-
采用第一性原理研究了CdS的六方纤锌矿(WZ), 立方闪锌矿(ZB) 和岩盐矿(RS)相在高压条件下的相稳定性、 相变点、电子结构以及弹性性能.WZ相与RS 相可以在相应的压强范围内稳定存在, 而ZB相不能稳定存在.压强大于2.18 GPa时, WZ相向RS相发生金属化相变.WZ相中S原子电负性大于Cd, 且电负性差值小于1.7, CdS的WZ相为共价晶体.高压作用下, S原子半径被强烈压缩, 有效核电荷增加, 对层外电子吸引能力提高, 电负性急剧增大, 导致S与Cd的电负性差值大于1.7, CdS的RS相以离子晶体存在. WZ相的C44随压强增加呈下降趋势, 导致WZ相力学不稳定, 并向RS相转变.当压强大于2.18 GPa时, RS相C11, C12随压强增加而增大, 并且C44保持稳定, 说明RS相具有良好的高压稳定性与力学性能.In this work, phase stabilities, phase transitions, electronic structures and elastic properties of wurtzite structure (WZ), zinc-blende structure (ZB) and rocksalt struture (RS) phase of CdS are studied by first principles method. Results indicate that WZ and RS phases could be stable in corresponding pressure areas. However, ZB phase could not be stable. Pressure-induced metallic phase transition from WZ to RS will occur at 2.18 GPa. Electronegativity of S atom in WZ phase is much more than that of Cd atom, and the difference in electronegativity between S and Cd is less than 1.7, which induces covalent crystal of CdS. Under the condition of high pressure, radius of S is reduced sharply, which causes the increase of effective nuclear charge. Large nuclear charge will enhance the ability to attract electrons of outer shell, which will cause larger electronegativity. When pressure is higher than 2.18 GPa, the difference in electronegativity is more than 1.7. Then, CdS will be ionic crystal. C44 of WZ phase decreases with pressure, resulting in mechanical instability. And then,the WZ-to-RS phase transition occurs at 2.18 GPa. Moreover, C11 and C12 of RS phase increase with pressure. At the same time, C44 of RS is stable with pressure increasing entirely, all of which shows that RS phase has excellent stability and mechanical property under high pressure.
-
Keywords:
- first principle /
- phase transition /
- electronic structure /
- elastic properties
[1] Enífquez J P, Mathew X 2003 Sol. Energy Mater. Sol. Cell 76 313
[2] Li C X, Dang S H 2012 Acta Phys. Sin. 61 017202 (in Chinese) [李春霞, 党随虎 2012 61 017202]
[3] Sahay P P, Nath R K, Tewari S 2007 Cryst. Res. Technol. 42 275
[4] Fernee M, Watt A, Warner J, Cooper S, Heckenberg N, Rubinsztein-Dunlop H 2003 Nanotechnology 14 991
[5] Greenwood N N, Earnshaw A 1997 Chemistry of the Elements (2nd Ed.) (Oxford:Butterworth-Heinemann)
[6] Zakharov O, Rubio A, Blasé X, Cohen M L, Louie S G 1994 Phys. Rev. B 50 10780
[7] Xu Y N, Ching W Y 1993 Phys. Rev. B 48 4335
[8] Weber M J 1986 Handbook of Laser Science and Technology (Vol. III) (Cleveland:CRC Press)
[9] Ley L, Pollak R A, Mcfeely F R, Kowalczyk S P, Shirley D A 1974 Phys. Rev. B 9 600
[10] Wei S, Zhang S B 2000 Phys. Rev. B 62 6944
[11] Li C X 2007 J. At. Mol. Phys. 4 1060 (in Chinese) [李春霞 2007 原子与分子 4 1060]
[12] Ni L H, Liu Y, Song C L, Xu G, Han G R 2008 Rare Metal Materials and Engineering 37 623 (in Chinese) [倪利红, 刘涌, 宋晨路, 徐刚, 韩高荣 2008 稀有金属材料与工程 37 623]
[13] Tan J J, Li Y, Ji G F 2011 Acat Phys. Polonica A 120 501
[14] Osugi J, Shimizu K, Nakamura T, Onodera A 1966 Rev. Phys. Chem. Jpn. 36 65
[15] Edwards A L, Slykhouse T E, Drickamer H G 1959 J. Phys. Chem. Solids 11 140
[16] Edwards A L, Drickamer H G 1961 Phys. Rev. 122 1149
[17] Benkhettou N, Rached D, Soudini B, Driz M 2004 Phys. Status Solidi B 241 101
[18] Corll J A 1964 J. Appl. Phys. 35 3032
[19] Payne M C, Teter M P, Allen D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[20] Milman V, Winkler B, White J A, Packard C J, Payne M C, Akhmatskaya E V, Nobes R H 2000 Int. J. Quantum Chem. 77 895
[21] Hamann D R, Schluter M, Chiang C 1979 Phys. Rev. Lett. 43 1494
[22] Bachelet G B, Hamann D R, Schluter M 1982 Phys. Rev. B 26 4199
[23] Vanderbilt D 1990 Phys. Rev. B 41 7892
