Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Status and prospective of high-efficiency c-Si solar cells based on tunneling oxide passivation contacts

Ren Cheng-Chao Zhou Jia-Kai Zhang Bo-Yu Liu Zhang Zhao Ying Zhang Xiao-Dan Hou Guo-Fu

Citation:

Status and prospective of high-efficiency c-Si solar cells based on tunneling oxide passivation contacts

Ren Cheng-Chao, Zhou Jia-Kai, Zhang Bo-Yu, Liu Zhang, Zhao Ying, Zhang Xiao-Dan, Hou Guo-Fu
PDF
HTML
Get Citation
  • Current photovoltaic market is dominated by crystalline silicon (c-Si) solar modules and this status will last for next decades. Among all high-efficiency c-Si solar cells, the tunnel oxide passivated contact (TOPCon) solar cell has attracted much attention due to its excellent passivation and compatibility with the traditional c-Si solar cells. The so-called tunnel oxide passivated contact (TOPCon) consists of an ultra-thin silicon oxide layer less than 2 nm in thickness and a heavily doped poly-Si layer, which is used for implementing effective passivation and selective collection of carriers. This TOPCon solar cell has some advantages including no laser contact opening, no light-induced degradation and no elevated temperature-induced degradation because of N-type c-Si wafer, compatibility with high temperature sintering and technical scalability. This paper first introduces the basic structure and principles of TOPCon solar cells, then compares the existing methods of preparing ultra-thin silicon oxide layer and heavily doped poly-Si layer, and finally points out the future research direction of this cell based on the analysis of the current research status.
      Corresponding author: Hou Guo-Fu, gfhou@nankai.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFB1500402) and the National Natural Science Foundation of China (Grant No. 62074084).
    [1]

    李志学, 吴硕锋, 雷理钊 2018 价格月刊 12 1

    Li Z X, Wu S F, Lei L Z 2018 Prices Monthly 12 1

    [2]

    邵杰, 钱黄俊 2018 绿色环保建材 12 229

    Shao J, Qian H J 2018 Green Environ. Protect. Build. Mater. 12 229

    [3]

    Battaglia C, Cuevas A, Wolf D S 2016 Energ. Environ. Sci. 9 1552Google Scholar

    [4]

    陈晨, 张巍, 贾锐, 张代生, 邢钊, 金智, 刘新宇 2013 中国科学 43 708

    Chen C, Zhang W, Jia R, Zhang D S, Xing Z, Jin Z, Liu X Y 2013 Sci. Chin. 43 708

    [5]

    李嘉亮 2015 电子世界 16 57Google Scholar

    Li J L 2015 Electronics World 16 57Google Scholar

    [6]

    Rehman A U, Lee S H 2013 Sci. World J. 11 470347

    [7]

    Chapin D M, Fuller C S, Pearson G L 1954 J. Appl. Phys. 25 676Google Scholar

    [8]

    Schmidt J, Peibst R, Brendel R 2019 Silicon PV 201 9

    [9]

    Richter A, Hermle M, Glunz S W 2013 IEEE J Photovolt. 3 1184Google Scholar

    [10]

    Chen D, Chen Y, Wang Z, Gong J, Liu C, Zou Y, He Y, Wang Y, Yuan L, Lin W, Xia R, Yin L, Zhang X, Xu G, Yang Y, Shen H, Feng Z, Altermatt P P, Verlinden P J 2020 Sol. Energ. Mat. Sol. C. 206 110258Google Scholar

    [11]

    Testpv https://m.sohu.com/a/443128332_749304/ [2021-01-07]

    [12]

    Liu Z F 2019 15th CSPV Shanghai, China, November 21–23, 2019

    [13]

    Haase F, Hollemann C, Schfer S, Merkle A, Riencker M, Krügener J, Brendel R, Peibst R 2018 Sol. Energ. Mat. Sol. C. 186 184Google Scholar

    [14]

    Richter A, Benick J, Feldmann F, Fell F, Hermle M, Glunz S W 2017 Sol. Energ. Mat. Sol. C. 173 96Google Scholar

    [15]

    Richter A, Benick J, Fell A, Hermle M, Glunz S W 2018 Prog. Photovoltaics 1

    [16]

    中国可再生能源学会光伏专业委员会 2020 太阳能 12 320

    Chinese R E S 2020 Solar Energy 12 320

    [17]

    Blakers A W, Wang A, Milne A M, Zhao J, Green M A 1989 Appl. Phys. Lett. 55 1363Google Scholar

    [18]

