-
First-principles calculation and experimental methods are used to study the interfacial properties and reaction of diamond/Al composites. Based on the first-principles method, the interfacial adhesion work (Wad), electronic structure and charge transfer of diamond/Al models are calculated systematically. The results show that the adhesion work of diamond(100)/Al(111) is 41% higher than that of diamond(111)/Al(111), therefore, the interface bonding of diamond(100)/Al(111) interface is stronger. According to the analysis of the electronic structure, there are more charges transferring at the diamond(100)/Al(111) interface, and the high charge density is distributed on the side of C atoms. The redistribution of charges at the interface is conducive to the formation of Al—C bond, so that the tendency of forming Al—C bonds is greater. The introduction of Al—C bond can promote the formation of C—C bond at the diamond(100)/Al(111) interface and improve the interfacial adhesion work. In addition, the diamond/Al composites are fabricated by vacuum gas pressure infiltration, and multi-scale characterization of the interface structure of diamond/Al composites is carried out. The interfacial debonding occurs mainly on the diamond {111}. Meanwhile, the interface product Al4C3 is easier to form on the diamond {100}. The experimental phenomenon is consistent with the calculated results. Moreover, the influence of the interfacial reaction on the properties and stability of diamond/Al composites are further discussed through heat-moisture treatment. The study finds that the performance degradation in heat-moisture environment is related mainly to the hydrolysis of the interface product Al4C3. After 60 days’ heat-moisture, the thermal conductivity of the diamond/Al composites decreases by 29.9%, and the bending strength is reduced by 40.1%. The large attenuation of performance is not conducive to the stability of composites in complex environments. Therefore, inhibiting the formation of Al4C3 and improving interfacial selectivity are of great importance in developing the performance and stability of diamond/Al composites. The research in this paper not only lays a theoretical foundation for the first-principles calculation of the interface properties of diamond/metal, but also possesses important guidance significance in designing the diamond/metal composites.
-
Keywords:
- diamond/Al /
- first-principles /
- interface properties /
- heat-moisture treatment
[1] Edtmaier C, Segl J, Koos R, Schöbel M, Feldbaumer C 2020 Diamond Relat. Mater. 106 107842Google Scholar
[2] Guo B S, Chen B, Zhang X M, Cen X, Wang X H, Song M, Ni S, Yi J H, Shen T, Du Y 2018 Carbon 135 224Google Scholar
[3] Lu Y F, Wang X T, Zhang Y, Wang J G, Kim M J, Zhang H L 2018 J. Compos. Mater. 52 2709Google Scholar
[4] Li N, Wang L H, Dai J J, Wang X T, Wang J G, Kim M J, Zhang H L 2019 Diamond Relat. Mater. 100 107565Google Scholar
[5] Chen G Q, Yang W S, Xin L, Wang P P, Liu S F, Qiao J, Hu F J, Zhang Q, Wu G H 2018 J. Alloys Compd. 735 777Google Scholar
[6] Edtmaier C, Segl J, Rosenberg E, Liedl G, Pospichal R, Steiger-Thirsfeld A 2018 J. Mater. Sci. 53 15514Google Scholar
[7] Tan Z Q, Li Z Q, Xiong D B, Fan G L, Ji G, Zhang D 2014 Mater. Des. 55 257Google Scholar
[8] Che Z F, Wang Q X, Wang L H, Li J W, Zhang H L, Zhang Y, Wang X T, Wang J G, Kim M J 2017 Composites Part B 113 285Google Scholar
[9] Ji G, Tan Z Q, Li X P, Li Z Q, Kruth J P 2018 Mater. Sci. Forum 941 2184Google Scholar
[10] Guo C Y, He X B, Ren S B, Qu X H 2016 J. Alloys Compd. 664 777Google Scholar
[11] Tan Z Q, Ji G, Addad A, Li Z Q, Silvain J F, Zhang D 2016 Composites Part A 91 9Google Scholar
[12] Monje I E, Louis E, Molina J M 2013 Composites Part A 48 9Google Scholar
[13] Wu J H, Zhang H L, Zhang Y, Li J W, Wang X T 2012 Mater. Des. 39 87Google Scholar
