chem. C 6 10618Google Scholar
[63] Liu Q, Li J F, Zhao L, Zhang Y C, Gao J, Sun W, Wang K, Li L T 2018 J. Mater. Chem. C 6 1116Google Scholar
[64] Fu J, Zuo R Z, Qi H, Zhang C, Li J F, Li L T 2014 Appl. Phys. Lett. 105 242903Google Scholar
[65] Zhou C M, Zhang J L, Yao W Z, Liu D K, Su W B 2019 Scripta Mater. 162 86Google Scholar
[66] Li P, Huan Y, Yang W W, Zhu F Y, Li X L, Zhang X M, Shen B, Zhai J W 2019 Acta Mater. 165 486Google Scholar
[67] Liu D K, Zhang X C, Su W B, Wang X M, Yao W Z, Zhou C M, Zhang J L 2019 J. Alloy. Comp. 779 800Google Scholar
[68] Lv X, Wu J G 2019 J. Mater. Chem. C 7 2037Google Scholar
[69] Zhang N, Zhao C, Wu J G 2019 Ceram. Inter. 45 24827Google Scholar
[70] Xing J, Tan Z, Xie L X, Jiang L M, Yuan J, Chen Q, Wu J G, Zhang W, Xiao D Q, Zhu J G 2018 J. Am. Ceram. Soc. 101 1632Google Scholar
[71] Tao H, Wu J G, Wang H 2016 J. Alloy. Comp. 684 217Google Scholar
[72] Wang T, Wu C, Xing J, Wu J G, Li Chen B W, Xu X Y, Wang K, Zhu J G 2019 J. Am. Ceram. Soc. 102 6126Google Scholar
[73] Cen Z Y, Wang X H, Huan Y, Li L T 2018 J. Am. Ceram. Soc. 101 2391Google Scholar
[74] Jiang L M, Tan Z, Xing J, Wu J G, Chen Q, Zhang W, Xiao D Q, Zhu J G 2016 J. Mater. Sci.- Mater. El. 27 9812Google Scholar
[75] Wang X P, Wu J G, Lv X, Tao H, Cheng X J, Zheng T, Zhang B Y, Xiao D Q, Zhu J G 2014 J. Mater. Sci.- Mater. El. 25 3219Google Scholar
[76] Wang Z, Xiao D Q, Wu J G, Xiao M, Li F X, Zhu J G, Damjanovic D 2014 J. Am. Ceram. Soc. 97 688Google Scholar
[77] Feng S S, Xiao D Q, Wu J G, Xiao M, Zhu J G 2015 J. Alloy. Comp. 619 560Google Scholar
[78] Cheng X J, Wu J G, Wang X P, Zhang B Y, Lou X J, Wang X J, Xiao D Q, Zhu J G 2013 ACS Appl. Mater. Interfaces 5 10409Google Scholar
[79] Gou Q, Zhu J G, Wu J G, Li F L, Jiang L M, Xiao D Q 2018 J. Alloy. Comp. 730 311Google Scholar
[80] Cheng X J, Wu J G, Lou X J, Wang X J, Wang X P, Xiao D Q, Zhu J G 2014 ACS Appl. Mater. Interfaces 6 750Google Scholar
[81] Gou Q, Xiao D Q, Wu B, Xiao M, Feng S S, Ma Zhao D D, Wu J G, Zhu J G 2015 RSC Adv. 5 30660Google Scholar
[82] Ma Q, Wan B B, Cheng L J, Liu S J, Liu F S 2016 J. Electroceram. 36 30Google Scholar
[83] Kim J H, Kim J S, Han S H, Kang H W, Lee H G, Cheon C I 2016 Ceram. Inter. 42 5226Google Scholar
[84] Sumang R, Wicheanrat C, Bongkarn T, Maensiri S 2015 Ceram. Inter. 41 S136Google Scholar
[85] Zhang S J, Xia R, Hao H, Liu H X, Shrout T R 2008 Appl. Phys. Lett. 92 152904Google Scholar
[86] Yao F Z, Wang K, Jo W, Webber K G, Comyn T P, Ding J X, Xu B, Cheng L Q, Zheng M P, Hou Y D, Li J F 2016 Adv. Funct. Mater. 26 1217Google Scholar
[87] Lv X, Wu J G, Zhu J G, Xiao D Q 2018 Phys. Chem. Chem. Phys. 20 20149Google Scholar
[88] Zhang M H, Wang K, Du Y J, Dai G, Sun W, Li G, Hu D, Thong H C, Zhao C L, Xi X Q, Yue Z X, Li J F 2017 J. Am. Chem. Soc. 139 3889Google Scholar
[89] Tao H, Zhao C L, Zhang R, Wu J G 2019 J. Alloy. Comp. 795 401Google Scholar
[90] Cen Z Y, Feng W, Zhao P Y, Chen L L, Zhu C Q, Yu Y, Li L T, Wang X H 2018 J. Am. Ceram. Soc. 102 2675Google Scholar
[91] Huang Y L, Zhao C L, Wu B, Wu J G 2019 J. Am. Ceram. Soc. 102 2648Google Scholar
[92] Zheng T, Wu J G 2020 Acta Mater. 182 1Google Scholar
