Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Manipulation of transmission properties of a ladder-four-level Rydberg atomic system

Gao Xiao-Ping Liang Jing-Rui Liu Tang-Kun Li Hong Liu Ji-Bing

Citation:

Manipulation of transmission properties of a ladder-four-level Rydberg atomic system

Gao Xiao-Ping, Liang Jing-Rui, Liu Tang-Kun, Li Hong, Liu Ji-Bing
PDF
HTML
Get Citation
  • In this paper, we study the interaction of a giant ladder type four-level Rydberg atomic system with a weak light field and two strong control fields separately. We use the Monte Carlo method to calculate the dynamic evolution of this system and investigate the influence of dipole-dipole interaction on the transmission spectrum and second-order intensity correlation function of the weak probe field. By changing the value of detuning $\delta_e$ and $\delta_r$, we can obtain the asymmetric transmission spectrum of the four-level Rydberg atomic system. The influence of Doppler effect on transmission spectrum and second-order intensity correlation function are also studied. By using super atom model, the influences of different incident probe field intensities on the transmission spectrum and the second-order intensity correlation function of probe field are discussed in the Rydberg atomic system. The results show that the transmission spectrum of the four-level Rydberg atomic system is symmetric when the detuning $\delta_e=\delta_r=0$. We obtain the asymmetric transmission spectrum of the system when the value of detuning $(\delta_e, \delta_r)$ changes from 0 to 43 MHz. In order to evaluate the influence of temperature on the transmission spectrum of the system, the Lorentz distribution function is introduced to calculate the polarizability analytically. And, the influence of temperature on the asymmetric transmission spectrum and the second-order intensity correlation function are discussed at finite temperature separately. The results show that the transmittance of the outgoing probe field at the transparent window decreases with the increase of the intensity of the incident probe light field under the condition of electromagnetically induced transparency. When the intensity of the incident probe field is constant, the asymmetric transmission spectrum can be obtained by changing the detuning of the strong field. In addition, when the propagation direction of the probe field is consistent with that of the strong field, the peak value of the transmission spectrum and the peak value of the second-order intensity correlation function of the system slightly increase as the temperature increases. When the propagation direction of the detection field is inconsistent with that of the strong field, the influence of the Doppler effect on the transmission spectrum and the second-order intensity correlation function of the system can be ignored.
      Corresponding author: Liu Ji-Bing, liujb@hbnu.edu.cn
    • Funds: Project supported by the Program for Innovative Teams of Outstanding Young and Middle-aged Researchers in the Higher Education Institutions of Hubei Province, China (Grant No. T2020014) and the National Natural Science Foundation of China (Grant No. 11874251)
    [1]

    Golkar S, Tavassoly M K 2019 Mod. Phys. Lett. A 34 1950077

    [2]

    Cui L, Zhang Y, Man Z, Xia Y 2012 Chin. Opt. Lett. 10 0202

    [3]

    Altintas F, Eryigit R 2010 J. Phys. A: Math. Theor. 43 415306Google Scholar

    [4]

    Jahanbakhsh F, Tavassoly M 2020 Mod. Phys. Lett. A 35 2050183

    [5]

    Jaksch D, Cirac J, Zoller P, Rolston S, Cote R, Lukin M 2000 Phys. Rev. Lett. 85 2208Google Scholar

    [6]

    Zeng Y, Xu P, He X, Liu Y, Liu M, Wang J, Papoular D, Shlyapnikov G, Zhan M 2017 Phys. Rev. Lett. 119 160502Google Scholar

    [7]

    Jan M, Xu X Y, Wang Q, Chen Z, Han Y J, Li C F, Guo G C 2019 Chin. Phys. B 28 090303Google Scholar

    [8]

    He X, Wang K, Zhuang J, Xu P, Gao X, Guo R, Sheng C, Liu M, Wang J, Li J, Shlyapnikov G V, Zhan M 2020 Science 370 331Google Scholar

    [9]

    Wu Y, Yang X 2005 Phys. Rev. A 71 053806Google Scholar

    [10]

    Ziauddin, Rahmatullah, Hussain A, Abbas M 2020 Opt. Commun. 461 125284Google Scholar

    [11]

    Liu Y M, Tian X D, Wang X, Yan D, Wu J H 2016 Opt. Lett. 41 408Google Scholar

    [12]