    Green M A, Blakers A W, Zhao J, Milne A M, Wang A, Dai X 1990 IEEE T. Electron. Dev. 37 331Google Scholar

    [19]

    Schneiderlchner E, Preu R, Lüdemann R, Glunz S W 2002 Prog. Photovoltaics 10 29Google Scholar

    [20]

    Wang A, Zhao J, Green M A 1990 Appl. Phys. Lett. 57 602Google Scholar

    [21]

    Zhao J, Green M A 1991 IEEE T. Electron. Dev. 38 1925Google Scholar

    [22]

    史济群 1994 华中理工大学学报(自然科学版) 9 1

    [23]

    Feldmann F, Bivour M, Reichel C, Hermle M, Glunz S W 2014 Sol. Energ. Mat. Sol. C. 120 270Google Scholar

    [24]

    刘恩科, 朱秉升, 罗晋生 1994 半导体物理学 (北京: 国防工业出版社) 第146页

    Liu E K, Zhu B S, Luo J S 1994 Semiconductor Physical (Beijing: National Defense Industry Press) p146 (in Chinese)

    [25]

    Schroder D K 1998 Semiconductor Material and Device Characterization (New York: Wiley-IEEE Press) pp107–108

    [26]

    Sze S M, Ng K K 2006 Phys. Semi. Dev. 8 5

    [27]

    Tao Y, Upadhyaya V, Jones K, Rohatgi A 2016 AIMS Mat. Sci. 3 180

    [28]

    Rohatgi A, Rounsaville B, Ok Y-W, Tam A M, Zimbardi F, Upadhyaya A D, Tao Y, Madani K, Richter A, Benick J, Hermle M 2017 IEEE J. Photovolt. 7 1236Google Scholar

    [29]

    Glunz S W, Feldmann F 2018 Sol. Energ. Mat. Sol. C. 185 260Google Scholar

    [30]

    Shewchun J, Singh R, Green M 1977 J. Appl. Phys. 48 765Google Scholar

    [31]

    Lancaster K, Groer S, Feldmann F, Naumann V, Hagendorf C 2016 Energ. Procedia 92 116Google Scholar

    [32]

    Matsumoto T, Hirose R, Shibata F, Ishibashi D, Ogawara S, Kobayashi H 2015 Sol. Energ. Mat. Sol. C. 134 298Google Scholar

    [33]

    Matsumoto T, Nakajima H, Irishika D, Nonaka T, Imamura K, Kobayashi H 2017 Appl. Surf. Sci. 395 56Google Scholar

    [34]

    Kim H, Bae S, Ji K, Kim S M, Yang J W, Lee C H, Lee K D, Kim S, Kang Y, Lee H, Kim D 2017 Appl. Surf. Sci. 409 140Google Scholar

    [35]

    Moldovan A, Feldmann F, Kaufmann K, Richter S, Werner M, Hagendorf C, Zimmer M, Rentsch J, Hermle M 2015 2015 IEEE 42nd PVSC (LA: Orleans IEEE) p1

    [36]

    Moldovan A, Feldmann F, Krugel G, Zimmer M, Rentsch J, Hermle M, Roth-F Flsch A, Kaufmann K, Hagendorf C 2014 Energ. Procedia 55 834Google Scholar

    [37]

    Moldovan A, Feldmann F, Zimmer M, Rentsch J, Benick J, Hermle M 2015 Sol. Energ. Mat. Sol. C. 142 123Google Scholar

    [38]

    Yan D, Cuevas A, Wan Y, Bullock J 2016 Sol. Energ. Mat. Sol. C. 152 73Google Scholar

    [39]

    Jeon M, Kang J, Shim G, Ahn S, Balaji N, Park C, Lee Y, Yi J 2017 Vacuum 141 152Google Scholar

    [40]

    Ron Y, Raveh A, Carmi U, Inspektop A, Avni R 1983 Thin Solid Films 107 181Google Scholar

    [41]

    Tong J, Wang X, Ouyang Z, Lennon A 2015 Energ. Procedia 77 840Google Scholar

    [42]

    Stegemann B, Gad K M, Balamou P, Sixtensson D, Vssing D, Kasemann M, Angermann H 2017 Appl. Surf. Sci. 395 78Google Scholar

    [43]

    Fong K C, Kho T C, Liang W S, Chong T K, Ernst M, Walter D, Stocks M, Franklin E, Mclntosh K, Blakers A 2018 Sol. Energ. Mat. Sol. C. 186 236Google Scholar

    [44]