[14] Monje I E, Louis E, Molina J M 2016 Scr. Mater. 115 159Google Scholar
[15] Li X J, Yang W L, Sang J Q, Zhu J J, Fu L C, Li DY, Zhou L P 2020 J. Alloys Compd. 846 156258Google Scholar
[16] 张恒, 黄燕, 石旺舟, 周孝好, 陈效双 2019 68 207302Google Scholar
Zhang H, Huang Y, Shi W Z, Zhou X H, Chen X S 2019 Acta Phys. Sin. 68 207302Google Scholar
[17] 董珊, 张岩星, 张喜林, 许晓培, 毛建军, 李东霖, 陈志明, 马款, 范政权, 魏丹丹, 杨宗献 2016 65 068201Google Scholar
Dong S, Zhang Y X, Zhang X L, Xu X P, Mao J J, Li D L, Chen Z M, Ma K, Fan Z Q, Wei D D, Yang Z X 2016 Acta Phys. Sin. 65 068201Google Scholar
[18] Zhao Z Y, Zhao W J, Bai P K, Wu L Y, Huo P C 2019 Mater. Lett. 255 126559Google Scholar
[19] Chen L, Chen S T, Hou Y 2019 Carbon 148 249Google Scholar
[20] Xie H N, Chen Y T, Zhang T B, Zhao N Q, Shi C S, He C N, Liu E Z 2020 Appl. Surf. Sci. 527 146817Google Scholar
[21] Fathzadeh M, Fahrvandi H, Nadimi E 2020 Nanotechnology 31 025710Google Scholar
[22] Qi Y, Hector L G 2003 Phys. Rev. B 68 201403Google Scholar
[23] 吴孔平, 孙昌, 马文飞, 王杰, 魏巍, 蔡俊, 陈昌兆, 任斌, 桑立雯, 廖梅勇 2017 66 088102Google Scholar
Wu K P, Sun C X, Ma W F, Wang J, Wei W, Cai J, Chen C Z, Ren B, Sang L W, Liao M Y 2017 Acta Phys. Sin. 66 088102Google Scholar
[24] Vanderbilt, David 1990 Phys. Rev. B 41 7892Google Scholar
[25] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[26] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar
[27] Monachon C, Schusteritsch G, Kaxiras E, Weber L 2014 J. Appl. Phys. 115 123509Google Scholar
[28] Riley D P 1944 Nature 153 587Google Scholar
[29] Liu L M, Wang S Q, Ye H Q 2004 Surf. Sci. 550 46Google Scholar
[30] Xu X Y, Wang H Y, Zha M, Wang C, Yang Z Z, Jiang Q C 2018 Appl. Surf. Sci. 437 103Google Scholar
[31] Liu R, Yin X M, Feng K X, Xu R 2018 Comput. Mater. Sci. 149 373Google Scholar
[32] Che Z F, Zhang Y, Li J W, Zhang H L, Wang X T, Sun C, Wang J G, Kim M J 2016 J. Alloys Compd. 657 81Google Scholar
[33] Monje I E, Louis E, Molina J M 2016 J. Mater. Sci. 51 8027Google Scholar
-
图 5 C原子在Al(111)表面吸附位置确定 (a) Al(111)表面模型; (b) C原子在Al(111)表面吸附位置俯视图; (c) Al4C3模型局部图; (d) 优化的C原子在Al(111)表面的位置
Figure 5. Determination of adsorption position of C atom on Al (111) surface: (a) Al (111) surface model; (b) top view of the adsorption position of C atom on Al (111) surface; (c) the local map of Al4C3 model; (d) the position of the optimized C atom on Al (111) surface.
图 7 修正的金刚石(100)/铝(111)模型差分电荷密度分析 (a) 结构优化后模型俯视图; (b) (a)中①截面差分电荷密度图; (c) (a)中②截面差分电荷密度图; (d) (b)中虚线部分的差分电荷密度图
Figure 7. Differential charge density analysis of diamond(100)/Al(111) modified model: (a) Top view of the model after structure optimization; (b) cross section differential charge density diagram of ① in Fig. (a); (c) cross section differential charge density diagram of ② in Fig. (a); (d) the differential charge density diagram of the dotted line in Fig. (b).
图 9 复合材料中提取金刚石的SEM形貌 (a) 提取金刚石颗粒整体形貌; (b) 提取金刚石颗粒局部形貌; (c) 单个金刚石颗粒形貌; (d) {100}晶面上的Al4C3蚀坑
Figure 9. SEM morphology of diamond extracted from diamond/Al composites: (a) Overall morphology of extracted diamond particles; (b) local morphology of extracted diamond particles; (c) morphology of single diamond particle; (d) Al4C3 pits on {100} plane.
表 1 金刚石/铝界面原子轨道布居分析
Table 1. Atomic orbital population analysis of diamond/Al interface.
Interface model Position s p Total Charge Diamond(111)/Al(111) Al1 1.03 1.61 2.64 0.36 Al2 1.03 1.61 2.64 0.36 Al3 1.03 1.61 2.64 0.36 C1 1.18 3.07 4.25 –0.25 Diamond(100)/Al(111) C2 1.18 3.09 4.26 –0.26 Al1 0.88 1.73 2.61 0.39 Al2 0.89 1.72 2.60 0.40 Al3 0.88 1.73 2.61 0.39 Al4 0.89 1.72 2.61 0.39 C1 1.33 3.10 4.43 0.43 C2 1.33 3.10 4.43 0.43 表 2 不同覆盖率及不同吸附位置时C原子在Al(111)表面的吸附能 (eV·atom–1)
Table 2. Adsorption energy of C atom on Al (111) surface with different coverage and adsorption position (eV·atom–1).