[93] Ramajo L, Rubio-Marcos F, Del Campo A, Fernández J F, Castro M S, Parra R 2015 J. Mater. Sci.- Mater. El. 26 9402Google Scholar
[94] Liu W L, Tan G Q, Xiong P, Xue X, Hao H F, Ren H J 2014 J. Mater. Sci.- Mater. El. 25 2348Google Scholar
[95] Hao H F, Tan G Q, Ren H J, Xia A, Xiong P 2014 Ceram. Inter. 40 9485Google Scholar
[96] Gu Q L, Sun Q M, Zhu K J, Liu J S, Qiu J H 2017 Ceram. Inter. 43 1135Google Scholar
[97] Cheng L Q, Wang K, Li J F 2015 Mater. Lett. 138 128Google Scholar
[98] Li Y M, Wang J S, Liao R H, Huang D, Jiang X P 2010 J. Alloy. Compd. 496 282Google Scholar
[99] Kumar P, Pattanaik M, Sonia 2013 Ceram. Inter. 39 65Google Scholar
[100] Haugen A B, Madaro F, Bjørkeng L-P, Grande T, Einarsrud M A 2015 J. Eur Ceram. Soc. 35 1449Google Scholar
[101] Jiang C Y, Tian X X, Shi G D 2016 Adv. Intell. Sys. Res. 136 7Google Scholar
[102] Yokouchi Y, Maeda T, Bornmann P, Hemsel T, Morita T 2013 Jpn. J. Appl. Phys. 52 07HB03Google Scholar
[103] Wang C, Fang B J, Qu Y H, Chen Z H, Zhang S, Ding J N 2020 J. Alloy. Compd. 832 153043Google Scholar
[104] Jaeger R E, Egerton L 1962 J. Am. Ceram. Soc. 45 5Google Scholar
[105] Li M Y, Chan N Y, Wang D Y 2017 J. Am. Ceram. Soc. 100 2984Google Scholar
[106] Feizpour M, Barzegar Bafrooei H, Hayati R, Ebadzadeh T 2014 Ceram. Inter. 40 871Google Scholar
[107] Ma J Z, Li H Y, Wang H J, Lin C, Wu X, Lin T F, Zheng X H, Yu X 2019 J. Eur Ceram. Soc. 39 986Google Scholar
[108] Chi M S, Ma W B, Guo J D, Wu J Q, Li T T, Wang S H, Zhang P F 2019 J. Mater. Sci.- Mater. El. 39 986Google Scholar
[109] Yu Z D, Chen X M, Su Y L, Lian H L, Lu J B, Zhou J P, Liu P 2019 J. Mater. Sci. 54 13457Google Scholar
[110] Li J F, Wang K, Zhang B P, Zhang L M 2006 J. Am. Ceram. Soc. 89 706Google Scholar
[111] Cen Z Y, Li L T, Wang X H 2019 J. Alloy. Comp. 797 1115Google Scholar
[112] Li H, Gong D W, Yang W L, Zhou Z X 2012 J. Mater. Sci. 48 1396Google Scholar
[113] Liao Y, Wang D M, Wang H, Wang T, Wei X H, Zheng Q J, Jie W J, Lin D M 2019 Ceram. Inter. 45 2644Google Scholar
[114] Wu B, Yin J, Lv X, Xiao D Q, Zhu J G, Wu J G 2019 J. Appl. Phys. 125 082526Google Scholar
[115] Liao Y, Wang D M, Wang H, Zhou L X, Zheng Q J, Lin D M 2020 Dalton Trans. 49 1311Google Scholar
[116] Comes R, Lambert M, Guinier A 1968 Solid State Commun. 6 715Google Scholar
[117] Cohen R E 1992 Nature 358 136Google Scholar
[118] Atern E A, Yacoby Y 1996 J. Phys. Chem. Solids 57 1449Google Scholar
[119] Rytz D, Höchli U T, Bilz H 1980 Phys. Rev. B 22 359Google Scholar
[120] Shuvaeva V A, Yanagi K, Yagi K, Sakaue K, Terauchi H 1998 Solid State Commun 106 335Google Scholar
[121] Devonshire A F 1949 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 40 1040Google Scholar
[122] Devonshire A F 1951 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 42 1065Google Scholar
[123] Cochran W 1959 Phys. Rev. Lett. 3 412Google Scholar
[124] Damjanovic D, Demartin 1997 J. Phys.-Condens. Mat. 9 4943Google Scholar
[125] 谭智 2019 博士学位论文 (成都: 四川大学)
Tan Z 2019 Ph. D. Dissertation (Chengdu: Sichuan University) (in Chinese)
[126] Tellier J, Malic B, Dkhil B, Jenko D, Cilensek J, Kosec M 2009 Solid State Sci. 11 320Google Scholar