    Stodolny M K, Anker J, Geerligs B L, Janssen G J, Loo B W, Melskens J, Santbergen R, Isabella O, Schmitz J, Lenes M, Luchies J M, Kessels W M, Romijn I 2017 Energ. Procedia 124 635Google Scholar

    [45]

    Yang G T, Ingenito A, Isabella O, Zeman M 2016 Sol. Energ. Mat. Sol. C. 158 84Google Scholar

    [46]

    Rmer U, Merkle A, Peibst R, Ohrdes T, Lim B, Krügener, Brendel R 2014 29th European Photovoltaic Solar Energy Conference, Amsterdam, September 22–26, 2014, p1107

    [47]

    Yan D, Cuevas A, Phang S P, Wan Y, Macdonald D 2018 Appl. Phys. Lett. 113 061603Google Scholar

    [48]

    Yang Q, Liao M, Wang Z, Zheng J, Lin Y, Guo X, Zeng Y, Yan B, Ye J 2020 Sol. Energ. Mat. Sol. C. 210 110518Google Scholar

    [49]

    Park H J, Park H, Park S J, Bae S, Kim H, Yang J W, Hyun J Y, Lee C H, Shin S H, Kang Y, Lee H S, Kim D 2019 Sol. Energ. Mat. Sol. C. 189 21Google Scholar

    [50]

    Xu Z, Ke T, Jiang S, Jia R, Li W, Zhou Y, Jin Z, Liu X 2020 Sol. Energ. Mat. Sol. C. 206 110329Google Scholar

    [51]

    Yang G, Guo P, Paul P, Weeber A, Isabella O, Zeman M 2018 Phys. Lett. 112 193904

    [52]

    Liu J, Yao Y, Xiao S, Gu X 2018 Appl. Phys. 51 123001

    [53]

    Schnabel M, Loo B W, Nemeth W, Macco B, Stradins P, Kessels M, Young David 2018 Appl. Phys. Lett. 112 203901Google Scholar

    [54]

    Feldmann F, Bivour M, Reichel C, Steinkemper H, Hermle M, Glunz S W 2014 Sol. Energ. Mat. Sol. C. 131 46Google Scholar

    [55]

    Benick J, Hoex B, Sanden M C, Kessels W M, Schultz O, Glunz S W 2008 Appl. Phys. Lett. 92 253504Google Scholar

    [56]

    Peibst R, Larionova Y, Reiter S, Turcu M, Brendel R, Tetzlaff D, Krügener, Wietler T, Hhne U, Khler J D, Mehlich H, Frigge S 2016 32 nd European Photovoltaic Solar Energy Conference and Exhibition, Munich, June 22-24 2016 pp323

    [57]

    Rmer U, Peibst R, Ohrdes T, Lim B, Krügener J, Bugiel E, Wietler T, Brendel R 2014 Sol. Energ. Mat. Sol. C 131 85Google Scholar

    [58]

    Riencker M, Merkle A, Rmer U, Kohlenberg H, Krügener J, Brendel R, Peibst R 2016 Energ. Procedia 92 412Google Scholar

    [59]

    Zeng Y H, Yang Q, Wan Y, Yang Z, Liao M, Huang Y, Zhang Z, Guo X, Wang Z, Gao P, Wu C H, Yan B, Ye J 2019 Solar Energy 178 249Google Scholar

    [60]

    Nogay G, Sahli F, Werner J, Monnard R, Boccard M, Despeisse M, Haug F-J, Jeangros Q, Ingenito A, Ballif C 2019 ACS Energy Lett. 4 844Google Scholar

    [61]

    Shen H P, Omelchenko S T, Jacobs D A, Yalamanchili S, Wan Y M, Yan D, Phang P, Duong T, Wu Y L, Yin Y T, Samundsett C, Peng J, Wu N D, White T P, Andersson G G, Lewis N S, Catchpole K R 2018 Sci. Adv. 4 9711Google Scholar

  • 图 1  钝化接触太阳电池中载流子的输运过程

    Figure 1.  Carrier transport in passivated contact solar cell.

    图 2  TOPCon电池能带图[28]

    Figure 2.  Energy band diagram of TOPCon cell[28].

    图 3  汞蒸气灯的示意图和反应机理[36]

    Figure 3.  Schematic diagram and reaction mechanism of mercury vapor lamp[36].

    图 4  三种氧化法制备的TOPCon对称钝化结构在不同的氧化时间和退火温度后的iVoc[37]

    Figure 4.  Implied open circuit voltage of TOPCon passivation structure prepared by three oxidation methods after different oxidation time and annealing temperature[37].

