搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

IrB和IrB2力学性质的第一性原理计算

曾小波 朱晓玲 李德华 陈中钧 艾应伟

引用本文:
Citation:

IrB和IrB2力学性质的第一性原理计算

曾小波, 朱晓玲, 李德华, 陈中钧, 艾应伟

First-principles calculations of the mechanical properties of IrB and IrB2

Zeng Xiao-Bo, Zhu Xiao-Ling, Li De-Hua, Chen Zhong-Jun, Ai Ying-Wei
PDF
导出引用
  • 采用平面波赝势密度泛函理论对0100 GPa静水压下P1 -IrB(空间群Pnma)和P5 -IrB2(空间群Pmmn)结构的平衡态晶格常数、弹性常数等性质进行了研究. 研究结果表明,P1 -IrB不可压缩性随着压强的增加而增强;P5 -IrB2 结构在0100 GPa范围内弹性常数、体弹模量、剪切模量均呈现出有规律的变化,当所加压强为50 GPa时,杨氏模量和在b方向的晶格常数发生异常变化. 对零压下P1 -IrB和P5 -IrB2 的电子结构的研究发现,二者均没有一个明显的带隙,主要原因为Ir原子和B原子间的共价作用. 从P1 -IrB和P5 -IrB2的能带结构和态密度图可以发现这两种结构均有金属性.
    We have employed ab-initio plane-wave pseudopotential density functional theory to calculate the equilibrium lattice parameters, elastic constants, under the hydrostatic pressures from 0 to 100 GPa for P1 -IrB with Pnma space group and P5 -IrB2 with Pmmn structures. Results show that the P1 -IrB structure is stable, and the incompressibility is enhanced with the increase of pressure. And the elastic constants, bulk modulus, shear modulus for P5 -IrB2 structure exhibit the regular changes under the hydrostatic pressures from 0 to 100 GPa. But when the pressure becomes 50 GPa, the Young's modulus and the lattice constant in the direction b for P5 -IrB2 structure will change exceptionally. Results show that both are not of obvious band gaps in P1 -IrB and P5 -IrB2 electronic structures under zero pressure, because of the covalent effect between Ir and B atoms. The analysis of band structure and the figure of density of states for P1 -IrB and P5 -IrB2 indicate that the two kinds of structure have metal properties.
    • 基金项目: 国家自然科学基金(批准号:41171175)和四川省高校科研创新团队基金(批准号:12TD008)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41171175), and the Construction Plan for Scientific Research Innovation Teams of Universities in Sichuan Province (Grant No. 12TD008).
    [1]

    Teter D M 1998 MRS Bull. 23 22

    [2]
    [3]

    Liu Y L, Kong F J, Yang B W, Jiang G 2007 Atca Phys. Sin. 56 5413 (in Chinese) [刘以良, 孔凡杰, 杨缤维, 蒋刚 2007 56 5413]

    [4]
    [5]

    Cohen M L 1985 Phys. Rev. B 32 7988

    [6]
    [7]

    Solozhenko V L, Dubrovinskaia N A, Dubrovinsky L S 2004 Appl. Phys. Lett. 85 1508

    [8]

    Song H, Zhang Y, Chen C F 2005 Physics 34 414 (in Chinese) [孙弘, 张翼, 陈长风 2005 物理 34 414]

    [9]
    [10]

    Jiang Y L, Zhang B, Pan H 2006 Jiangsu Build. Mater. 1 35 (in Chinese) [姜亚林, 张斌, 潘虎 2006 江苏建材 1 35]

    [11]
    [12]

    Tian Y J, Xu B, Zhao Z S 2012 Int. J. Refract. Met. Hard Mater. 3 93

    [13]
    [14]

    Li Q, Wang H, Ma Y M 2009 J. Superhard Mater. 32 192

    [15]
    [16]
    [17]

    Sproul W D 1996 Science 273 889

    [18]
    [19]

    Zhao Y, He D W, Daemen L L, Shen T D, Schwarz R B, Zhu Y, Bish D L, Huang J, Zhang J, Shen G, Qian J, Zerda T W 2002 J. Mater. Res. 17 3139

    [20]