[127] Baker D W, Thomas P A, Zhang N, Glazer A M 2009 Appl. Phys. Lett. 95 091903Google Scholar
[128] Guo Y P, Kakimoto K, Ohsato H 2004 Appl. Phys. Lett. 85 4121Google Scholar
[129] Yang D, Wei L L, Chao X L, Yang Z P, Zhou X Y 2016 Phys. Chem. Chem. Phys. 18 7702Google Scholar
[130] Wu Z G, Cohen R E 2005 Phys. Rev. Lett. 95 037601Google Scholar
[131] Shannon R D 1976 Acta Crystallogra. A 32 751Google Scholar
[132] Tan Z, Xing J, Jiang L M, Zhu J G, Wu B 2017 Front. Mater. Sci. 11 344Google Scholar
[133] Ke S M, Huang H T, Fan H Q, Lee H K, Zhou L M, Mai Y M 2012 Appl. Phys. Lett. 101 082901Google Scholar
[134] Fu H X, Cohen R E 2000 Nature 403 281Google Scholar
[135] Suewattana M, Singh D J 2010 Phys. Rev. B 82 014114Google Scholar
[136] Voas B K, Usher T M, Liu X, Li S, Jones J L, Tan X, Cooper V R, Beckman S P 2014 Phys. Rev. B 90 024105Google Scholar
[137] Matsumoto K, Hiruma Y, Nagata H, Takenaka T 2008 Ceram. Inter. 34 787Google Scholar
[138] Tan Z, Peng Y T, An J, Zhang Q M, Zhu J G 2019 J. Am. Ceram. Soc. 102 5262Google Scholar
[139] Peng Y, T Tan Z, An J, Zhu J G, Zhang Q M 2019 J. Eur. Ceram. Soc. 39 5252Google Scholar
[140] Li C W, Xu X, Gao Q, Lu Z L 2019 Ceram. Int. 45 11092Google Scholar
[141] Liu S Y, Liu S, Li D J, Shen Y, Dang H, Liu Y, Xue W, Wang S 2014 J. Am. Ceram. Soc 97 4019Google Scholar
[142] Li Q, Zhang R, Lv T Q, Zheng L M 2015 Chin. Phys. B 24 053101Google Scholar
[143] Yang D, Chai Q Z, Wei L L, Chao X L, Yang Z P 2017 Phys. Chem. Chem. Phys. 19 27368Google Scholar
-
图 2 (a)正交相(K0.5Na0.5NbO3陶瓷[56,61]); (b)室温下O-T相界(KNNL-BZ-BNT陶瓷体系[62], KNNSL-BNZ-BZ-MnO2陶瓷体系[63]); (c)室温下R-T/R-O-T相界KNN基陶瓷的畴结构(KNNS-BF-BNZ陶瓷体系[43], KNNS-BNZ-BZ陶瓷体系[34])
Figure 2. Domain structures of KNN-based ceramcis with different phase boundaries at room temperature: (a) Orthorhombic (K0.5Na0.5NbO3 ceramics[56,61]); (b) O-T phase boundaries (KNNL-BZ-BNT ceramics[62], KNNSL-BNZ-BZ-MnO2 ceramics[63]); (c) R-T/R-O-T phase boundaries (KNNS-BF-BNZ ceramics[43], KNNS-BNZ-BZ ceramics[34]).
表 1 室温下具有O-T相界的KNN压电陶瓷性能
Table 1. Properties of KNN ceramics with O-T phase boundary at room temperature.
表 2 室温下具有R-O-T相界的KNN压电陶瓷的性能
Table 2. Properties of KNN ceramics with R-O-T phase boundary at room temperature.
Material system d33/pC·N–1 kp TC /℃ KNN-BNZ-BG[24] 312 0.44 341 KNN-BZ-BNZ[25] 345 0.50 ~260 KNN-NS-BNKZH[26] 452 0.63 ~270 KNNS-BNCZ[27] 415 0.46 245 KNNTS-BNKZ[28] 400 0.46 240 KNN-BNZN[29] 318 ± 10 — 360 KNNS-BKZH[30] 451 0.52 258 KNNS-BLKZ[31] 385 — 245 KNNS-SZ-BNH[32] 470 ± 5 0.51 ± 0.02 244 KNNS-BS-BNZ[33] ~480 — ~225 KNNS-BNZ-BZ[34] 610 0.58 241 KNNS-BNKZ-Fe-AS[12] 650 — ~180 表 3 室温下具有R-T相界的KNN压电陶瓷的性能
Table 3. Properties of KNN ceramics with R-T phase boundary at room temperature.
Material system d33 /pC·N–1 kp TC/℃ KNNS-BNZSn[35] 465 0.51 240 KNNS-BZH[36] 410 — 255 KNNS-BNKZ[37] 490 0.46 227 KNNTS-BNKZ[38] 460 0.40 ~220 KNNS-BNH[39] 419 0.45 242 KNNS-BKZS[40] 430 — 243 KNNS-BNLCZ[41] 485 0.48 227 KNNS-BNKH[42] 525 — ~210 KNNS-BF-BNZ[43] 550 — 237 KNNS-CZ-BKHT-MnO2[44] 425 0.49 215 KNNS-BZ-BKH[45] 570 ± 10 — ~190 KNNS-BNZ-BF[46] 511 0.515 269 KNANS-BNZ[47] 440 0.50 250 表 4 KNN基无铅压电陶瓷压电常数与畴结构尺寸
Table 4. Piezoelectric constant of KNN ceramics with domain size.