    图 5  不同氧化法得到氧化层的XPS光谱 (a) SiOx/Si界面的Si 2p光谱及拟合厚度; (b)不同氧化技术得到的SiOx层的化学计量比[42]

    Figure 5.  XPS spectra of oxide layers obtained by different oxidation methods:(a) Si 2p spectra and fitting thickness of SiOx/ Si interface; (b) stoichiometry of SiOx layers obtained by different oxidation technologies[42].

    图 6  研究的电池结构 (a)具有N+多晶硅BSF的N- RISE BJBC电池; (b)具有常规c-Si BSF的参考N-RISE BJBC电池[46]

    Figure 6.  Structure of the studied cell: (a) N- RISE BJBC cell with N+ polysilicon BSF; (b) reference n-rise BJBC cell with conventional c-Si BSF [46].

    图 7  (a)具有poly-Si后接触和poly-SiCx前接触的TOPCon太阳电池光照下的电流-电压(Ⅳ)曲线; (b)具有不同窗口层的太阳电池的外部量子效率(EQE)[50]

    Figure 7.  (a) Current voltage (Ⅳ) curves of TOPCon solar cells with poly-Si back contact and poly-SiCx front contact under illumination;(b) external quantum efficiency (EQE) of solar cells with different window layers[50].

    图 8  隧穿氧化层钝化接触太阳电池结构图[23]

    Figure 8.  Structure of passivated contact solar cell with tunneling oxide layer[23].

    图 9  PANDA-TOPCon结构的太阳电池结构图

    Figure 9.  Structure of PANDA-TOPCon solar cell.

    图 10  POLO电池的基本结构图[56]

    Figure 10.  Basic structure of POLO cell[56].

    表 1  基于隧穿氧化物钝化接触的高效晶体硅太阳电池的研究简况表

    Table 1.  Research status and prospective of high-efficiency c-Si solar cells based on tunneling oxide passivation contacts.

    InstitutionTypeEff/
    %
    Voc/
    mV
    Jsc/
    (mA·cm–2)
    FF/
    %
    Area/
    cm2
    Year
    TrinaN-type
    i-TOPCon
    24.5871740.684.5244.312020[10]
    JinkoSolar/AUON-type
    TOPCon
    24.90712.841.6883.84235.802021[11]
    中来N-type
    TOPCon
    23.1970139.983246.212019[12]
    ISFHP-type POLO26.1726.642.6284.2842018[13]
    Frauhofer ISEN-type TOPCon25.872442.983.142017[14]
    Frauhofer ISEN-type TOPCon24.571341.483.11002017[15]
    Frauhofer ISEN-type TOPCon23.469741.181.22002018[16]
    DownLoad: CSV

    表 2  氧化层制备方法优缺点对比

    Table 2.  Comparison of advantages and disadvantages of oxide layer preparation methods.

    方法优点缺点
    硝酸氧化硅片法(NAOS)制备方法简单, 制备温度相对较低, 硝酸溶液可重复利用,
    氧化层薄膜质量好[32,33]
    硝酸具有强氧化性, 且硝酸蒸汽对人体有害, 对环境也会造成污染
    过氧化氢法(H2O2)生成物污染小, 不会对人产生危害, 制备方法简单[34]H2O2的氧化性较弱, 为提高SiOx的质量需额外进行退火处理
    臭氧去离子氧化法(DIO3)具有良好的界面钝化效果[35,36]设备昂贵且维护成本较高
    UV/O3
    光解法
    可以在UV光的照射下有效地取出Si片表面的有机残留物[36,37]制备工艺复杂, 且厚度均匀性相对较差
    热氧化法容易获得较高质量的SiOx, 且 Si/SiOx的界面态密度也非
    常低[38]
    漏电流密度大, 且高温带来的预算也很高
    等离子体辅助N2O氧化法可以实现超薄SiOx层和非晶硅层在 PECVD 中的一次
    沉积 [39,40]
    厚度不易精确控制
    阳极氧化方法场致阳极化(FIA)可以均匀地形成超薄隧道氧化硅层 [41]可能会导致隧道氧化层界面呈现出较低的空穴势垒能量
    DownLoad: CSV

    表 3  掺杂层制备方法优缺点对比

    Table 3.  Comparison of advantages and disadvantages of doping layer preparation method.