    Solozhenko V L, Kurakevych O O, Andrault D, Godec Y L, Mezouar M 2009 Phys. Rev. Lett. 102 015506

    [21]
    [22]
    [23]

    Solozhenko V L, Andrault D, Fiquet G, Mezouar M, David C R 2001 Appl. Phys. Lett. 78 1385

    [24]

    Li Q, Wang M, Artem R O, Cui T, Ma Y M 2009 J. Appl. Phys. 105 053514

    [25]
    [26]
    [27]

    Li Q, Wang H, Tian Y J, Xia Y, Cui T 2010 J. Appl. Phys. 108 023507

    [28]

    Li D H, Su W J, Zhu X L 2012 Acta Phys. Sin. 61 023103 (in Chinese) [李德华, 苏文晋, 朱晓玲 2012 61 023103]

    [29]
    [30]
    [31]

    Zhu X L, Li D H, Cheng X L 2008 Solid State Commun. 147 301

    [32]

    Yao Y S, John S T, Dennis D, Klug 2009 Phys. Rev. B 80 094106

    [33]
    [34]
    [35]

    Zhao L K, Zhao E J, Wu Z J 2013 Acta Phys. Sin. 62 046201 (in Chinese) [赵立凯, 赵二俊, 武志坚 2013 62 046201]

    [36]

    Zhang X H, Gregory E H, William G, Fahrenholtz 2008 Mater. Lett. 62 4251

    [37]
    [38]

    Gu Q, Krauss G, Steurer W 2008 Adv. Mater. 20 3620

    [39]
    [40]

    Rau J V, Latini A 2009 Chem. Mater. 21 1407

    [41]
    [42]

    Alessandro L, Julietta V Rau, Roberto T, Amanda G, Valerio R A 2010 ACS Appl. Mater. Interfaces 2 581

    [43]
    [44]

    Zhao W J, Wang Y X J 2009 Solid State Chem. 182 2880

    [45]
    [46]
    [47]

    Wang Y, Chen W, Chen X, Liu X H, Dingc Z H 2012 Alloys and Compounds 538 115

    [48]

    Wang D Y, Wang B, Wang Y X 2012 J. Phys. Chem. C 116 21961

    [49]
    [50]

    Wang Y C, Lv J, Zhu L, Ma Y M 2010 Phys. Rev. B 82 094116

    [51]
    [52]
    [53]

    Gui L J, Liu Y L, Wang W T, Zhang Y, Lv G H, Yao J E 2013 Chin. Phys. B 22 106109

    [54]

    Yang C Y, Zhang R 2014 Chin. Phys. B 23 026301

    [55]
    [56]

    Zhang L, Ji G F, Zhao F, Gong Z Z 2011 Chin. Phys. B 20 047102

    [57]
    [58]
    [59]

    Biermann S, Aryasetiawan F, Georges A 2003 Phys. Rev. Lett. 90 086402

    [60]

    Xu G L, Zhu Z H 2008 J. Sichuan Normal University (Natural Science) 31 325 (in Chinese) [徐国亮, 朱正和 2008 四川师范大学学报 31 325]

    [61]
    [62]

    Tian M F, Deng X Y, Fang Z, Dai X 2011 Phys. Rev. B 84 205124

    [63]
    [64]
    [65]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, ClarkS J, Payne M C 2002 J. Phys. Condens. Matter 14 2717

    [66]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 45 566

    [67]
    [68]
    [69]

    Ceperley D M, Alder B J 1980 Phys. Rev. B 45 566

    [70]

    Perdew J P, Burke K, Zunger A 1981 Phys. Rev. B. 23 5048

    [71]
    [72]
    [73]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [74]
    [75]

    Monkhorst H J, Pack J D 1977 Phys. Rev. B 13 5188

    [76]

    Pack J D, Monkhorst H J 1977 Phys. Rev. B 16 1748

    [77]
    [78]
    [79]

    Peng F, Chen D, Yang X D 2009 Solid State Commun. 149 2135

    [80]
    [81]

    Wang D Y 2013 M. S. Thesis (Kaifeng:Henan University) (in Chinese) [王德玉2013硕士学位论文(开封: 河南大学)]