[24] Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048
[25] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[26] Hammer B, Hansen L B, Norskov J K 1999 Phys. Rev. B 59 7413
[27] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671
[28] Wu Z, Cohen R E 2006 Phys. Rev. B 73 235116
[29] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406
[30] Fast L, Wills J M, Johansson B, Eriksson O 1995 Phys. Rev. B 51 17431
[31] Sin'ko G V, Smirnow N A 2002 J. Phys. Condens. Matter 14 6989
[32] Suzuki T, Yagi T, Akimoto S, Kawamura T, Toyoda S, Endo S 1983 J. Appl. Phys. 54 748
[33] Madelung E O, Schölz M, Weiss H, Landolt-Börnsten 1982 Numerical Data and Tunctional Relationship in Science and Technology (Vol. 17) (Berlin:Springer)
[34] Yeh C Y, Lu Z W, Froyen S, Zunger A 1992 Phys. Rev. B 46 10086
[35] Wright K, Gale J D 2004 Phys. Rev. B 70 035211
[36] Bolef D I, Melamed N T, Menes M 1960 J. Phys. Chem. Solids 17 143
-
[1] Enífquez J P, Mathew X 2003 Sol. Energy Mater. Sol. Cell 76 313
[2] Li C X, Dang S H 2012 Acta Phys. Sin. 61 017202 (in Chinese) [李春霞, 党随虎 2012 61 017202]
[3] Sahay P P, Nath R K, Tewari S 2007 Cryst. Res. Technol. 42 275
[4] Fernee M, Watt A, Warner J, Cooper S, Heckenberg N, Rubinsztein-Dunlop H 2003 Nanotechnology 14 991
[5] Greenwood N N, Earnshaw A 1997 Chemistry of the Elements (2nd Ed.) (Oxford:Butterworth-Heinemann)
[6] Zakharov O, Rubio A, Blasé X, Cohen M L, Louie S G 1994 Phys. Rev. B 50 10780
[7] Xu Y N, Ching W Y 1993 Phys. Rev. B 48 4335
[8] Weber M J 1986 Handbook of Laser Science and Technology (Vol. III) (Cleveland:CRC Press)
[9] Ley L, Pollak R A, Mcfeely F R, Kowalczyk S P, Shirley D A 1974 Phys. Rev. B 9 600
[10] Wei S, Zhang S B 2000 Phys. Rev. B 62 6944
[11] Li C X 2007 J. At. Mol. Phys. 4 1060 (in Chinese) [李春霞 2007 原子与分子 4 1060]
[12] Ni L H, Liu Y, Song C L, Xu G, Han G R 2008 Rare Metal Materials and Engineering 37 623 (in Chinese) [倪利红, 刘涌, 宋晨路, 徐刚, 韩高荣 2008 稀有金属材料与工程 37 623]
[13] Tan J J, Li Y, Ji G F 2011 Acat Phys. Polonica A 120 501
[14] Osugi J, Shimizu K, Nakamura T, Onodera A 1966 Rev. Phys. Chem. Jpn. 36 65
[15] Edwards A L, Slykhouse T E, Drickamer H G 1959 J. Phys. Chem. Solids 11 140
[16] Edwards A L, Drickamer H G 1961 Phys. Rev. 122 1149
[17] Benkhettou N, Rached D, Soudini B, Driz M 2004 Phys. Status Solidi B 241 101
[18] Corll J A 1964 J. Appl. Phys. 35 3032
[19] Payne M C, Teter M P, Allen D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[20] Milman V, Winkler B, White J A, Packard C J, Payne M C, Akhmatskaya E V, Nobes R H 2000 Int. J. Quantum Chem. 77 895
[21] Hamann D R, Schluter M, Chiang C 1979 Phys. Rev. Lett. 43 1494
[22] Bachelet G B, Hamann D R, Schluter M 1982 Phys. Rev. B 26 4199
[23] Vanderbilt D 1990 Phys. Rev. B 41 7892
[24] Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048
[25] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[26] Hammer B, Hansen L B, Norskov J K 1999 Phys. Rev. B 59 7413
[27] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671
[28] Wu Z, Cohen R E 2006 Phys. Rev. B 73 235116
[29] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406
[30] Fast L, Wills J M, Johansson B, Eriksson O 1995 Phys. Rev. B 51 17431
[31] Sin'ko G V, Smirnow N A 2002 J. Phys. Condens. Matter 14 6989
[32] Suzuki T, Yagi T, Akimoto S, Kawamura T, Toyoda S, Endo S 1983 J. Appl. Phys. 54 748
[33] Madelung E O, Schölz M, Weiss H, Landolt-Börnsten 1982 Numerical Data and Tunctional Relationship in Science and Technology (Vol. 17) (Berlin:Springer)
[34] Yeh C Y, Lu Z W, Froyen S, Zunger A 1992 Phys. Rev. B 46 10086
[35] Wright K, Gale J D 2004 Phys. Rev. B 70 035211
[36] Bolef D I, Melamed N T, Menes M 1960 J. Phys. Chem. Solids 17 143
计量
- 文章访问数: 7583
- PDF下载量: 1625
- 被引次数: 0