-
近年来超导量子计算的研究方兴未艾, 随着谷歌宣布首次实现“量子优势”, 这一领域的研究受到了人们进一步的广泛关注. 超导量子比特是具有量子化能级、量子态叠加和量子态纠缠等典型量子特性的宏观器件, 通过电磁脉冲信号控制磁通量、电荷或具有非线性电感和无能量耗散的约瑟夫森结上的位相差, 可对量子态进行精确调控, 从而实现量子计算和量子信息处理. 超导量子比特有着诸多方面的优势, 很有希望成为普适量子计算的核心组成部分. 以铌或其他硬金属(如钽等)为首层大面积材料制备的超导量子比特及辅助器件(简称铌基器件)拥有其独特的优点以及进一步发展的空间, 目前已引起越来越多的兴趣. 本文将介绍常见的多种超导量子比特的基本构成和工作原理, 进而按照器件加工的一般顺序, 从基片选择和预处理、薄膜生长、图形转移、刻蚀和约瑟夫森结的制备等方面详细介绍铌基超导量子比特及其辅助器件的多种制备工艺, 为超导量子比特的制备提供一个可借鉴的清晰的工艺过程. 最后, 介绍若干制备铌基超导量子比特与辅助器件的具体例子, 并对器件制备的工艺与方法的优化做展望.Over the past two decades significant advances have been made in the research of superconducting quantum computing and quantum simulation, in particular of the device design and fabrication that leads to ever-increasing superconducting qubit coherence times and scales. With Google’s announcement of the realization of “quantum supremacy”, superconducting quantum computing has attracted even more attention. Superconducting qubits are macroscopic objects with quantum properties such as quantized energy levels and quantum-state superposition and entanglement. Their quantum states can be precisely manipulated by tuning the magnetic flux, charge, and phase difference of the Josephson junctions with nonlinear inductance through electromagnetic pulse signals, thereby implementing the quantum information processing. They have advantages in many aspects and are expected to become the central part of universal quantum computing. Superconducting qubits and auxiliary devices prepared with niobium or other hard metals like tantalum as bottom layers of large-area components have unique properties and potentials for further development. In this paper the research work in this area is briefly reviewed, starting from the design and working principle of a variety of superconducting qubits, to the detailed procedures of substrate selection and pretreatment, film growth, pattern transfer, etching, and Josephson junction fabrication, and finally the practical superconducting qubit and their auxiliary device fabrications with niobium base layers are also presented. We aim to provide a clear overview for the fabrication process of these superconducting devices as well as an outlook for further device improvement and optimization in order to help establish a perspective for future progress.
-
Keywords:
- superconducting qubit /
- device fabrication /
- quantum computing
[1] Makhlin Y, Schon G, Shnirman A 2001 Rev. Mod. Phys. 73 357Google Scholar
[2] Clarke J, Wilhelm F K 2008 Nature 19 459
[3] Devoret M H, Schoelkopf R J 2013 Science 339 1169Google Scholar
[4] Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S, Oliver W D 2019 Appl. Phys. Lett. 60 21318
[5] Kjaergaard M, Schwartz M E, Braumüller J, Krantz P, Wang I J, Gustavsson S, Oliver W D 2020 Annu. Rev. 11 369
[6] Mi X, Ippoliti M, Quintana C, et al. 2021 arXiv: 2107.13571 v2 [quant-ph]
[7] Makhlin Y, Schon G, Shnirman A 2007 Physics 73 357
[8] Paik H, Schuster D I, Bishop L S, Kirchmair G, Catelani G, Sears A P, Johnson B R, Reagor M J, Frunzio L, Glazman L I, Girvin S M, Devoret M H, Schoelkopf R J 2011 Phys. Rev. Lett. 107 240501Google Scholar