    Liu J, Liu N, Shan C, Li H, Liu T, Zheng A 2020 J. Phys. B: At. Mol. Opt. Phys. 53 145401Google Scholar

    [13]

    Juan D Serna A J 2019 Opt. Commun. 445 291Google Scholar

    [14]

    Bai Z, Zhang Q, Huang G 2020 Phys. Rev. A 101 053845Google Scholar

    [15]

    Hang C, Huang G 2018 Phys. Rev. A 98 043840Google Scholar

    [16]

    Tsiberkin K 2018 J. Exp. Theor. Phys. 127 1059Google Scholar

    [17]

    Wu Y 2005 Phys. Rev. A 71 053820Google Scholar

    [18]

    Li X, Wang Q, Wang H, Shi C, Jardine M, Wen L 2019 J. Phys. B: At. Mol. Opt. Phys. 52 155302Google Scholar

    [19]

    Yang G, Guo J, Zhang S 2019 Int. J. Mod. Phys. B 33 1950048Google Scholar

    [20]

    Zhang R F, Zhang X, Li L 2019 Phys. Lett. A 383 231Google Scholar

    [21]

    Konotop V V, Victor M P G 2002 Phys. Lett. A 300 348Google Scholar

    [22]

    Petrosyan D, Fleischhauer M 2008 Phys. Rev. Lett. 100 170501Google Scholar

    [23]

    Friedler I, Petrosyan D, Fleischhauer M, Kurizki G 2005 Phys. Rev. A 72 043803Google Scholar

    [24]

    Gorshkov A V, Otterbach J, Fleischhauer M, Pohl T, Lukin M D 2011 Phys. Rev. Lett. 107 133602Google Scholar

    [25]

    Petrosyan D, Otterbach J, Fleischhauer M 2011 Phys. Rev. Lett. 107 213601Google Scholar

    [26]

    Liu Y M, Yan D, Tian X D, Cui C L, Wu J H 2014 Phys. Rev. A 89 7362

    [27]

    Liu Y M, Tian X D, Yan D, Zhang Y, Cui C L, Wu J H 2015 Phys. Rev. A 91 043802Google Scholar

    [28]

    Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2010 Phys. Rev. Lett. 105 193603Google Scholar

    [29]

    Xiao M, Li Y Q, Jin S Z, Gea-Banacloche J 1995 Phys. Rev. Lett. 74 666Google Scholar

    [30]

    Yu Y C, Dong M X, Ye Y H, Guo G, Ding D S, Shi B S 2020 Sci. China Phys. Mech. 63 110312Google Scholar

    [31]

    Yan D, Liu Y M, Bao Q Q, Fu C B, Wu J H 2012 Phys. Rev. A 86 023828Google Scholar

    [32]

    Sandhya S, Sharma K 1997 Phys. Rev. A 55 2155Google Scholar

    [33]

    Yang H, Fan C H, Zhang H X, Liu Y M, Wu J H 2019 J. Phys. B: At. Mol. Opt. Phys. 52 055502Google Scholar

    [34]

    Bai S Y, Bao Q Q, Tian X D, Liu Y M, Wu J 2018 J. Phys. B: At. Mol. Phys. 51 075502Google Scholar

    [35]

    Liu J, Liu N, Liu T, Shan C, Li H, Zheng A, Xie X T 2020 J. Magn. Magn. Mater. 503 166609Google Scholar

    [36]

    Liu J, Liu N, Shan C, Zheng A, Liu T, Li H, Xie X T 2016 Phys. Lett. A 380 2458Google Scholar

    [37]

    Mal K, Islam K, Mondal S, Bhattacharyya D, Bandyopadhyay A 2020 Chin. Phys. B 29 054211Google Scholar

    [38]

    Carr C, Tanasittikosol M, Sargsyan A, Sarkisyan D, Weatherill K J 2012 Opt. Lett. 37 3858Google Scholar

    [39]

    Gao Y, Ren Y, Yu D, Qian J 2019 Phys. Rev. A 100 033823Google Scholar

  • 图 1  里德伯原子系统能级示意图, 一个失谐量为$ \delta_{\rm p} $的弱探测场驱动基态到亚激发态的跃迁, 第一个失谐量为$ \delta_e $的强控制场驱动亚激发态到激发态的跃迁, 第二个失谐量为$ \delta_r $的强控制场驱动激发态到里德伯态的跃迁. 实际能级基于铯原子选取