    方法优点缺点
    LPCVD产量高, 可以直接制备n型的多晶硅层会产生绕镀, 效率相对较低
    PECVD可以进行单面制备,
    效率高
    产量低, 对设备要求高, 且对环境有污染
    溅射法无污染, 操作简单
    且安全
    均匀性相对较差, 退火温度想对较高
    DownLoad: CSV
    Baidu
  • [1]

    李志学, 吴硕锋, 雷理钊 2018 价格月刊 12 1

    Li Z X, Wu S F, Lei L Z 2018 Prices Monthly 12 1

    [2]

    邵杰, 钱黄俊 2018 绿色环保建材 12 229

    Shao J, Qian H J 2018 Green Environ. Protect. Build. Mater. 12 229

    [3]

    Battaglia C, Cuevas A, Wolf D S 2016 Energ. Environ. Sci. 9 1552Google Scholar

    [4]

    陈晨, 张巍, 贾锐, 张代生, 邢钊, 金智, 刘新宇 2013 中国科学 43 708

    Chen C, Zhang W, Jia R, Zhang D S, Xing Z, Jin Z, Liu X Y 2013 Sci. Chin. 43 708

    [5]

    李嘉亮 2015 电子世界 16 57Google Scholar

    Li J L 2015 Electronics World 16 57Google Scholar

    [6]

    Rehman A U, Lee S H 2013 Sci. World J. 11 470347

    [7]

    Chapin D M, Fuller C S, Pearson G L 1954 J. Appl. Phys. 25 676Google Scholar

    [8]

    Schmidt J, Peibst R, Brendel R 2019 Silicon PV 201 9

    [9]

    Richter A, Hermle M, Glunz S W 2013 IEEE J Photovolt. 3 1184Google Scholar

    [10]

    Chen D, Chen Y, Wang Z, Gong J, Liu C, Zou Y, He Y, Wang Y, Yuan L, Lin W, Xia R, Yin L, Zhang X, Xu G, Yang Y, Shen H, Feng Z, Altermatt P P, Verlinden P J 2020 Sol. Energ. Mat. Sol. C. 206 110258Google Scholar

    [11]

    Testpv https://m.sohu.com/a/443128332_749304/ [2021-01-07]

    [12]

    Liu Z F 2019 15th CSPV Shanghai, China, November 21–23, 2019

    [13]

    Haase F, Hollemann C, Schfer S, Merkle A, Riencker M, Krügener J, Brendel R, Peibst R 2018 Sol. Energ. Mat. Sol. C. 186 184Google Scholar

    [14]

    Richter A, Benick J, Feldmann F, Fell F, Hermle M, Glunz S W 2017 Sol. Energ. Mat. Sol. C. 173 96Google Scholar

    [15]

    Richter A, Benick J, Fell A, Hermle M, Glunz S W 2018 Prog. Photovoltaics 1

    [16]

    中国可再生能源学会光伏专业委员会 2020 太阳能 12 320

    Chinese R E S 2020 Solar Energy 12 320

    [17]

    Blakers A W, Wang A, Milne A M, Zhao J, Green M A 1989 Appl. Phys. Lett. 55 1363Google Scholar

    [18]

    Green M A, Blakers A W, Zhao J, Milne A M, Wang A, Dai X 1990 IEEE T. Electron. Dev. 37 331Google Scholar

    [19]

    Schneiderlchner E, Preu R, Lüdemann R, Glunz S W 2002 Prog. Photovoltaics 10 29Google Scholar

    [20]

    Wang A, Zhao J, Green M A 1990 Appl. Phys. Lett. 57 602Google Scholar

    [21]

    Zhao J, Green M A 1991 IEEE T. Electron. Dev. 38 1925Google Scholar

    [22]

    史济群 1994 华中理工大学学报(自然科学版) 9 1

    [23]

    Feldmann F, Bivour M, Reichel C, Hermle M, Glunz S W 2014 Sol. Energ. Mat. Sol. C. 120 270Google Scholar

    [24]

    刘恩科, 朱秉升, 罗晋生 1994 半导体物理学 (北京: 国防工业出版社) 第146页

    Liu E K, Zhu B S, Luo J S 1994 Semiconductor Physical (Beijing: National Defense Industry Press) p146 (in Chinese)

    [25]

    Schroder D K 1998 Semiconductor Material and Device Characterization (New York: Wiley-IEEE Press) pp107–108

    [26]

    Sze S M, Ng K K 2006 Phys. Semi. Dev. 8 5

    [27]

    Tao Y, Upadhyaya V, Jones K, Rohatgi A 2016 AIMS Mat. Sci. 3 180

    [28]

    Rohatgi A, Rounsaville B, Ok Y-W, Tam A M, Zimbardi F, Upadhyaya A D, Tao Y, Madani K, Richter A, Benick J, Hermle M 2017 IEEE J. Photovolt. 7 1236Google Scholar

