-
Potassium sodium niobate ((K0.5Na0.5)NbO3)-based lead-free piezoelectric ceramics are excellent ferroelectric materials and have been demonstrated to have many practical applications. Recent studies have revealed that chemical doping plays a crucial role in optimizing the electromechanical coupling properties of (K0.5Na0.5)NbO3-based piezoelectric ceramics. In this paper, MnO2 is doped into potassium niobate (KNbO3) and (K0.5Na0.5)NbO3 piezoelectric ceramics prepared by the conventional solid-state reaction method. The influences of doped Mn cation on KNbO3 and (K0.5Na0.5)NbO3 piezoelectric ceramics including microstructure and macroscopic electrical properties are systematically investigated. The doping effects of Mn cation on the KNbO3 and (K0.5Na0.5)NbO3 piezoelectric ceramics are significantly different from each other. For the Mn-doped KNbO3 piezoelectric ceramics, the sizes of ferroelectric domains are reduced. Meanwhile, the diffused orthorhombic-tetragonal phase transition is observed, which is accompanied by reducing dielectric loss and Curie temperature, and broadening vibration peaks in Raman spectrum. It is known that the oxygen vacancy can be formed to compensate for the charges created by the acceptor doping of Mn into the B site of perovskite, and thus forming a defect dipole with the acceptor center. From the ferroelectric measurement, a double hysteresis loop (P-E curve) and a recoverable electric-field-induced strain due to the formation of defect dipole are observed. On the contrary, for the Mn-doped (K0.5Na0.5)NbO3 piezoelectric ceramics, the sizes of ferroelectric domains are not reduced. Meanwhile, the Curie temperature and vibration peaks in Raman spectrum are not changed. A rectangular hysteresis loop (P-E curve) and an unrecoverable electric-field-induced strain are observed in the ferroelectric measurement. The difference between these systems might originate from the greater ionic disorder and lattice distortion in (K0.5Na0.5)NbO3 piezoelectric ceramics. The difference in ionic radius between Na+ and K+ can affect the migration and distribution of oxygen vacancies, which makes it difficult to form stable defect dipoles in the Mn-doped (K0.5Na0.5)NbO3 piezoelectric ceramics. The results will serve as an important reference for preparing high-performance (K0.5Na0.5)NbO3-based piezoelectric ceramics via chemical doping.
-
Keywords:
- potassium niobate /
- potassium-sodium niobate /
- defect dipoles /
- Mn-doping
[1] Wang K, Malič B, Wu J 2018 MRS Bull. 43 607Google Scholar