    Figure 1.  General energy level diagram for four levels Rydberg atomic system. A weak probe field, detuned from the intermediate level by $ \delta_{\rm p} $, drives transitions from the ground state $ |g\rangle $ to the intermediate state $ |k\rangle $. The first strong control field, detuned from the intermediate level by $ \delta_e $, drives transitions from the intermediate state $ |k\rangle $ to the excited state $ |e\rangle $. State $ |r\rangle $ is a Rydberg state directly coupled to state $ |e\rangle $ by the second strong control field $ {\varOmega_{\rm c2}} $. Real energy levels are shown based on Cs atoms.

    图 2  (a)透射函数$ I_{\rm p}(L)/I_{\rm p}(0) $$ \delta_{\rm p}/(2\pi) $变化的曲线, 三条线对应不同的初始探测场$\varOmega_{\rm p}/(2\pi) = 0.1, 2.0, 4.0$ MHz; (b)对应的探测场的二阶强度关联函数$ g^{(2)}_{\rm p}(L) $/$ g^{(2)}_{\rm p}(0) $$ \delta_{\rm p}/(2\pi) $变化的曲线, 其他参数取值分别为$\delta_e = \delta_r = $$ 0$, $ {\varOmega_{\rm c1}}/(2\pi) = {\varOmega_{\rm c2}}/(2\pi) = 10$ MHz

    Figure 2.  (a) Probe field transmission $ I_{\rm p}(L)/I_{\rm p}(0) $ versus detuning $ \delta_{\rm p} $, for different input intensities corresponding to $\varOmega_{\rm p}/(2\pi) = 0.1, 2.0, 4.0$ MHz; (b) corresponding intensity correlation functions $ g^{(2)}_{\rm p}(L) $/$ g^{(2)}_{\rm p}(0) $. Other parameters are $ \delta_e = \delta_r = 0 $, ${\varOmega_{\rm c1}}/(2\pi) = $$ {\varOmega_{\rm c2}}/(2\pi) = 10$ MHz.

    图 3  探测光和控制光同向传播时, (a)透射函数$ I_{\rm p}(L)/I_{\rm p}(0) $和(b)光子二阶强度关联函数$ g^{(2)}_{\rm p}(L) $/$ g^{(2)}_{\rm p}(0) $$ {\delta_{\rm p}} $的变化, 其中$ \delta_e = \delta_r = 43 $ MHz, $ \varOmega_{\rm p}/(2\pi) = 1.5 $ MHz, ${\varOmega_{\rm c1}}/(2\pi) = {\varOmega_{\rm c2}}/(2\pi) = 10$ MHz, 实线表示$ T = 0.3\; {\rm K} $, 虚线表示$ T = 0 $ K

    Figure 3.  When probe and control fields travel in the same direction, (a) the transmission of probe field $ I_{\rm p}(L)/I_{\rm p}(0) $ and (b) the corresponding intensity correlation functions $ g^{(2)}_{\rm p}(L) $/$ g^{(2)}_{\rm p}(0) $ versus the probe detuning $ \delta_{\rm p} $. Other parameters are selected as $ \delta_e = \delta_r = 43 $ MHz, $ \varOmega_{\rm p}/(2\pi) = $1.5 MHz, $ {\varOmega_{\rm c1}}/(2\pi) = {\varOmega_{\rm c2}}/(2\pi) = 10$ MHz. The solid curve denotes $ T = 0.3 $ K, and the dashed curve denotes $ T = 0 $ K

    图 4  探测光和控制光反向传播时, (a)透射函数$ I_{\rm p}(L)/I_{\rm p}(0) $和(b)光子二阶强度关联函数$ g^{(2)}_{\rm p}(L) $/$ g^{(2)}_{\rm p}(0) $$ {\delta_{\rm p}} $的变化, 其中$ \delta_e = \delta_r = 43 $ MHz, $ \varOmega_{\rm p}/(2\pi) = 1.5 $ MHz, ${\varOmega_{\rm c1}}/(2\pi) = $$ {\varOmega_{\rm c2}}/(2\pi) = 10$ MHz, 实线表示$ T = 0.3 $ K, 虚线表示$ T = 0 $ K