Material system d33 or $ {d}_{33}^{*} $ Domain size KNNS-SZ-BAZ[52] 487 pC/N 30—65 nm,
65—160 nm,
30—45 nmKNNS-BZ-BNH[48] 600 pm/V 10—100 nm KNNS-BNKH[42] 525 pC/N 10—30 nm KNNS-BNKZ-Fe-AS[12] (650 ± 20) pC/N 2 nm KNNS-BNZ-BZ[34] 610 pC/N 50—70 nm KNNT-BNKZ-CZ[51] 482 pm/V 60 nm KNNS-BZ-BNZ[65] 300 pC/N 150 nm—1.0 μm KNNS-CZ-BKH[66] 550 pC/N 30—230 nm KNNS-BNH[67] 512 pC/N 100 nm KNNS-SZ-BNZ[68] 450 pC/N 50—200 nm KNLNTS[54] 455 pC/N 110—310 nm KNNS-BNZ-BF[46] 510 pC/N < 1 μm KNN-BNZ-MnO2-Sb2O3[69] 318 pC/N < 1 μm KNN-BI-BNZ[57] 317 pC/N ~200 nm KNNdNS-BNZ[70] 400 pC/N ~ 1 μm 表 5 同时具有高压电性能和高居里温度的KNN陶瓷体系
Table 5. The KNN-based ceramics with high piezoelectric constant and high Curie temperature.
表 6 温度稳定性高的KNN陶瓷体系的压电常数以及变化量
Table 6. Comparison of piezoelectric constant and variation among KNN-based ceramics.
d33/pC·N–1 d33 variation/% $ {d}_{33}^{*} $/pm·V–1 $ {d}_{33}^{*} $ variation/% KNLNT-CZ[86] — — — almost unchanged @140 ℃ KNN-BNZ-LF[72] 345 — 420 8%@100 ℃ KNNT-BNKZ-SZ-MnO2[49] — — 400 10%@180 ℃ KNNT-BNKZ-CZ-MnO2[51] — — 482 10%@120 ℃ KNNS-BNZ-SZ[87] 390 — — 13%@180 ℃ KNN-BLT-BZ-MnO2[88] — — 470 8.5%@100 ℃, 21.2%@170 ℃ KNNS-BZ-BNZ[65] 300 10@100 ℃ — — KNNS-(BHo)NHf[89] — — ~386 almost unchanged @140 ℃ KNNT-BNZ-CZ[90] — — 502 10%@135 ℃ KNNS-BNKH[42] 525 — 460 10%@80 ℃ KNN-BZ-BNH-MnO2[91] 300 15@120 ℃ 540 ± 10 5%@100 ℃ KNN-BNH-BF-MnO2[92] 450 — — 28%@160 ℃ KNN-BNZ-MnO2-Sb2O3[69] 318 — — 9%@170 ℃ KNNS-BZH-BNZ[36] 410 — 441 2.5%@100 ℃, 16.1%@180 ℃ 注: 16.1%@180 ℃表示到180 ℃性能下降16.1%. Nb5+ Ta5+ Zr4+ Hf4+ Sn4+ Ti4+ Sb5+ Sb3+ Ga3+ 离子半径/Å 0.64 0.64 0.72 0.71 0.69 0.605 0.60 0.76 0.62 表 8 不同结构下原子内坐标随应变的梯度, 注意OI位于Bmm2不包含Nb原子的(010)平面, KNN中OI,1和OI,2沿a方向分别靠近K和Na原子[138]
Table 8. Internal atomic coordinate gradients as a function of strains in different structure, noted that OI is located at the (010) plane without Nb atoms in Bmm2, OI,1 and OI,2 are close to K and Na along a axis, respectively[139].
K Nb OⅡ OⅠ KN ∂u3/∂η3 0.108 0.166 –0.092 –0.091 ∂u1/∂η5 0.115 0.210 –0.151 –0.024 K Na Nb OⅡ OI,1 OI,2 KNN ∂u3/∂η3 0.103 0.542 0.125 –0.158 –0.125 –0.135 ∂u1/∂η5 0.094 0.828 0.194 –0.235 –0.061 –0.309 -
[1] Xiao D Q 2011 J. Adv. Dielectr. 01 33Google Scholar
[2] Aksel E, Jones J L 2010 Sensors 10 1935Google Scholar
[3] Rödel J, Webber K G, Dittmer R, Jo W, Kimura M, Damjanovic D 2015 J. Eur Ceram. Soc. 35 1659Google Scholar
[4] Vats G, Vaish R 2014 Int. J. Appl. Ceram. Tec. 11 883Google Scholar
[5] Thong H C, Zhao C L, Zhou Z, Wu C F, Liu Y X, Du Z Z, Li J F, Gong W, Wang K 2019 Mater. Today 29 37Google Scholar
[6] Wang K, Malič B, Wu J G 2018 MRS Bull. 43 607Google Scholar
[7] Lv X., Zhu J G, Xiao D Q, Zhang X X, Wu J G 2020 Chem. Soc. Rev. 49 671Google Scholar
[8] Wu J G, Xiao D Q, Zhu J G 2015 Chem. Rev. 115 2559Google Scholar
[9] Gou Q, Wu J G, Li A Q, Wu B, Xiao D Q, Zhu J G 2012 J. Alloy. Comp. 521 4Google Scholar
[10] Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84Google Scholar
[11] Li P, Zhai J W, Shen Bo, Zhang S J, Li X L, Zhu F Y, Zhang X M 2018 Adv. Mater. 30 1705171Google Scholar
[12] Tao H, Wu H J, Liu Y, Zhang Y, Wu J G, Li F, Lyu X, Zhao C L, Xiao D Q, Zhu J G, Pennycook S J 2019 J. Am. Chem. Soc. 141 13987Google Scholar
[13] Egerton L, Dillond D M 1959 J. Am. Chem. Soc. 42 5Google Scholar