Coverage/ML ① ② ③ 0.25 4.12 7.96 7.63 0.50 6.89 8.62 8.21 1.00 4.27 7.41 5.76 -
[1] Edtmaier C, Segl J, Koos R, Schöbel M, Feldbaumer C 2020 Diamond Relat. Mater. 106 107842Google Scholar
[2] Guo B S, Chen B, Zhang X M, Cen X, Wang X H, Song M, Ni S, Yi J H, Shen T, Du Y 2018 Carbon 135 224Google Scholar
[3] Lu Y F, Wang X T, Zhang Y, Wang J G, Kim M J, Zhang H L 2018 J. Compos. Mater. 52 2709Google Scholar
[4] Li N, Wang L H, Dai J J, Wang X T, Wang J G, Kim M J, Zhang H L 2019 Diamond Relat. Mater. 100 107565Google Scholar
[5] Chen G Q, Yang W S, Xin L, Wang P P, Liu S F, Qiao J, Hu F J, Zhang Q, Wu G H 2018 J. Alloys Compd. 735 777Google Scholar
[6] Edtmaier C, Segl J, Rosenberg E, Liedl G, Pospichal R, Steiger-Thirsfeld A 2018 J. Mater. Sci. 53 15514Google Scholar
[7] Tan Z Q, Li Z Q, Xiong D B, Fan G L, Ji G, Zhang D 2014 Mater. Des. 55 257Google Scholar
[8] Che Z F, Wang Q X, Wang L H, Li J W, Zhang H L, Zhang Y, Wang X T, Wang J G, Kim M J 2017 Composites Part B 113 285Google Scholar
[9] Ji G, Tan Z Q, Li X P, Li Z Q, Kruth J P 2018 Mater. Sci. Forum 941 2184Google Scholar
[10] Guo C Y, He X B, Ren S B, Qu X H 2016 J. Alloys Compd. 664 777Google Scholar
[11] Tan Z Q, Ji G, Addad A, Li Z Q, Silvain J F, Zhang D 2016 Composites Part A 91 9Google Scholar
[12] Monje I E, Louis E, Molina J M 2013 Composites Part A 48 9Google Scholar
[13] Wu J H, Zhang H L, Zhang Y, Li J W, Wang X T 2012 Mater. Des. 39 87Google Scholar
[14] Monje I E, Louis E, Molina J M 2016 Scr. Mater. 115 159Google Scholar
[15] Li X J, Yang W L, Sang J Q, Zhu J J, Fu L C, Li DY, Zhou L P 2020 J. Alloys Compd. 846 156258Google Scholar
[16] 张恒, 黄燕, 石旺舟, 周孝好, 陈效双 2019 68 207302Google Scholar
Zhang H, Huang Y, Shi W Z, Zhou X H, Chen X S 2019 Acta Phys. Sin. 68 207302Google Scholar
[17] 董珊, 张岩星, 张喜林, 许晓培, 毛建军, 李东霖, 陈志明, 马款, 范政权, 魏丹丹, 杨宗献 2016 65 068201Google Scholar
Dong S, Zhang Y X, Zhang X L, Xu X P, Mao J J, Li D L, Chen Z M, Ma K, Fan Z Q, Wei D D, Yang Z X 2016 Acta Phys. Sin. 65 068201Google Scholar
[18] Zhao Z Y, Zhao W J, Bai P K, Wu L Y, Huo P C 2019 Mater. Lett. 255 126559Google Scholar
[19] Chen L, Chen S T, Hou Y 2019 Carbon 148 249Google Scholar
[20] Xie H N, Chen Y T, Zhang T B, Zhao N Q, Shi C S, He C N, Liu E Z 2020 Appl. Surf. Sci. 527 146817Google Scholar
[21] Fathzadeh M, Fahrvandi H, Nadimi E 2020 Nanotechnology 31 025710Google Scholar
[22] Qi Y, Hector L G 2003 Phys. Rev. B 68 201403Google Scholar
[23] 吴孔平, 孙昌, 马文飞, 王杰, 魏巍, 蔡俊, 陈昌兆, 任斌, 桑立雯, 廖梅勇 2017 66 088102Google Scholar
Wu K P, Sun C X, Ma W F, Wang J, Wei W, Cai J, Chen C Z, Ren B, Sang L W, Liao M Y 2017 Acta Phys. Sin. 66 088102Google Scholar
[24] Vanderbilt, David 1990 Phys. Rev. B 41 7892Google Scholar
[25] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[26] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar
[27] Monachon C, Schusteritsch G, Kaxiras E, Weber L 2014 J. Appl. Phys. 115 123509Google Scholar
[28] Riley D P 1944 Nature 153 587Google Scholar
[29] Liu L M, Wang S Q, Ye H Q 2004 Surf. Sci. 550 46Google Scholar
[30] Xu X Y, Wang H Y, Zha M, Wang C, Yang Z Z, Jiang Q C 2018 Appl. Surf. Sci. 437 103Google Scholar
[31] Liu R, Yin X M, Feng K X, Xu R 2018 Comput. Mater. Sci. 149 373Google Scholar
[32] Che Z F, Zhang Y, Li J W, Zhang H L, Wang X T, Sun C, Wang J G, Kim M J 2016 J. Alloys Compd. 657 81Google Scholar
[33] Monje I E, Louis E, Molina J M 2016 J. Mater. Sci. 51 8027Google Scholar
Catalog
Metrics
- Abstract views: 9343
- PDF Downloads: 373
- Cited By: 0