    Figure 4.  When probe and control fields travel in opposite directions, (a) the transmission of probe field $ I_{\rm p}(L)/I_{\rm p}(0) $ and (b) the corresponding intensity correlation functions $ g^{(2)}_{\rm p}(L) $/$ g^{(2)}_{\rm p(0)} $ versus the probe detuning $ \delta_{\rm p} $. Other parameters are selected as $ \delta_e = \delta_r = 43 $ MHz, $ \varOmega_{\rm p}/(2\pi) = $1.5 MHz, $ {\varOmega_{\rm c1}}(/2\pi) = {\varOmega_{\rm c2}}/(2\pi) = 10 $ MHz. The solid curve denotes $ T = 0.3 $ K, and the dashed curve denotes $ T = 0 $ K

    Baidu
  • [1]

    Golkar S, Tavassoly M K 2019 Mod. Phys. Lett. A 34 1950077

    [2]

    Cui L, Zhang Y, Man Z, Xia Y 2012 Chin. Opt. Lett. 10 0202

    [3]

    Altintas F, Eryigit R 2010 J. Phys. A: Math. Theor. 43 415306Google Scholar

    [4]

    Jahanbakhsh F, Tavassoly M 2020 Mod. Phys. Lett. A 35 2050183

    [5]

    Jaksch D, Cirac J, Zoller P, Rolston S, Cote R, Lukin M 2000 Phys. Rev. Lett. 85 2208Google Scholar

    [6]

    Zeng Y, Xu P, He X, Liu Y, Liu M, Wang J, Papoular D, Shlyapnikov G, Zhan M 2017 Phys. Rev. Lett. 119 160502Google Scholar

    [7]

    Jan M, Xu X Y, Wang Q, Chen Z, Han Y J, Li C F, Guo G C 2019 Chin. Phys. B 28 090303Google Scholar

    [8]

    He X, Wang K, Zhuang J, Xu P, Gao X, Guo R, Sheng C, Liu M, Wang J, Li J, Shlyapnikov G V, Zhan M 2020 Science 370 331Google Scholar

    [9]

    Wu Y, Yang X 2005 Phys. Rev. A 71 053806Google Scholar

    [10]

    Ziauddin, Rahmatullah, Hussain A, Abbas M 2020 Opt. Commun. 461 125284Google Scholar

    [11]

    Liu Y M, Tian X D, Wang X, Yan D, Wu J H 2016 Opt. Lett. 41 408Google Scholar

    [12]

    Liu J, Liu N, Shan C, Li H, Liu T, Zheng A 2020 J. Phys. B: At. Mol. Opt. Phys. 53 145401Google Scholar

    [13]

    Juan D Serna A J 2019 Opt. Commun. 445 291Google Scholar

    [14]

    Bai Z, Zhang Q, Huang G 2020 Phys. Rev. A 101 053845Google Scholar

    [15]

    Hang C, Huang G 2018 Phys. Rev. A 98 043840Google Scholar

    [16]

    Tsiberkin K 2018 J. Exp. Theor. Phys. 127 1059Google Scholar

    [17]

    Wu Y 2005 Phys. Rev. A 71 053820Google Scholar

    [18]

    Li X, Wang Q, Wang H, Shi C, Jardine M, Wen L 2019 J. Phys. B: At. Mol. Opt. Phys. 52 155302Google Scholar

    [19]

    Yang G, Guo J, Zhang S 2019 Int. J. Mod. Phys. B 33 1950048Google Scholar

    [20]

    Zhang R F, Zhang X, Li L 2019 Phys. Lett. A 383 231Google Scholar

    [21]

    Konotop V V, Victor M P G 2002 Phys. Lett. A 300 348Google Scholar

    [22]

    Petrosyan D, Fleischhauer M 2008 Phys. Rev. Lett. 100 170501Google Scholar

    [23]

    Friedler I, Petrosyan D, Fleischhauer M, Kurizki G 2005 Phys. Rev. A 72 043803Google Scholar

    [24]

    Gorshkov A V, Otterbach J, Fleischhauer M, Pohl T, Lukin M D 2011 Phys. Rev. Lett. 107 133602Google Scholar

    [25]

    Petrosyan D, Otterbach J, Fleischhauer M 2011 Phys. Rev. Lett. 107 213601Google Scholar