[9] Nakamura Y, Pashkin Y A, Tsai J S 1999 Nature 398 786Google Scholar
[10] Swingle B 2018 Nat. Phys. 14 988Google Scholar
[11] Salathé Y, Mondal M, Oppliger M, Heinsoo J, Kurpiers P, Potocnik A, Mezzacapo A, Heras U Las, Lamata L, Solano E, Filipp S, Wallraff A 2015 Phys. Rev. X 5 021027
[12] Barends R, Lamata L, Kelly J, et al. 2015 Nat. Commun. 6 7654Google Scholar
[13] Zhong Y P, Xu D, Wang P, Song C, Guo Q J, Liu W X, Xu K, Xia B X, Lu C Y, Han S, Pan J W, Wang H 2016 Phys. Rev. Lett. 117 110501Google Scholar
[14] Flurin E, Ramasesh V V, Hacohen-Gourgy S, Martin L S, Yao N Y, Siddiqi I 2017 Phys. Rev. X 7 031023
[15] Roushan P, Neill C, Tangpanitanon J, et al. 2017 Science 358 1175Google Scholar
[16] Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W X, Guo Q J, Zhang P F, Xu D, Deng H, Huang K Q, Wang H, Zhu X B, Zheng D N, Fan H 2018 Phys. Rev. Lett. 120 050507Google Scholar
[17] Song C, Xu D, Zhang P, Wang J, Guo Q, Liu W, Xu K, Deng H, Huang K, Zheng D, Zheng S B, Wang H, Zhu X, Lu C Y, Pan J W 2018 Phys. Rev. Lett. 121 030502Google Scholar
[18] Ma R, Saxberg B, Owens C, Leung N, Lu Y, Simon J, Schuster D I 2019 Nature 566 51Google Scholar
[19] Guo X Y, Yang C, Zeng Y, Peng Y, Li H K, Deng H, Jin Y R, Chen S, Zheng D N, Fan H 2019 Phys. Rev. Appl. 11 044080Google Scholar
[20] Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Barends R, Biswas R, Boixo S, Brandao F G, Buell D A 2019 Nature 574 505Google Scholar
[21] Xu K, Sun Z H, Liu W, Zhang Y R, Li H, Dong H, Ren W, Zhang P, Nori F, Zheng D, Fan H, Wang H 2020 Sci. Adv. 6 4935Google Scholar
[22] Guo Q, Cheng C, Sun Z H, Song Z, Li H, Wang Z, Ren W, Dong H, Zheng D, Zhang Y R, Mondaini R, Fan H, Wang H 2021 Nat. Phys. 17 234Google Scholar
[23] Kandala A, Temme K, Corcoles A D, Mezzacapo A, Chow J M, Gambetta J M 2019 Nature 567 491Google Scholar
[24] KassalI, WhitfieldJD, Perdomo-OrtizA, YungMH, Aspuru-GuzikA, 2011 Ann. Rev. Phys. Chem. 62 185Google Scholar
[25] Lloyd S 1996 Science 273 1073Google Scholar
[26] O’Malley P J J, Babbush R, Kivlichan I D, et al. 2016 Phys. Rev. X. 6 031007
[27] Peruzzo A, McClean J, Shadbolt P, Yung M H, Zhou X Q, Love P J, Aspuru-Guzik A, O’Brien J L 2014 Nat. Comm. 5 4213Google Scholar
[28] Emani P S, Warrell J, Anticevic A, et al. 2021 Nat. Methods. 18 701Google Scholar
[29] Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S 2017 Nature 549 195Google Scholar
[30] Ristè D, Silva M P, Ryan C A, Cross A W, Corcoles A D, Smolin J A, Gambetta J M, Chow J M, Johnson B R 2017 NPJ Quant. Inf. 3 16Google Scholar
[31] Woerner S, Egger D J 2019 NPJ Quant. Inf. 5 15Google Scholar
[32] Chakrabarti S, Krishnakumar R, Mazzola G, Stamatopoulos N, Woerner S, Zeng W J arXiv2012: 03819 [quant-ph]
[33] Chang J B, Vissers M R, Corcoles A D, Sandberg M, Gao J S, Abraham D W, Chow J M, Gambetta J M, Rothwell M B, Keefe G A, Steffen M, Pappas D P 2013 Appl. Phys. Lett. 103 012602Google Scholar
[34] Zhang G Y, Liu Y B, James J, Andrew R, Houck A 2017 npj Quant. Info. 3 1Google Scholar
[35] Blok M S, Ramasesh V V, Schuster T, Brien K O, Kreikebaum J M, Dahlen D, Morvan A, Yoshida B, Yao N Y, Siddiqi I arXiv: 2003.03307 v1 [quant-ph]