    [82]
    [83]
    [84]
    [85]
    [86]
    [87]
    [88]
    [89]
    [90]
    [91]
    [92]
    [93]
    [94]
    [95]
    [96]
    [97]
    [98]
    [99]
    [100]
    [101]
    [102]
    [103]
    [104]
    [105]
    [106]
    [107]
    [108]
    [109]
    [110]
    [111]
    [112]
    [113]
    [114]
    [115]
    [116]
    [117]
    [118]
    [119]
    [120]
    [121]
    [122]
    [123]
    [124]
    [125]
    [126]
    [127]
    [128]
    [129]
    [130]
    [131]
    [132]
    [133]
    [134]
    [135]
    [136]
    [137]
    [138]
    [139]
    [140]
    [141]
    [142]
    [143]
    [144]
    [145]
    [146]
    [147]
    [148]
    [149]
    [150]
    [151]
    [152]
    [153]
    [154]
    [155]
    [156]
    [157]
    [158]
    [159]
    [160]
    [161]
  • [1]

    Teter D M 1998 MRS Bull. 23 22

    [2]
    [3]

    Liu Y L, Kong F J, Yang B W, Jiang G 2007 Atca Phys. Sin. 56 5413 (in Chinese) [刘以良, 孔凡杰, 杨缤维, 蒋刚 2007 56 5413]

    [4]
    [5]

    Cohen M L 1985 Phys. Rev. B 32 7988

    [6]
    [7]

    Solozhenko V L, Dubrovinskaia N A, Dubrovinsky L S 2004 Appl. Phys. Lett. 85 1508

    [8]

    Song H, Zhang Y, Chen C F 2005 Physics 34 414 (in Chinese) [孙弘, 张翼, 陈长风 2005 物理 34 414]

    [9]
    [10]

    Jiang Y L, Zhang B, Pan H 2006 Jiangsu Build. Mater. 1 35 (in Chinese) [姜亚林, 张斌, 潘虎 2006 江苏建材 1 35]

    [11]
    [12]

    Tian Y J, Xu B, Zhao Z S 2012 Int. J. Refract. Met. Hard Mater. 3 93

    [13]
    [14]

    Li Q, Wang H, Ma Y M 2009 J. Superhard Mater. 32 192

    [15]
    [16]
    [17]

    Sproul W D 1996 Science 273 889

    [18]
    [19]

    Zhao Y, He D W, Daemen L L, Shen T D, Schwarz R B, Zhu Y, Bish D L, Huang J, Zhang J, Shen G, Qian J, Zerda T W 2002 J. Mater. Res. 17 3139

    [20]

    Solozhenko V L, Kurakevych O O, Andrault D, Godec Y L, Mezouar M 2009 Phys. Rev. Lett. 102 015506

    [21]
    [22]
    [23]

    Solozhenko V L, Andrault D, Fiquet G, Mezouar M, David C R 2001 Appl. Phys. Lett. 78 1385

    [24]

    Li Q, Wang M, Artem R O, Cui T, Ma Y M 2009 J. Appl. Phys. 105 053514

    [25]
    [26]
    [27]

    Li Q, Wang H, Tian Y J, Xia Y, Cui T 2010 J. Appl. Phys. 108 023507

    [28]

    Li D H, Su W J, Zhu X L 2012 Acta Phys. Sin. 61 023103 (in Chinese) [李德华, 苏文晋, 朱晓玲 2012 61 023103]

    [29]
    [30]
    [31]

    Zhu X L, Li D H, Cheng X L 2008 Solid State Commun. 147 301

    [32]

    Yao Y S, John S T, Dennis D, Klug 2009 Phys. Rev. B 80 094106

    [33]
    [34]
    [35]

    Zhao L K, Zhao E J, Wu Z J 2013 Acta Phys. Sin. 62 046201 (in Chinese) [赵立凯, 赵二俊, 武志坚 2013 62 046201]

    [36]

    Zhang X H, Gregory E H, William G, Fahrenholtz 2008 Mater. Lett. 62 4251

    [37]
    [38]

    Gu Q, Krauss G, Steurer W 2008 Adv. Mater. 20 3620

    [39]
    [40]