    [26]

    Liu Y M, Yan D, Tian X D, Cui C L, Wu J H 2014 Phys. Rev. A 89 7362

    [27]

    Liu Y M, Tian X D, Yan D, Zhang Y, Cui C L, Wu J H 2015 Phys. Rev. A 91 043802Google Scholar

    [28]

    Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2010 Phys. Rev. Lett. 105 193603Google Scholar

    [29]

    Xiao M, Li Y Q, Jin S Z, Gea-Banacloche J 1995 Phys. Rev. Lett. 74 666Google Scholar

    [30]

    Yu Y C, Dong M X, Ye Y H, Guo G, Ding D S, Shi B S 2020 Sci. China Phys. Mech. 63 110312Google Scholar

    [31]

    Yan D, Liu Y M, Bao Q Q, Fu C B, Wu J H 2012 Phys. Rev. A 86 023828Google Scholar

    [32]

    Sandhya S, Sharma K 1997 Phys. Rev. A 55 2155Google Scholar

    [33]

    Yang H, Fan C H, Zhang H X, Liu Y M, Wu J H 2019 J. Phys. B: At. Mol. Opt. Phys. 52 055502Google Scholar

    [34]

    Bai S Y, Bao Q Q, Tian X D, Liu Y M, Wu J 2018 J. Phys. B: At. Mol. Phys. 51 075502Google Scholar

    [35]

    Liu J, Liu N, Liu T, Shan C, Li H, Zheng A, Xie X T 2020 J. Magn. Magn. Mater. 503 166609Google Scholar

    [36]

    Liu J, Liu N, Shan C, Zheng A, Liu T, Li H, Xie X T 2016 Phys. Lett. A 380 2458Google Scholar

    [37]

    Mal K, Islam K, Mondal S, Bhattacharyya D, Bandyopadhyay A 2020 Chin. Phys. B 29 054211Google Scholar

    [38]

    Carr C, Tanasittikosol M, Sargsyan A, Sarkisyan D, Weatherill K J 2012 Opt. Lett. 37 3858Google Scholar

    [39]