[36] Sage J M, Bolkhovsky V, Oliver W D, Turek B, Welander P B 2011 J. Appl. Phys. 109 063915Google Scholar
[37] Stammeier M, Garcia S, Wallraff A 2018 Quantum Sci. Technol. 3 045007Google Scholar
[38] Su F F, Liu W Y, Xu H K, Deng H, Li Z Y, Tian Y, Zhu X B, Zheng D N, Lu L, Zhao S P 2017 Chin. Phys. B 26 060308Google Scholar
[39] Su F F, Yang Z H, Zhao S K, Yan H S, Wang Z T, Song X H, Tian Y, Zhao S P 2021 Chin. Phys. B 30 100304Google Scholar
[40] Liu W Y, Su F F, Xu H K, Li Z Y, Tian Y, Zhu X B, Lu Li, Han S Y, Zhao S P 2018 Supercond. Sci. Tech. 31 045003Google Scholar
[41] Su F F, Wang Z T, Xu H K, Zhao S K, Yan H S, Yang Z H, TianY, Zhao S P 2019 Chin. Phys. B 28 110303Google Scholar
[42] Wang C L, Li X, Xu H K, et al. arXiv: 2105.09890 [quant-ph]
[43] Chiorescu I, Nakamura Y, Harmans C J, Mooij J E 2003 Science 299 1869Google Scholar
[44] Simmonds R W, Lang K M, Hite D A, Nam S, Pappas D P, Martinis J M 2004 Phys. Rev. Lett. 93 077003Google Scholar
[45] Koch J, Terri M Y, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Phys. Rev. A 76 042319Google Scholar
[46] Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Nature 449 443Google Scholar
[47] Barends R, Kelly J, Megrant A, Sank D, Jeffrey E, Chen Y, Yin Y, Chiaro B, Mutus J, Neill C, O'Malley P, Roushan P, Wenner J, White T C, Cleland A N, Martinis J M 2013 Phys. Rev. Lett. 111 080502Google Scholar
[48] Manucharyan V E, Koch J, Glazman L I, DevoretM H 2009 Science 326 113Google Scholar
[49] Yan F, Gustavsson S, Kamal A, Birenbaum J, Sears A P, Hover D, Gudmundsen T J, Rosenberg D, Samach G, Weber S, Yoder J L, Orlando T P, Clarke J, Kerman A J, Oliver W D 2016 Nat. Comm. 7 12964Google Scholar
[50] Zhong Y P, Li C Y, Wang H H, Chen Y 2013 Chin. Phys. B 22 110313Google Scholar
[51] Johnson M W, Amin M H S, Gildert S, Lanting T, Hamze F, Dickson N, Harris R, Berkley A J, Johansson J, Bunyk P 2011 Nature 473 194Google Scholar
[52] Su F F, Yang Z H 2021 Physics and Engineering 31 73
[53] Houck A A, Schreier J A, Johnson B R, Chow J M, Koch J, Gambetta J M, Schuster D I, Frunzio L, Devoret M H, Girvin S M, Schoelkopf R J 2008 Phys. Rev. Lett. 101 080502Google Scholar
[54] Gambetta J M, Murrayc E, Fung YK K 2017 IEEE Transactions on Applied Superconductivity 27 1
[55] Pop I M, Geerlings K, Catelani G, Schoelkopf R J, Glazman L I, Devoret M H 2014 Nature 508 369Google Scholar
[56] Martinis J M, Megrant A arXiv: 14105793 [quant-ph]
[57] Megrant A, Neill C, Barends R, et al. 2012 Appl. Phys. Lett. 100 113510Google Scholar
[58] Quintana C M, Megrant A, Chen Z, et al. 2014 Appl. Phys. Lett. 105 062601Google Scholar
[59] Wang C, Axline C, Gao Y Y, Brecht T, Chu Y, Frunzio L, Devoret M H, Schoelkopf R J 2015 Appl. Phys. Lett. 107 162601Google Scholar
[60] Gambetta J M, Murray C E, Fung Y K K, McClure D T, Dial O, Shanks W, Sleight J, Senior, Steffen M 2017 IEEE Trans. Appl. Supercond. 27 1
[61] Leonard E, Beck M A, Nelson J, et al. 2019 Phys. Rev. Appl. 11 014009Google Scholar