    Rau J V, Latini A 2009 Chem. Mater. 21 1407

    [41]
    [42]

    Alessandro L, Julietta V Rau, Roberto T, Amanda G, Valerio R A 2010 ACS Appl. Mater. Interfaces 2 581

    [43]
    [44]

    Zhao W J, Wang Y X J 2009 Solid State Chem. 182 2880

    [45]
    [46]
    [47]

    Wang Y, Chen W, Chen X, Liu X H, Dingc Z H 2012 Alloys and Compounds 538 115

    [48]

    Wang D Y, Wang B, Wang Y X 2012 J. Phys. Chem. C 116 21961

    [49]
    [50]

    Wang Y C, Lv J, Zhu L, Ma Y M 2010 Phys. Rev. B 82 094116

    [51]
    [52]
    [53]

    Gui L J, Liu Y L, Wang W T, Zhang Y, Lv G H, Yao J E 2013 Chin. Phys. B 22 106109

    [54]

    Yang C Y, Zhang R 2014 Chin. Phys. B 23 026301

    [55]
    [56]

    Zhang L, Ji G F, Zhao F, Gong Z Z 2011 Chin. Phys. B 20 047102

    [57]
    [58]
    [59]

    Biermann S, Aryasetiawan F, Georges A 2003 Phys. Rev. Lett. 90 086402

    [60]

    Xu G L, Zhu Z H 2008 J. Sichuan Normal University (Natural Science) 31 325 (in Chinese) [徐国亮, 朱正和 2008 四川师范大学学报 31 325]

    [61]
    [62]

    Tian M F, Deng X Y, Fang Z, Dai X 2011 Phys. Rev. B 84 205124

    [63]
    [64]
    [65]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, ClarkS J, Payne M C 2002 J. Phys. Condens. Matter 14 2717

    [66]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 45 566

    [67]
    [68]
    [69]

    Ceperley D M, Alder B J 1980 Phys. Rev. B 45 566

    [70]

    Perdew J P, Burke K, Zunger A 1981 Phys. Rev. B. 23 5048

    [71]
    [72]
    [73]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [74]
    [75]

    Monkhorst H J, Pack J D 1977 Phys. Rev. B 13 5188

    [76]

    Pack J D, Monkhorst H J 1977 Phys. Rev. B 16 1748

    [77]
    [78]
    [79]

    Peng F, Chen D, Yang X D 2009 Solid State Commun. 149 2135

    [80]
    [81]

    Wang D Y 2013 M. S. Thesis (Kaifeng:Henan University) (in Chinese) [王德玉2013硕士学位论文(开封: 河南大学)]