    [29]

    Glunz S W, Feldmann F 2018 Sol. Energ. Mat. Sol. C. 185 260Google Scholar

    [30]

    Shewchun J, Singh R, Green M 1977 J. Appl. Phys. 48 765Google Scholar

    [31]

    Lancaster K, Groer S, Feldmann F, Naumann V, Hagendorf C 2016 Energ. Procedia 92 116Google Scholar

    [32]

    Matsumoto T, Hirose R, Shibata F, Ishibashi D, Ogawara S, Kobayashi H 2015 Sol. Energ. Mat. Sol. C. 134 298Google Scholar

    [33]

    Matsumoto T, Nakajima H, Irishika D, Nonaka T, Imamura K, Kobayashi H 2017 Appl. Surf. Sci. 395 56Google Scholar

    [34]

    Kim H, Bae S, Ji K, Kim S M, Yang J W, Lee C H, Lee K D, Kim S, Kang Y, Lee H, Kim D 2017 Appl. Surf. Sci. 409 140Google Scholar

    [35]

    Moldovan A, Feldmann F, Kaufmann K, Richter S, Werner M, Hagendorf C, Zimmer M, Rentsch J, Hermle M 2015 2015 IEEE 42nd PVSC (LA: Orleans IEEE) p1

    [36]

    Moldovan A, Feldmann F, Krugel G, Zimmer M, Rentsch J, Hermle M, Roth-F Flsch A, Kaufmann K, Hagendorf C 2014 Energ. Procedia 55 834Google Scholar

    [37]

    Moldovan A, Feldmann F, Zimmer M, Rentsch J, Benick J, Hermle M 2015 Sol. Energ. Mat. Sol. C. 142 123Google Scholar

    [38]

    Yan D, Cuevas A, Wan Y, Bullock J 2016 Sol. Energ. Mat. Sol. C. 152 73Google Scholar

    [39]

    Jeon M, Kang J, Shim G, Ahn S, Balaji N, Park C, Lee Y, Yi J 2017 Vacuum 141 152Google Scholar

    [40]

    Ron Y, Raveh A, Carmi U, Inspektop A, Avni R 1983 Thin Solid Films 107 181Google Scholar

    [41]

    Tong J, Wang X, Ouyang Z, Lennon A 2015 Energ. Procedia 77 840Google Scholar

    [42]

    Stegemann B, Gad K M, Balamou P, Sixtensson D, Vssing D, Kasemann M, Angermann H 2017 Appl. Surf. Sci. 395 78Google Scholar

    [43]

    Fong K C, Kho T C, Liang W S, Chong T K, Ernst M, Walter D, Stocks M, Franklin E, Mclntosh K, Blakers A 2018 Sol. Energ. Mat. Sol. C. 186 236Google Scholar

    [44]

    Stodolny M K, Anker J, Geerligs B L, Janssen G J, Loo B W, Melskens J, Santbergen R, Isabella O, Schmitz J, Lenes M, Luchies J M, Kessels W M, Romijn I 2017 Energ. Procedia 124 635Google Scholar

    [45]

    Yang G T, Ingenito A, Isabella O, Zeman M 2016 Sol. Energ. Mat. Sol. C. 158 84Google Scholar

    [46]

    Rmer U, Merkle A, Peibst R, Ohrdes T, Lim B, Krügener, Brendel R 2014 29th European Photovoltaic Solar Energy Conference, Amsterdam, September 22–26, 2014, p1107

    [47]

    Yan D, Cuevas A, Phang S P, Wan Y, Macdonald D 2018 Appl. Phys. Lett. 113 061603Google Scholar

    [48]

    Yang Q, Liao M, Wang Z, Zheng J, Lin Y, Guo X, Zeng Y, Yan B, Ye J 2020 Sol. Energ. Mat. Sol. C. 210 110518Google Scholar

    [49]

    Park H J, Park H, Park S J, Bae S, Kim H, Yang J W, Hyun J Y, Lee C H, Shin S H, Kang Y, Lee H S, Kim D 2019 Sol. Energ. Mat. Sol. C. 189 21Google Scholar

    [50]

    Xu Z, Ke T, Jiang S, Jia R, Li W, Zhou Y, Jin Z, Liu X 2020 Sol. Energ. Mat. Sol. C. 206 110329Google Scholar

    [51]

    Yang G, Guo P, Paul P, Weeber A, Isabella O, Zeman M 2018 Phys. Lett. 112 193904

    [52]