[2] Thong H C, Zhao C, Zhou Z, Wu C F, Liu Y X, Du Z Z, Li J F, Gong W, Wang K 2019 Mater. Today 29 37Google Scholar
[3] 吴金根, 高翔宇, 陈建国, 王春明, 张树君, 董蜀湘 2018 67 207701Google Scholar
Wu J G, Gao X Y, Chen J G, Wang C M, Zhang S J, Dong S X 2018 Acta Phys. Sin. 67 207701Google Scholar
[4] 刘涛, 丁爱丽, 何夕云, 郑鑫森, 仇萍荪, 程文秀 2007 无机材料学报 22 469Google Scholar
Liu T, Ding A L, He X Y, Zheng X S, Qiu P S, Cheng W X 2007 J. Inorg. Mater. 22 469Google Scholar
[5] Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84Google Scholar
[6] Koruza J, Bell A J, Frömling T, Webber K G, Wang K, Rödel J 2018 J. Materiomics 4 13Google Scholar
[7] Liu Q, Zhang Y, Gao J, Zhou Z, Yang D, Lee K Y, Studer A, Hinterstein M, Wang K, Zhang X, Li L, Li J F 2020 Natl. Sci. Rev. 7 355Google Scholar
[8] Zhang J, Pan Z, Guo F F, Liu W C, Ning H, Chen Y B, Lu M H, Yang B, Chen J, Zhang S T, Xing X, Rödel J, Cao W, Chen Y F 2015 Nat. Commun. 6 1Google Scholar
[9] Wang Y, Luo C, Wang S, Chen C, Yuan G, Luo H, Viehland D 2020 Adv. Electron. Mater. 6 1900949Google Scholar
[10] Wu J, Xiao D, Zhu J 2015 Chem. Rev. 115 2559Google Scholar
[11] Mgbemere H E, Herber R P, Schneider G A 2009 J. Eur. Ceram. Soc. 29 1729Google Scholar
[12] Cheng X, Wu J, Lou X, Wang X, Wang X, Xiao D, Zhu J 2014 ACS Appl. Mater. Inter. 6 750Google Scholar
[13] Hao J, Li W, Zhai J, Chen H 2019 Mat. Sci. Eng. R 135 1Google Scholar
[14] Wang K, Yao F Z, Jo W, Gobeljic D, Shvartsman V V, Lupascu D C, Li J F, Rödel J 2013 Adv. Funct. Mater. 23 4079Google Scholar
[15] Yao F Z, Wang K, Jo W, Webber K G, Comyn T P, Ding J X, Xu B, Cheng L Q, Zheng M P, Hou Y D, Li J F 2016 Adv. Funct. Mater. 26 1217Google Scholar
[16] Zheng T, Wu J, Xiao D, Zhu J 2018 Prog. Mater. Sci. 98 552Google Scholar
[17] Tao H, Wu H, Liu Y, Zhang Y, Wu J, Li F, Lü X, Zhao C, Xiao D, Zhu J, Pennycook S J 2019 J. Am. Chem. Soc. 141 13987Google Scholar
[18] Zhang M H, Wang K, Du Y J, Dai G, Sun W, Li G, Hu D, Thong H C, Zhao C, Xi X Q, Yue Z X, Li J F 2017 J. Am. Chem. Soc. 139 3889Google Scholar
[19] 王轲, 沈宗洋, 张波萍, 李敬锋 2014 无机材料学报 29 13Google Scholar
Wang K, Shen Z Y, Zhang B P, Li J F 2014 J. Inorg. Mater. 29 13Google Scholar
[20] Hollenstein E, Davis M, Damjanovic D, Setter N 2005 Appl. Phys. Lett. 87 182905Google Scholar
[21] Birol H, Damjanovic D, Setter N 2005 J. Am. Ceram. Soc. 88 1754Google Scholar
[22] Kim D H, Joung M R, Seo I T, Hur J, Kim J H, Kim B Y, Lee H J, Nahm S 2014 J. Eur. Ceram. Soc. 34 4193Google Scholar
[23] Du H, Li Z, Tang F, Qu S, Pei Z, Zhou W 2006 Mat. Sci. Eng. B 131 83Google Scholar
[24] Lin D, Kwok K W, Chan H L W 2008 J. Alloys Compd. 461 273Google Scholar