    Gao Y, Ren Y, Yu D, Qian J 2019 Phys. Rev. A 100 033823Google Scholar

  • [1] Zhang Xue-Chao, Qiao Jia-Hui, Liu Yao, Su Nan, Liu Zhi-Hui, Cai Ting, He Jun, Zhao Yan-Ting, Wang Jun-Min. Measurement of low-frequency electric field waveform by Rydberg atom-based sensor. Acta Physica Sinica, 2024, 73(7): 070201. doi: 10.7498/aps.73.20231778
    [2] Liu Zhi-Hui, Liu Xiao-Na, He Jun, Liu Yao, Su Nan, Cai Ting, Du Yi-Jie, Wang Jie-Ying, Pei Dong-Liang, Wang Jun-Min. Tune-out wavelengths of Rydberg atoms. Acta Physica Sinica, 2024, 73(13): 130701. doi: 10.7498/aps.73.20240397
    [3] Bai Jian-Nan, Han Song, Chen Jian-Di, Han Hai-Yan, Yan Dong. Correlated collective excitation and quantum entanglement between two Rydberg superatoms in steady state. Acta Physica Sinica, 2023, 72(12): 124202. doi: 10.7498/aps.72.20222030
    [4] Liu Yao, He Jun, Su Nan, Cai Ting, Liu Zhi-Hui, Diao Wen-Ting, Wang Jun-Min. A 509 nm pulsed laser system for Rydberg excitation of cesium atoms. Acta Physica Sinica, 2023, 72(6): 060303. doi: 10.7498/aps.72.20222286
    [5] Bai Yu, Zhang Zhen-Fang, Yang Hai-Bin, Cai Li, Yu Dian-Long. Metasurface acoustic liner of engine based on asymmetric absorber. Acta Physica Sinica, 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [6] Wang Qin-Xia, Wang Zhi-Hui, Liu Yan-Xin, Guan Shi-Jun, He Jun, Zhang Peng-Fei, Li Gang, Zhang Tian-Cai. Cavity-enhanced spectra of hot Rydberg atoms. Acta Physica Sinica, 2023, 72(8): 087801. doi: 10.7498/aps.72.20230039
    [7] Wang Xin, Ren Fei-Fan, Han Song, Han Hai-Yan, Yan Dong. Perfect optomechanically induced transparency and slow light in an Rydberg atom-assisted optomechanical system. Acta Physica Sinica, 2023, 72(9): 094203. doi: 10.7498/aps.72.20222264
    [8] Gao Jie, Hang Chao. Deflection and manipulation of weak optical solitons by non-Hermitian electromagnetically induced gratings in Rydberg atoms. Acta Physica Sinica, 2022, 71(13): 133202. doi: 10.7498/aps.71.20220456
    [9] Wu Feng-Chuan, Lin Yi, Wu Bo, Fu Yun-Qi. Response characteristics of radio frequency pulse of Rydberg atoms. Acta Physica Sinica, 2022, 71(20): 207402. doi: 10.7498/aps.71.20220972
    [10] Zhao Jia-Dong, Zhang Hao, Yang Wen-Guang, Zhao Jing-Hua, Jing Ming-Yong, Zhang Lin-Jie. Deceleration of optical pulses based on electromagnetically induced transparency of Rydberg atoms. Acta Physica Sinica, 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [11] Jin Zhao, Li Rui, Gong Wei-Jiang, Qi Yang, Zhang Shou, Su Shi-Lei. Implementation of the Rydberg double anti-blockade regime and the quantum logic gate based on resonant dipole-dipole interactions. Acta Physica Sinica, 2021, 70(13): 134202. doi: 10.7498/aps.70.20210059
    [12] Yan Dong, Wang Bin-Bin, Bai Wen-Jie, Liu Bing, Du Xiu-Guo, Ren Chun-Nian. Phase in Rydberg electromagnetically induced transparency. Acta Physica Sinica, 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [13] Zhang Qin-Rong, Wang Bin-Bin, Zhang Meng-Long, Yan Dong. Two-body entanglement in a dilute gas of Rydberg atoms. Acta Physica Sinica, 2018, 67(3): 034202. doi: 10.7498/aps.67.20172052
    [14] Lü Hao, You Kai, Lan Yan-Yan, Gao Dong, Zhao Qiu-Ling, Wang Xia. Fabrication of two-dimensional micro-nano photonic structures by symmetry-lost beams interference. Acta Physica Sinica, 2017, 66(21): 217801. doi: 10.7498/aps.66.217801
    [15] Jiang Hao, Zhou Jie, Hisakazu Kikuchi, Shao Gen-Fu. Analysis of Doppler shift in a three-dimensional scattering channel model. Acta Physica Sinica, 2014, 63(4): 048702. doi: 10.7498/aps.63.048702
    [16] He Zhi, Li Long-Wu. Quantum correlation dynamics of two two-level atoms in common environment. Acta Physica Sinica, 2013, 62(18): 180301. doi: 10.7498/aps.62.180301
    [17] Zhao Jian-Ming, Zhang Lin-Jie, Li Chang-Yong, Jia Suo-Tang. The transformation of ultra-cold Rydberg atom to plasma. Acta Physica Sinica, 2008, 57(5): 2895-2898. doi: 10.7498/aps.57.2895
    [18] Guo De-Jun, Shan Chuan-Jia, Xia Yun-Jie. Entanglement evolution and Bell inequality violation of two atoms in Tavis-Cummings model with intrinsic decoherence. Acta Physica Sinica, 2007, 56(4): 2139-2147. doi: 10.7498/aps.56.2139
    [19] Shan Chuan-Jia, Xia Yun-Jie. The entanglement character of two entangled atoms in Tavis-Cummings model. Acta Physica Sinica, 2006, 55(4): 1585-1590. doi: 10.7498/aps.55.1585
    [20] RUAN HUAI-LIN, WAN BAO-NIAN, ZHANG XIAN-MEI, LIU JIAN-KUN. DEALING WITH ABEL INVERSION BY USING LENGENDRE EXPANSIONS. Acta Physica Sinica, 2001, 50(12): 2393-2397. doi: 10.7498/aps.50.2393
Metrics
  • Abstract views:  4498
  • PDF Downloads:  81
  • Cited By: 0
Publishing process
  • Received Date:  08 December 2020
  • Accepted Date:  18 January 2021
  • Available Online:  22 May 2021
  • Published Online:  05 June 2021

/

返回文章
返回
Baidu
map