[14] Qin Y L, Zhang J L, Yao W Z, Lu C J, Zhang S J 2016 ACS Appl. Mater. Interfaces 8 7257Google Scholar
[15] Wang Y Y, Wu J G, Xiao D Q, Wu W J, Zhang B, Wu L, Zhu J G 2008 J. Am. Ceram. Soc. 91 2772Google Scholar
[16] Tan C K I, Shannigrahi S, Yao K, Ma J 2015 J. Electroceram. 35 19Google Scholar
[17] Pang X M, Qiu J H, Zhu K J 2014 J. Adv. Ceram. 3 147Google Scholar
[18] Wang Y Y, Wu J G, Xiao D Q, Zhu J M, Jin Y, Zhu J G, Yu P, Wu L, Li X 2007 J. Appl. Phys. 102 054101Google Scholar
[19] Wu W J, Wang Z, Xiao D Q, Ma J, Wu J G, Li J, Liang W F, Zhu J G 2013 Integr. Ferroelectr. 141 82Google Scholar
[20] Wu W J, Xiao D Q, Wu J G, Liang W F, Li J, Zhu J G 2011 J. Alloy. Comp. 509 L284Google Scholar
[21] Wu J G, Xiao D Q, Wang Y Y, Zhu J G, Yu P 2008 J. Appl. Phys. 103 024102Google Scholar
[22] Wu B, Ma J, Wu W J, Chen M, Ding Y C 2018 Ceram. Inter. 44 1172Google Scholar
[23] Wen Y, Fan G F, Hao M M, Wang Y J, Chen X, Zhang Q W, Lv W Z 2019 J. Electron. Mater. 49 931Google Scholar
[24] Xing J, Tan Z, Yuan J, Jiang L M, Chen Q, Wu J G, Zhang W, Xiao D Q, Zhu J G 2016 RSC Adv. 6 57210Google Scholar
[25] Tang X, Chen T, Liu Y H, Zhang J W, Zhang T, Wang G C, Zhou J F 2016 J. Alloy. Comp. 672 277Google Scholar
[26] Yang Y, Wang H, Li Y, Zheng Q J, Liao J, Jie W J, Lin D M 2019 Dalton Trans. 48 10676Google Scholar
[27] Wu W J, Chen M, Wu B, Ding Y C, Liu C Q 2017 J. Alloy. Comp. 695 1175Google Scholar
[28] Lv X, Wu J G, Xiao D Q, Tao H, Yuan Y, Zhu J G, Wang X J, Lou X J 2015 Dalton Trans. 44 4440Google Scholar
[29] Zhong H Y, Xiao HNY, Jiao N, Guo Y P 2019 J. Am. Ceram. Soc. 102 6422Google Scholar
[30] Li F L, Tan Z, Xing J, Jiang L M, Wu B, Wu J G, Xiao D Q, Zhu J G 2017 J. Mater. Sci.- Mater. El. 28 8803Google Scholar
[31] Li F L, Gou Q, Xing J, Tan Z, Jiang L M, Xie L X, Wu J G, Zhang W, Xiao D Q, Zhu J G 2017 J. Mater. Sci.- Mater. El. 28 18090Google Scholar
[32] Lv X, Li Z Y, Wu J G, Xi J W, Gong M, Xiao D Q, Zhu J G 2016 Mater. Design 109 609Google Scholar
[33] Lv X, Wu J G, Yang S, Xiao D Q, Zhu J G 2016 ACS Appl. Mater. Interfaces 8 18943Google Scholar
[34] Zhou C M, Zhang J L, Yao W Z, Liu D K, He G H 2020 J. Alloy. Comp. 820 153411Google Scholar
[35] Wu B, Ma J, Gou Q, Wu W J, Chen M 2019 J. Am. Ceram. Soc. 103 1698Google Scholar
[36] Shi C Y, Ma J, Wu J, Chen K, Wu B 2020 Ceram. Inter. 46 7Google Scholar
[37] Wang X P, Wu J G, Xiao D Q, Zhu J G, Cheng X J, Zheng T, Zhang B Y, Lou X J, Wang X J 2014 J. Am. Chem. Soc. 136 2905Google Scholar
[38] Wang X P, Wu J G, Xiao D Q, Cheng X J, Zheng T, Zhang B Y, Lou X J, Zhu J G 2014 J. Mater. Chem. A 2 4122Google Scholar
[39] Tao H, Wu J G, Zheng T, Wang X J, Lou X J 2015 J. Appl. Phys. 118 044102Google Scholar
[40] Zhou J S, Wang K, Yao F Z, Zheng T, Wu J G, Xiao D Q, Zhu J G, Li J F 2015 J. Mater. Chem. C 3 8780Google Scholar
[41] Xing J, Tan Z, Jiang L M, Chen Q, Wu J G, Zhang W, Xiao D Q, Zhu J G 2016 J. Appl. Phys. 119 034101Google Scholar
[42] Zheng T, Wu H J, Yuan Y, Lv X, Li Q, Men T L, Zhao C L, Xiao D Q, Wu J G, Wang K, Li J F, Gu Y L, Zhu J G, Pennycook S J 2017 Energy Environ. Sci. 10 528Google Scholar
[43] Wu B, Wu H J, Wu J G, Xiao D Q, Zhu J G, Pennycook S J 2016 J. Am. Chem. Soc. 138 15459Google Scholar
[44] Yang W W, Li P, Li F, Liu X, Shen B, Zhai J W 2019 Ceram. Inter. 45 2275Google Scholar