[25] Wu L, Zhang J L, Wang C L, Li J C 2008 J. Appl. Phys. 103 084116Google Scholar
[26] Standards Committee of the IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society 1988 IEEE Standard on Piezoelectricity (New York: IEEE) ANSI/IEEE Std. 176-1987
[27] Thong H C, Xu Z, Zhao C, Lou L Y, Chen S, Zuo S Q, Li J F, Wang K 2019 J. Am. Ceram. Soc. 102 836Google Scholar
[28] Camargo J, Espinosa P A, Zabotto F, Ramajo L, Castro M 2020 J. Alloys Compd. 826 154129Google Scholar
[29] 李睿 2015 64 167303Google Scholar
Li R 2015 Acta Phys. Sin. 64 167303Google Scholar
[30] 贺连星, 李承恩 2000 无机材料学报 15 293Google Scholar
He L X, Li C E 2000 J. Inorg. Mater. 15 293Google Scholar
[31] Kamiya T, Suzuki T, Tsurumi T, Daimon M 1992 Jpn. J. Appl. Phys. 31 3058Google Scholar
[32] Yao F Z, Zhang M H, Wang K, Zhou J J, Chen F, Xu B, Li F, Shen Y, Zhang Q H, Gu L, Zhang X W, Li J F 2018 ACS Appl. Mater. Inter. 10 37298Google Scholar
[33] Cheng L Q, Wang K, Yu Q, Li J F 2014 J. Mater. Chem. C 2 1519Google Scholar
[34] Shen Z X, Hu Z P, Chong T C, Beh C Y, Tang S H, Kuok M H 1995 Phys. Rev. B 52 3976
[35] Sundarakannan B, Kakimoto K, Ohsato H 2004 Ferroelectrics 302 175Google Scholar
[36] 路朋献, 许德合, 马秋花, 王改民, 侯永改, 周文俊, 栗政新 2007 红外与毫米波学报 26 69Google Scholar
Lu P X, Xu D H, Ma Q H, Wang G M, Hou Y G, Zhou W J, Li Z X 2007 J. Infrared Millm. W. 26 69Google Scholar
[37] Wang Z, Gu H, Hu Y, Yang K, Hu M, Zhou D, Guan J 2010 Cryst. Eng. Comm. 12 3157Google Scholar
[38] Li J F, Wang K, Zhu F Y, Cheng L Q, Yao F Z 2013 J. Am. Ceram. Soc. 96 3677Google Scholar
[39] 刘霄, 徐小敏, 杜慧玲 2018 无机材料学报 33 683Google Scholar
Liu X, Xu X M, Du H L 2018 J. Inorg. Mater. 33 683Google Scholar
[40] Lee D, Jeon B C, Baek S H, Yang J S, Kim T H, Kim Y S, Yoon J G, Eom C B, Noh T W 2012 Adv. Mater. 24 6490Google Scholar
[41] Ren X 2004 Nat. Mater. 3 91Google Scholar
[42] Feng Z, Ren X 2007 Appl. Phys. Lett. 91 032904Google Scholar
[43] Voas B K, Usher T M, Liu X, Li S, Jones J L, Tan X, Cooper V R, Beckman S P 2014 Phys. Rev. B 90 024105Google Scholar
[44] Steiner S, Seo I T, Ren P, Li M, Keeble D J, Frömling T 2019 J. Am. Ceram. Soc. 102 5295Google Scholar
[45] Herber R P, Schneider G A, Wagner S, Hoffmann M J 2007 Appl. Phys. Lett. 90 252905Google Scholar
[46] Nakamura K, Tokiwa T, Kawamura Y 2002 J. Appl. Phys. 91 9272Google Scholar
[47] Qin Y, Zhang J, Yao W, Wang C, Zhang S 2015 J. Am. Ceram. Soc. 98 1027Google Scholar
-
表 1 KN, KN-Mn, KNN和KNN-Mn陶瓷的相对密度、压电性能和介电性能
Table 1. Relative density, piezoelectric and dielectric properties of KN, KN-Mn, KNN, and KNN-Mn ceramics.