    Liu J, Yao Y, Xiao S, Gu X 2018 Appl. Phys. 51 123001

    [53]

    Schnabel M, Loo B W, Nemeth W, Macco B, Stradins P, Kessels M, Young David 2018 Appl. Phys. Lett. 112 203901Google Scholar

    [54]

    Feldmann F, Bivour M, Reichel C, Steinkemper H, Hermle M, Glunz S W 2014 Sol. Energ. Mat. Sol. C. 131 46Google Scholar

    [55]

    Benick J, Hoex B, Sanden M C, Kessels W M, Schultz O, Glunz S W 2008 Appl. Phys. Lett. 92 253504Google Scholar

    [56]

    Peibst R, Larionova Y, Reiter S, Turcu M, Brendel R, Tetzlaff D, Krügener, Wietler T, Hhne U, Khler J D, Mehlich H, Frigge S 2016 32 nd European Photovoltaic Solar Energy Conference and Exhibition, Munich, June 22-24 2016 pp323

    [57]

    Rmer U, Peibst R, Ohrdes T, Lim B, Krügener J, Bugiel E, Wietler T, Brendel R 2014 Sol. Energ. Mat. Sol. C 131 85Google Scholar

    [58]

    Riencker M, Merkle A, Rmer U, Kohlenberg H, Krügener J, Brendel R, Peibst R 2016 Energ. Procedia 92 412Google Scholar

    [59]

    Zeng Y H, Yang Q, Wan Y, Yang Z, Liao M, Huang Y, Zhang Z, Guo X, Wang Z, Gao P, Wu C H, Yan B, Ye J 2019 Solar Energy 178 249Google Scholar

    [60]

    Nogay G, Sahli F, Werner J, Monnard R, Boccard M, Despeisse M, Haug F-J, Jeangros Q, Ingenito A, Ballif C 2019 ACS Energy Lett. 4 844Google Scholar

    [61]

    Shen H P, Omelchenko S T, Jacobs D A, Yalamanchili S, Wan Y M, Yan D, Phang P, Duong T, Wu Y L, Yin Y T, Samundsett C, Peng J, Wu N D, White T P, Andersson G G, Lewis N S, Catchpole K R 2018 Sci. Adv. 4 9711Google Scholar