    [82]
    [83]
    [84]
    [85]
    [86]
    [87]
    [88]
    [89]
    [90]
    [91]
    [92]
    [93]
    [94]
    [95]
    [96]
    [97]
    [98]
    [99]
    [100]
    [101]
    [102]
    [103]
    [104]
    [105]
    [106]
    [107]
    [108]
    [109]
    [110]
    [111]
    [112]
    [113]
    [114]
    [115]
    [116]
    [117]
    [118]
    [119]
    [120]
    [121]
    [122]
    [123]
    [124]
    [125]
    [126]
    [127]
    [128]
    [129]
    [130]
    [131]
    [132]
    [133]
    [134]
    [135]
    [136]
    [137]
    [138]
    [139]
    [140]
    [141]
    [142]
    [143]
    [144]
    [145]
    [146]
    [147]
    [148]
    [149]
    [150]
    [151]
    [152]
    [153]
    [154]
    [155]
    [156]
    [157]
    [158]
    [159]
    [160]
    [161]
  • [1] 张硕鑫, 刘士余, 严达利, 余浅, 任海涛, 于彬, 李德军. Ta1–xHfxC和Ta1–xZrxC固溶体的结构稳定性和力学性质的第一性原理研究.  , 2021, 70(11): 117102. doi: 10.7498/aps.70.20210191
    [2] 胡雪兰, 卢睿智, 王智隆, 王亚如. Re对Ni3Al微观结构及力学性质影响的第一原理研究.  , 2020, 69(10): 107101. doi: 10.7498/aps.69.20200097
    [3] 付现凯, 陈万骐, 姜钟生, 杨波, 赵骧, 左良. Ti3O5弹性、电子和光学性质的第一性原理研究.  , 2019, 68(20): 207301. doi: 10.7498/aps.68.20190664
    [4] 王雪飞, 马静婕, 焦照勇, 张现周. Ti3(SnxAl1-x)C2固溶体电学、力学和热学性能的理论研究.  , 2016, 65(20): 206201. doi: 10.7498/aps.65.206201
    [5] 陈立晶, 李维学, 戴剑锋, 王青. Mn-N共掺p型ZnO的第一性原理计算.  , 2014, 63(19): 196101. doi: 10.7498/aps.63.196101
    [6] 邓胜华, 姜志林. F, Na共掺杂p型ZnO的第一性原理研究.  , 2014, 63(7): 077101. doi: 10.7498/aps.63.077101
    [7] 李万俊, 方亮, 秦国平, 阮海波, 孔春阳, 郑继, 卞萍, 徐庆, 吴芳. Ag-N共掺p型ZnO的第一性原理研究.  , 2013, 62(16): 167701. doi: 10.7498/aps.62.167701
    [8] 孟凡顺, 赵星, 李久会. B掺入Cu∑5晶界间隙位性质的第一性原理研究.  , 2013, 62(11): 117102. doi: 10.7498/aps.62.117102
    [9] 姚光锐, 范广涵, 郑树文, 马佳洪, 陈峻, 章勇, 李述体, 宿世臣, 张涛. 第一性原理研究Te-N共掺p型ZnO.  , 2012, 61(17): 176105. doi: 10.7498/aps.61.176105
    [10] 袁娣, 黄多辉, 罗华锋. Be, O共掺杂实现p型AlN的第一性原理研究.  , 2012, 61(14): 147101. doi: 10.7498/aps.61.147101
    [11] 代云雅, 杨莉, 彭述明, 龙兴贵, 周晓松, 祖小涛. 金属氢化物力学性能的第一性原理研究.  , 2012, 61(10): 108801. doi: 10.7498/aps.61.108801
    [12] 李青坤, 孙毅, 周玉, 曾凡林. 第一性原理研究bct-C4碳材料的强度性质.  , 2012, 61(9): 093104. doi: 10.7498/aps.61.093104
    [13] 李青坤, 孙毅, 周玉, 曾凡林. 第一性原理研究hcp-C3碳体环材料的力学性质.  , 2012, 61(4): 043103. doi: 10.7498/aps.61.043103
    [14] 李德华, 苏文晋, 朱晓玲. BC5力学性质的第一性原理计算.  , 2012, 61(2): 023103. doi: 10.7498/aps.61.023103
    [15] 袁娣, 罗华锋, 黄多辉, 王藩侯. Zn,O共掺杂实现p型AlN的第一性原理研究.  , 2011, 60(7): 077101. doi: 10.7498/aps.60.077101
    [16] 王晓中, 林理彬, 何捷, 陈军. 第一性原理方法研究He掺杂Al晶界力学性质.  , 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [17] 李德华, 朱晓玲, 苏文晋, 程新路. PtN2的结构和力学性质的第一性原理计算.  , 2010, 59(3): 2004-2009. doi: 10.7498/aps.59.2004
    [18] 杨银堂, 武 军, 蔡玉荣, 丁瑞雪, 宋久旭, 石立春. p型K:ZnO导电机理的第一性原理研究.  , 2008, 57(11): 7151-7156. doi: 10.7498/aps.57.7151
    [19] 张金奎, 邓胜华, 金 慧, 刘悦林. ZnO电子结构和p型传导特性的第一性原理研究.  , 2007, 56(9): 5371-5375. doi: 10.7498/aps.56.5371
    [20] 丁少锋, 范广涵, 李述体, 肖 冰. 氮化铟p型掺杂的第一性原理研究.  , 2007, 56(7): 4062-4067. doi: 10.7498/aps.56.4062
计量
  • 文章访问数:  7473
  • PDF下载量:  557
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-25
  • 修回日期:  2014-04-18
  • 刊出日期:  2014-08-05

/

返回文章
返回
Baidu
map