d33/pC·N–1 Relative density/% kp Qm θmax/(°) tanδ εr (1 kHz) KN 90 92.0 0.26 177 66 0.042 576 KN-Mn 83 95.1 0.27 185 77 0.015 526 KNN 115 94.9 0.29 85 64 0.060 393 KNN-Mn 109 94.3 0.32 330 83 0.024 355 -
[1] Wang K, Malič B, Wu J 2018 MRS Bull. 43 607Google Scholar
[2] Thong H C, Zhao C, Zhou Z, Wu C F, Liu Y X, Du Z Z, Li J F, Gong W, Wang K 2019 Mater. Today 29 37Google Scholar
[3] 吴金根, 高翔宇, 陈建国, 王春明, 张树君, 董蜀湘 2018 67 207701Google Scholar
Wu J G, Gao X Y, Chen J G, Wang C M, Zhang S J, Dong S X 2018 Acta Phys. Sin. 67 207701Google Scholar
[4] 刘涛, 丁爱丽, 何夕云, 郑鑫森, 仇萍荪, 程文秀 2007 无机材料学报 22 469Google Scholar
Liu T, Ding A L, He X Y, Zheng X S, Qiu P S, Cheng W X 2007 J. Inorg. Mater. 22 469Google Scholar
[5] Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84Google Scholar
[6] Koruza J, Bell A J, Frömling T, Webber K G, Wang K, Rödel J 2018 J. Materiomics 4 13Google Scholar
[7] Liu Q, Zhang Y, Gao J, Zhou Z, Yang D, Lee K Y, Studer A, Hinterstein M, Wang K, Zhang X, Li L, Li J F 2020 Natl. Sci. Rev. 7 355Google Scholar
[8] Zhang J, Pan Z, Guo F F, Liu W C, Ning H, Chen Y B, Lu M H, Yang B, Chen J, Zhang S T, Xing X, Rödel J, Cao W, Chen Y F 2015 Nat. Commun. 6 1Google Scholar
[9] Wang Y, Luo C, Wang S, Chen C, Yuan G, Luo H, Viehland D 2020 Adv. Electron. Mater. 6 1900949Google Scholar
[10] Wu J, Xiao D, Zhu J 2015 Chem. Rev. 115 2559Google Scholar
[11] Mgbemere H E, Herber R P, Schneider G A 2009 J. Eur. Ceram. Soc. 29 1729Google Scholar
[12] Cheng X, Wu J, Lou X, Wang X, Wang X, Xiao D, Zhu J 2014 ACS Appl. Mater. Inter. 6 750Google Scholar
[13] Hao J, Li W, Zhai J, Chen H 2019 Mat. Sci. Eng. R 135 1Google Scholar
[14] Wang K, Yao F Z, Jo W, Gobeljic D, Shvartsman V V, Lupascu D C, Li J F, Rödel J 2013 Adv. Funct. Mater. 23 4079Google Scholar
[15] Yao F Z, Wang K, Jo W, Webber K G, Comyn T P, Ding J X, Xu B, Cheng L Q, Zheng M P, Hou Y D, Li J F 2016 Adv. Funct. Mater. 26 1217Google Scholar
[16] Zheng T, Wu J, Xiao D, Zhu J 2018 Prog. Mater. Sci. 98 552Google Scholar
[17] Tao H, Wu H, Liu Y, Zhang Y, Wu J, Li F, Lü X, Zhao C, Xiao D, Zhu J, Pennycook S J 2019 J. Am. Chem. Soc. 141 13987Google Scholar
[18] Zhang M H, Wang K, Du Y J, Dai G, Sun W, Li G, Hu D, Thong H C, Zhao C, Xi X Q, Yue Z X, Li J F 2017 J. Am. Chem. Soc. 139 3889Google Scholar
[19] 王轲, 沈宗洋, 张波萍, 李敬锋 2014 无机材料学报 29 13Google Scholar
Wang K, Shen Z Y, Zhang B P, Li J F 2014 J. Inorg. Mater. 29 13Google Scholar
[20] Hollenstein E, Davis M, Damjanovic D, Setter N 2005 Appl. Phys. Lett. 87 182905Google Scholar
[21] Birol H, Damjanovic D, Setter N 2005 J. Am. Ceram. Soc. 88 1754Google Scholar
[22] Kim D H, Joung M R, Seo I T, Hur J, Kim J H, Kim B Y, Lee H J, Nahm S 2014 J. Eur. Ceram. Soc. 34 4193Google Scholar