[45] Xu K, Li J, Lv X, Wu J G, Zhang X X, Xiao D Q, Zhu J G 2016 Adv. Mater. 28 8519Google Scholar
[46] Wu B, Ma J, Wu W J, Chen M 2020 J. Mater. Chem. C 8 2838Google Scholar
[47] Yang W W, Li P, Wu S H, Li F, Shen B, Zhai J W 2020 Ceram. Inter. 46 6Google Scholar
[48] Liu Q, Zhang Y C, Gao J, Zhou Z, Wang H, Wang K, Zhang X W, Li L T, Li J F 2018 Energy Environ. Sci. 11 3531Google Scholar
[49] Feng W, Cen Z Y, Liang S Y, Luo B C, Zhang Y, Zhen Y C, Wang X H, Li L T 2019 J. Alloy. Comp. 786 498Google Scholar
[50] Hreščak J, Dražić G, Deluca M, Arčon I, Kodre A, Dapiaggi M, Rojac T, Malič B, Bencan A 2017 J. Eur Ceram. Soc. 37 2073Google Scholar
[51] Cen Z Y, Yu Y, Zhao P Y, Chen L L, Zhu C Q, Li L T, Wang X H 2019 J. Mater. Chem. C 7 1379Google Scholar
[52] Sun X X, Zhang J W, Lv X, Zhang X X, Liu Y, Li F, Wu J G 2019 J. Mater. Chem. A 7 16803Google Scholar
[53] Qin Y L, Zhang J L, Tan Y Q, Yao W Z, Wang C L, Zhang S J 2014 J. Eur Ceram. Soc. 34 4177Google Scholar
[54] Yao W Z, Zhang J L, Wang X M, Zhou C M, Sun X, Zhan J 2019 J. Eur Ceram. Soc. 39 287Google Scholar
[55] Zhou C M, Zhang J L, Yao W Z, Wang X M, Liu D K, Sun X 2018 J. Appl. Phys. 124 164101Google Scholar
[56] López-Juárez R, Novelo-Peralta O, González-García F, Rubio-Marcos F, Villafuerte-Castrejón M-E 2011 J. Eur Ceram. Soc. 31 1861Google Scholar
[57] Xing J, Tan Z, Chen X Y, Jiang L M, Wang W W, Deng X, Wu B, Wu J G, Xiao D Q, Zhu J G 2019 Inorg. Chem. 58 428Google Scholar
[58] Huan Y, Wei T, Wang Z X, Lei Y C, Chen F L, Wang X H 2019 J. Eur Ceram. Soc. 39 1002Google Scholar
[59] Ding Y, Zheng T, Zhao C L, Wu J G 2019 J. Appl. Phys. 126 124101Google Scholar
[60] Zhao C L, Wu B, Wang K, Li J F, Xiao D Q, Zhu J G, Wu J G 2018 J. Mater. Chem. A 6 23736Google Scholar
[61] Qin Y L, Zhang J L, Gao Y, Tan Y Q, Wang C L 2013 J. Appl. Phys. 113 204107Google Scholar
[62] Liu Q, Zhang Y C, Zhao L, Gao J, Zhou Z, Wang K, Zhang X W, Li L T, Li J F 2018 J. Mater. Chem. C 6 10618Google Scholar
[63] Liu Q, Li J F, Zhao L, Zhang Y C, Gao J, Sun W, Wang K, Li L T 2018 J. Mater. Chem. C 6 1116Google Scholar
[64] Fu J, Zuo R Z, Qi H, Zhang C, Li J F, Li L T 2014 Appl. Phys. Lett. 105 242903Google Scholar
[65] Zhou C M, Zhang J L, Yao W Z, Liu D K, Su W B 2019 Scripta Mater. 162 86Google Scholar
[66] Li P, Huan Y, Yang W W, Zhu F Y, Li X L, Zhang X M, Shen B, Zhai J W 2019 Acta Mater. 165 486Google Scholar
[67] Liu D K, Zhang X C, Su W B, Wang X M, Yao W Z, Zhou C M, Zhang J L 2019 J. Alloy. Comp. 779 800Google Scholar
[68] Lv X, Wu J G 2019 J. Mater. Chem. C 7 2037Google Scholar
[69] Zhang N, Zhao C, Wu J G 2019 Ceram. Inter. 45 24827Google Scholar
[70] Xing J, Tan Z, Xie L X, Jiang L M, Yuan J, Chen Q, Wu J G, Zhang W, Xiao D Q, Zhu J G 2018 J. Am. Ceram. Soc. 101 1632Google Scholar
[71] Tao H, Wu J G, Wang H 2016 J. Alloy. Comp. 684 217Google Scholar
[72] Wang T, Wu C, Xing J, Wu J G, Li Chen B W, Xu X Y, Wang K, Zhu J G 2019 J. Am. Ceram. Soc. 102 6126Google Scholar
[73] Cen Z Y, Wang X H, Huan Y, Li L T 2018 J. Am. Ceram. Soc. 101 2391Google Scholar
[74] Jiang L M, Tan Z, Xing J, Wu J G, Chen Q, Zhang W, Xiao D Q, Zhu J G 2016 J. Mater. Sci.- Mater. El. 27 9812Google Scholar
[75] Wang X P, Wu J G, Lv X, Tao H, Cheng X J, Zheng T, Zhang B Y, Xiao D Q, Zhu J G 2014 J. Mater. Sci.- Mater. El. 25 3219Google Scholar