  • [1] Xu Chang, Zheng Dexu, Dong Xinrui, Wu SaJian, Wu MingXing, Wang Kai, Liu Shengzhong(Frank). Research progress of perovskite-based triple-junction tandem solar cells. Acta Physica Sinica, 2024, 73(24): . doi: 10.7498/aps.73.20241187
    [2] Wang Shi-Dong, Yan Ya-Ting, Wang Rui-Ying, Zhu Zhi-Li, Gu Jin-Hua. Cesium doping for improving performance of inverse-graded 2D (CMA)2MA8Pb9I28 perovskite film and solar cells. Acta Physica Sinica, 2023, 72(13): 138801. doi: 10.7498/aps.72.20230357
    [3] Pan Hong-Ying, Quan Zhi-Jue. Effects of p-layer hole concentration and thickness on performance of p-i-n InGaN homojunction solar cells. Acta Physica Sinica, 2019, 68(19): 196103. doi: 10.7498/aps.68.20191042
    [4] Du Xiang, Chen Si, Lin Dong-Xu, Xie Fang-Yan, Chen Jian, Xie Wei-Guang, Liu Peng-Yi. Improvement of current characteristic of perovskite solar cells using dodecanedioic acid modified TiO2 electron transporting layer. Acta Physica Sinica, 2018, 67(9): 098801. doi: 10.7498/aps.67.20172779
    [5] Chen Xin-Liang, Chen Li, Zhou Zhong-Xin, Zhao Ying, Zhang Xiao-Dan. Progress of Cu2O/ZnO oxide heterojunction solar cells. Acta Physica Sinica, 2018, 67(11): 118401. doi: 10.7498/aps.67.20172037
    [6] Xiao You-Peng, Wang Tao, Wei Xiu-Qin, Zhou Lang. Physical mechanism and optimal design of silicon heterojunction solar cells. Acta Physica Sinica, 2017, 66(10): 108801. doi: 10.7498/aps.66.108801
    [7] Geng Chao, Zheng Yi, Zhang Yong-Zhe, Yan Hui. Optical design of nanowire array on silicon thin film solar cell. Acta Physica Sinica, 2016, 65(7): 070201. doi: 10.7498/aps.65.070201
    [8] Ding Dong, Yang Shi-E, Chen Yong-Sheng, Gao Xiao-Yong, Gu Jin-Hua, Lu Jing-Xiao. Numerical simulation of light absorption enhancement in microcrystalline silicon solar cells with Al nanoparticle arrays. Acta Physica Sinica, 2015, 64(24): 248801. doi: 10.7498/aps.64.248801
    [9] Liu Chang-Wen, Zhou Xun, Yue Wen-Jin, Wang Ming-Tai, Qiu Ze-Liang, Meng Wei-Li, Chen Jun-Wei, Qi Juan-Juan, Dong Chao. Hybrid polymer-based solar cells with metal oxides as the main electron acceptor and transporter. Acta Physica Sinica, 2015, 64(3): 038804. doi: 10.7498/aps.64.038804
    [10] Jia Xiao-Jie, Ai Bin, Xu Xin-Xiang, Yang Jiang-Hai, Deng You-Jun, Shen Hui. Two-dimensional device simulation and performance optimization of crystalline silicon selective-emitter solar cell. Acta Physica Sinica, 2014, 63(6): 068801. doi: 10.7498/aps.63.068801
    [11] Xu Zhong-Hua, Chen Wei-Bing, Ye Wei-Qiong, Yang Wei-Feng. A Study of tandem structure organic solar cells composed of polymer and small molecular sub-cells. Acta Physica Sinica, 2014, 63(21): 218801. doi: 10.7498/aps.63.218801
    [12] Cao Yu, Zhang Jian-Jun, Li Tian-Wei, Huang Zhen-Hua, Ma Jun, Ni Jian, Geng Xin-Hua, Zhao Ying. Optimization of the longitudinal structure of intrinsic layer in microcrystalline silicon germanium solar cell. Acta Physica Sinica, 2013, 62(3): 036102. doi: 10.7498/aps.62.036102
    [13] Han An-Jun, Sun Yun, Li Zhi-Guo, Li Bo-Yan, He Jing-Jing, Zhang Yi, Liu Wei. The high efficiency sub-micrometer Cu(In, Ga)Se2 solar cell prepared on low temperature. Acta Physica Sinica, 2013, 62(4): 048401. doi: 10.7498/aps.62.048401
    [14] Zheng Xue, Yu Xue-Gong, Yang De-Ren. Passivation property of -Si:H/SiNx stack-layer film in crystalline silicon solar cells. Acta Physica Sinica, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [15] Fang Xin, Shen Wen-Zhong. Oxygen and carbon behaviors in multi-crystalline silicon and their effect on solar cell conversion efficiency. Acta Physica Sinica, 2011, 60(8): 088801. doi: 10.7498/aps.60.088801
    [16] Yu Huang-Zhong, Wen Yuan-Xin. Influence of the thickness and cathode material on the performance of the polymer solar cell. Acta Physica Sinica, 2011, 60(3): 038401. doi: 10.7498/aps.60.038401
    [17] Zhou Chun-Lan, Li Xu-Dong, Wang Wen-Jing, Zhao Lei, Li Hai-Ling, Diao Hong-Wei, Cao Xiao-Ning. The effect of oxidation randomly textured up-pyramid on the silicon solar cell. Acta Physica Sinica, 2011, 60(3): 038201. doi: 10.7498/aps.60.038201
    [18] Xu Miao, Peng Jun-Biao. Effect of casting process of polymer active layer on performances of polymer solar cells. Acta Physica Sinica, 2010, 59(3): 2131-2136. doi: 10.7498/aps.59.2131
    [19] Cai Hong-Kun, Tao Ke, Wang Lin-Shen, Zhao Jing-Fang, Sui Yan-Ping, Zhang De-Xian. Interface treatment of amorphous silicon thin film solar cells on flexible substrate. Acta Physica Sinica, 2009, 58(11): 7921-7925. doi: 10.7498/aps.58.7921
    [20] Hu Zhi-Hua, Liao Xian-Bo, Diao Hong-Wei, Xia Chao-Feng, Xu Ling, Zeng Xiang-Bo, Hao Hui-Ying, Kong Guang-Lin. AMPS modeling of light J-V characteristics of a-Si based solar cells. Acta Physica Sinica, 2005, 54(5): 2302-2306. doi: 10.7498/aps.54.2302
Metrics
  • Abstract views:  15465
  • PDF Downloads:  721
  • Cited By: 0
Publishing process
  • Received Date:  11 February 2021
  • Accepted Date:  17 March 2021
  • Available Online:  07 June 2021
  • Published Online:  05 September 2021

/

返回文章
返回
Baidu
map