[23] Du H, Li Z, Tang F, Qu S, Pei Z, Zhou W 2006 Mat. Sci. Eng. B 131 83Google Scholar
[24] Lin D, Kwok K W, Chan H L W 2008 J. Alloys Compd. 461 273Google Scholar
[25] Wu L, Zhang J L, Wang C L, Li J C 2008 J. Appl. Phys. 103 084116Google Scholar
[26] Standards Committee of the IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society 1988 IEEE Standard on Piezoelectricity (New York: IEEE) ANSI/IEEE Std. 176-1987
[27] Thong H C, Xu Z, Zhao C, Lou L Y, Chen S, Zuo S Q, Li J F, Wang K 2019 J. Am. Ceram. Soc. 102 836Google Scholar
[28] Camargo J, Espinosa P A, Zabotto F, Ramajo L, Castro M 2020 J. Alloys Compd. 826 154129Google Scholar
[29] 李睿 2015 64 167303Google Scholar
Li R 2015 Acta Phys. Sin. 64 167303Google Scholar
[30] 贺连星, 李承恩 2000 无机材料学报 15 293Google Scholar
He L X, Li C E 2000 J. Inorg. Mater. 15 293Google Scholar
[31] Kamiya T, Suzuki T, Tsurumi T, Daimon M 1992 Jpn. J. Appl. Phys. 31 3058Google Scholar
[32] Yao F Z, Zhang M H, Wang K, Zhou J J, Chen F, Xu B, Li F, Shen Y, Zhang Q H, Gu L, Zhang X W, Li J F 2018 ACS Appl. Mater. Inter. 10 37298Google Scholar
[33] Cheng L Q, Wang K, Yu Q, Li J F 2014 J. Mater. Chem. C 2 1519Google Scholar
[34] Shen Z X, Hu Z P, Chong T C, Beh C Y, Tang S H, Kuok M H 1995 Phys. Rev. B 52 3976
[35] Sundarakannan B, Kakimoto K, Ohsato H 2004 Ferroelectrics 302 175Google Scholar
[36] 路朋献, 许德合, 马秋花, 王改民, 侯永改, 周文俊, 栗政新 2007 红外与毫米波学报 26 69Google Scholar
Lu P X, Xu D H, Ma Q H, Wang G M, Hou Y G, Zhou W J, Li Z X 2007 J. Infrared Millm. W. 26 69Google Scholar
[37] Wang Z, Gu H, Hu Y, Yang K, Hu M, Zhou D, Guan J 2010 Cryst. Eng. Comm. 12 3157Google Scholar
[38] Li J F, Wang K, Zhu F Y, Cheng L Q, Yao F Z 2013 J. Am. Ceram. Soc. 96 3677Google Scholar
[39] 刘霄, 徐小敏, 杜慧玲 2018 无机材料学报 33 683Google Scholar
Liu X, Xu X M, Du H L 2018 J. Inorg. Mater. 33 683Google Scholar
[40] Lee D, Jeon B C, Baek S H, Yang J S, Kim T H, Kim Y S, Yoon J G, Eom C B, Noh T W 2012 Adv. Mater. 24 6490Google Scholar
[41] Ren X 2004 Nat. Mater. 3 91Google Scholar
[42] Feng Z, Ren X 2007 Appl. Phys. Lett. 91 032904Google Scholar
[43] Voas B K, Usher T M, Liu X, Li S, Jones J L, Tan X, Cooper V R, Beckman S P 2014 Phys. Rev. B 90 024105Google Scholar
[44] Steiner S, Seo I T, Ren P, Li M, Keeble D J, Frömling T 2019 J. Am. Ceram. Soc. 102 5295Google Scholar
[45] Herber R P, Schneider G A, Wagner S, Hoffmann M J 2007 Appl. Phys. Lett. 90 252905Google Scholar
[46] Nakamura K, Tokiwa T, Kawamura Y 2002 J. Appl. Phys. 91 9272Google Scholar
[47] Qin Y, Zhang J, Yao W, Wang C, Zhang S 2015 J. Am. Ceram. Soc. 98 1027Google Scholar
Catalog
Metrics
- Abstract views: 12968
- PDF Downloads: 678
- Cited By: 0