[76] Wang Z, Xiao D Q, Wu J G, Xiao M, Li F X, Zhu J G, Damjanovic D 2014 J. Am. Ceram. Soc. 97 688Google Scholar
[77] Feng S S, Xiao D Q, Wu J G, Xiao M, Zhu J G 2015 J. Alloy. Comp. 619 560Google Scholar
[78] Cheng X J, Wu J G, Wang X P, Zhang B Y, Lou X J, Wang X J, Xiao D Q, Zhu J G 2013 ACS Appl. Mater. Interfaces 5 10409Google Scholar
[79] Gou Q, Zhu J G, Wu J G, Li F L, Jiang L M, Xiao D Q 2018 J. Alloy. Comp. 730 311Google Scholar
[80] Cheng X J, Wu J G, Lou X J, Wang X J, Wang X P, Xiao D Q, Zhu J G 2014 ACS Appl. Mater. Interfaces 6 750Google Scholar
[81] Gou Q, Xiao D Q, Wu B, Xiao M, Feng S S, Ma Zhao D D, Wu J G, Zhu J G 2015 RSC Adv. 5 30660Google Scholar
[82] Ma Q, Wan B B, Cheng L J, Liu S J, Liu F S 2016 J. Electroceram. 36 30Google Scholar
[83] Kim J H, Kim J S, Han S H, Kang H W, Lee H G, Cheon C I 2016 Ceram. Inter. 42 5226Google Scholar
[84] Sumang R, Wicheanrat C, Bongkarn T, Maensiri S 2015 Ceram. Inter. 41 S136Google Scholar
[85] Zhang S J, Xia R, Hao H, Liu H X, Shrout T R 2008 Appl. Phys. Lett. 92 152904Google Scholar
[86] Yao F Z, Wang K, Jo W, Webber K G, Comyn T P, Ding J X, Xu B, Cheng L Q, Zheng M P, Hou Y D, Li J F 2016 Adv. Funct. Mater. 26 1217Google Scholar
[87] Lv X, Wu J G, Zhu J G, Xiao D Q 2018 Phys. Chem. Chem. Phys. 20 20149Google Scholar
[88] Zhang M H, Wang K, Du Y J, Dai G, Sun W, Li G, Hu D, Thong H C, Zhao C L, Xi X Q, Yue Z X, Li J F 2017 J. Am. Chem. Soc. 139 3889Google Scholar
[89] Tao H, Zhao C L, Zhang R, Wu J G 2019 J. Alloy. Comp. 795 401Google Scholar
[90] Cen Z Y, Feng W, Zhao P Y, Chen L L, Zhu C Q, Yu Y, Li L T, Wang X H 2018 J. Am. Ceram. Soc. 102 2675Google Scholar
[91] Huang Y L, Zhao C L, Wu B, Wu J G 2019 J. Am. Ceram. Soc. 102 2648Google Scholar
[92] Zheng T, Wu J G 2020 Acta Mater. 182 1Google Scholar
[93] Ramajo L, Rubio-Marcos F, Del Campo A, Fernández J F, Castro M S, Parra R 2015 J. Mater. Sci.- Mater. El. 26 9402Google Scholar
[94] Liu W L, Tan G Q, Xiong P, Xue X, Hao H F, Ren H J 2014 J. Mater. Sci.- Mater. El. 25 2348Google Scholar
[95] Hao H F, Tan G Q, Ren H J, Xia A, Xiong P 2014 Ceram. Inter. 40 9485Google Scholar
[96] Gu Q L, Sun Q M, Zhu K J, Liu J S, Qiu J H 2017 Ceram. Inter. 43 1135Google Scholar
[97] Cheng L Q, Wang K, Li J F 2015 Mater. Lett. 138 128Google Scholar
[98] Li Y M, Wang J S, Liao R H, Huang D, Jiang X P 2010 J. Alloy. Compd. 496 282Google Scholar
[99] Kumar P, Pattanaik M, Sonia 2013 Ceram. Inter. 39 65Google Scholar
[100] Haugen A B, Madaro F, Bjørkeng L-P, Grande T, Einarsrud M A 2015 J. Eur Ceram. Soc. 35 1449Google Scholar
[101] Jiang C Y, Tian X X, Shi G D 2016 Adv. Intell. Sys. Res. 136 7Google Scholar
[102] Yokouchi Y, Maeda T, Bornmann P, Hemsel T, Morita T 2013 Jpn. J. Appl. Phys. 52 07HB03Google Scholar
[103] Wang C, Fang B J, Qu Y H, Chen Z H, Zhang S, Ding J N 2020 J. Alloy. Compd. 832 153043Google Scholar
[104] Jaeger R E, Egerton L 1962 J. Am. Ceram. Soc. 45 5Google Scholar
[105] Li M Y, Chan N Y, Wang D Y 2017 J. Am. Ceram. Soc. 100 2984Google Scholar
[106] Feizpour M, Barzegar Bafrooei H, Hayati R, Ebadzadeh T 2014 Ceram. Inter. 40 871Google Scholar
[107] Ma J Z, Li H Y, Wang H J, Lin C, Wu X, Lin T F, Zheng X H, Yu X 2019 J. Eur Ceram. Soc. 39 986Google Scholar
[108] Chi M S, Ma W B, Guo J D, Wu J Q, Li T T, Wang S H, Zhang P F 2019 J. Mater. Sci.- Mater. El. 39 986Google Scholar
[109] Yu Z D, Chen X M, Su Y L, Lian H L, Lu J B, Zhou J P, Liu P 2019 J. Mater. Sci. 54 13457Google Scholar
[110] Li J F, Wang K, Zhang B P, Zhang L M 2006 J. Am. Ceram. Soc. 89 706Google Scholar
[111] Cen Z Y, Li L T, Wang X H 2019 J. Alloy. Comp. 797 1115Google Scholar
[112] Li H, Gong D W, Yang W L, Zhou Z X 2012 J. Mater. Sci. 48 1396Google Scholar
[113] Liao Y, Wang D M, Wang H, Wang T, Wei X H, Zheng Q J, Jie W J, Lin D M 2019 Ceram. Inter. 45 2644Google Scholar
[114] Wu B, Yin J, Lv X, Xiao D Q, Zhu J G, Wu J G 2019 J. Appl. Phys. 125 082526Google Scholar
[115] Liao Y, Wang D M, Wang H, Zhou L X, Zheng Q J, Lin D M 2020 Dalton Trans. 49 1311Google Scholar
[116] Comes R, Lambert M, Guinier A 1968 Solid State Commun. 6 715Google Scholar
[117] Cohen R E 1992 Nature 358 136Google Scholar
[118] Atern E A, Yacoby Y 1996 J. Phys. Chem. Solids 57 1449Google Scholar
[119] Rytz D, Höchli U T, Bilz H 1980 Phys. Rev. B 22 359Google Scholar
[120] Shuvaeva V A, Yanagi K, Yagi K, Sakaue K, Terauchi H 1998 Solid State Commun 106 335Google Scholar
[121] Devonshire A F 1949 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 40 1040Google Scholar
[122] Devonshire A F 1951 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 42 1065Google Scholar
[123] Cochran W 1959 Phys. Rev. Lett. 3 412Google Scholar
[124] Damjanovic D, Demartin 1997 J. Phys.-Condens. Mat. 9 4943Google Scholar
[125] 谭智 2019 博士学位论文 (成都: 四川大学)
Tan Z 2019 Ph. D. Dissertation (Chengdu: Sichuan University) (in Chinese)
[126] Tellier J, Malic B, Dkhil B, Jenko D, Cilensek J, Kosec M 2009 Solid State Sci. 11 320Google Scholar
[127] Baker D W, Thomas P A, Zhang N, Glazer A M 2009 Appl. Phys. Lett. 95 091903Google Scholar
[128] Guo Y P, Kakimoto K, Ohsato H 2004 Appl. Phys. Lett. 85 4121Google Scholar
[129] Yang D, Wei L L, Chao X L, Yang Z P, Zhou X Y 2016 Phys. Chem. Chem. Phys. 18 7702Google Scholar
[130] Wu Z G, Cohen R E 2005 Phys. Rev. Lett. 95 037601Google Scholar
[131] Shannon R D 1976 Acta Crystallogra. A 32 751Google Scholar
[132] Tan Z, Xing J, Jiang L M, Zhu J G, Wu B 2017 Front. Mater. Sci. 11 344Google Scholar
[133] Ke S M, Huang H T, Fan H Q, Lee H K, Zhou L M, Mai Y M 2012 Appl. Phys. Lett. 101 082901Google Scholar
[134] Fu H X, Cohen R E 2000 Nature 403 281Google Scholar
[135] Suewattana M, Singh D J 2010 Phys. Rev. B 82 014114Google Scholar
[136] Voas B K, Usher T M, Liu X, Li S, Jones J L, Tan X, Cooper V R, Beckman S P 2014 Phys. Rev. B 90 024105Google Scholar
[137] Matsumoto K, Hiruma Y, Nagata H, Takenaka T 2008 Ceram. Inter. 34 787Google Scholar
[138] Tan Z, Peng Y T, An J, Zhang Q M, Zhu J G 2019 J. Am. Ceram. Soc. 102 5262Google Scholar
[139] Peng Y, T Tan Z, An J, Zhu J G, Zhang Q M 2019 J. Eur. Ceram. Soc. 39 5252Google Scholar
[140] Li C W, Xu X, Gao Q, Lu Z L 2019 Ceram. Int. 45 11092Google Scholar
[141] Liu S Y, Liu S, Li D J, Shen Y, Dang H, Liu Y, Xue W, Wang S 2014 J. Am. Ceram. Soc 97 4019Google Scholar
[142] Li Q, Zhang R, Lv T Q, Zheng L M 2015 Chin. Phys. B 24 053101Google Scholar
[143] Yang D, Chai Q Z, Wei L L, Chao X L, Yang Z P 2017 Phys. Chem. Chem. Phys. 19 27368Google Scholar
Catalog
Metrics
- Abstract views: 20613
- PDF Downloads: 883
- Cited By: 0