[62] Bruno A, de Lange G, Asaad S, van der Enden K L, Langford N K, DiCarlo L 2015 Appl. Phys. Lett. 106 182601Google Scholar
[63] Vissers M R, Gao J, Wisbey D S, Hite D A, Tseui C C, Corcoles A D, Steffen M, Pappas D P 2010 Appl. Phys. Lett. 97 232509Google Scholar
[64] Gambetta J M, Murray C E, Fung Y K K, McClure D T, Dial O, Shanks W, Sleight J W, Steffen M 2017 IEEE Trans. Appl. Supercond. 27 1700205
[65] Wisbey D S, Gao J, Vissers M R, da Silva F C S, Kline J S, Vale L, Pappas D P 2010 J. Appl. Phys. 108 093918Google Scholar
[66] Ohya S, Chiaro B, Megrant A, et al. 2014 Supercond. Sci. Tech. 27 015009Google Scholar
[67] Melville A, Calusine G, Woods W, Serniak K, Golden E, Niedzielski B M, Kim D K, Sevi A, Yoder J L, Dauler E A, Oliver W D 2020 Appl. Phys. Lett. 117 124004Google Scholar
[68] Geerlings K, Shankar S, Edwards E, Frunzio L, Schoelkopf R J, Devoret M H 2012 Appl. Phys. Lett. 100 192601Google Scholar
[69] Dunsworth A, Megrant A, Quintana C, et al. 2017 Appl. Phys. Lett. 111 022601Google Scholar
[70] Nersisyan A, Poletto S, Alidoust N, Manenti R, Renzas R, Bui C V, Vu K, Whyland T, Mohan Y, Sete E A, Stanwyck S, Bestwick A, Reagor M arxXiv1901.08042[quant-ph]
[71] Altoé M V P, Banerjee A, Berk C, et al. arXiv2012.07604[quant-ph]
[72] Premkumar A, Weiland C, Hwang S, et al. arXiv: 2004.02908 v1[quant-ph]
[73] Kamal A, Yoder J L, Yan F, Gudmundsen T J, Hover D, Sears A P, Welander P, Orlando T P, Gustavsson S, Oliver W D arXiv1606.09262[cond-mat. mes-hall]
[74] Earnest C T, Béjanin J H, McConkey T G, Peters E A, Korinek A, Yuan H, Mariantoni M 2018 Supercond. Sci. Tech. 31 125013Google Scholar
[75] You J Q and Nori F 2011 Nature 474 589Google Scholar
[76] Kjaergaard A, Schwartz M E, Braumüller J, Krantz P, Wang J I J, Gustavsson S, Oliver W D 2020 Ann. Rev. Cond. Matter Phys. 11 369Google Scholar
[77] Kreikebaum J M, Dove A, Livingston W, Kim E, Siddiqi I 2016 Supercond. Sci. Tech. 29 104002Google Scholar
[78] Segall K, Crankshaw D, Nakada D, Orlando T P, Levitov L S, Lloyd S, Markovic N, Valenzuela S O, Tinkham M, Berggren K K 2003 Phys. Rev. B 67 220506Google Scholar
[79] Gurvitch M, Washington M A, Huggins H A 1983 Appl. Phys. Lett. 42 472Google Scholar
[80] Cava R J, Batlogg B, Krajewski J J, Poulsen H F, Gammel P, Peck W F, Rupp L W 1991 Phys. Rev. B 44 6973Google Scholar
[81] Verjauw J, Potočnik A, Mongillo M, et al. 2021 Phys. Rev. Applied 16 014018Google Scholar
[82] Place A P M, Rodgers L V H, Rodgers L V H, et al. 2021 Nat. Comm. 12 1779Google Scholar
[83] Gladczuk L, Patel A, Paur C S, Sosnowski M 2004 Thin Solid Films 467 150Google Scholar
[84] Face D W, Probe D E 1987 J. Vac. Sci. Tech. 5 3406
[85] Barends R, Baselmans J J A, Hovenier J N, Gao J R, Yates S J C, Klapwijk T M, Hoevers H F C 2007 IEEE Trans. Appl. Supercond. 17 263Google Scholar
[86] Schauer A, Roschy M 1972 Thin Solid Films 12 313Google Scholar
[87] Fàbrega L, Fernández-Martínez I, Parra-Borderías M, Gil O, Camón A, Arrabal R G, Sesé J, Santiso J, Costa-Krämer J L, Briones F 2009 IEEE Trans. Appl. Supercond. 19 3779Google Scholar
[88] Shearrow A, Koolstra G, Whiteley S J, Earnest N, Barry P S, Heremans F J, Awschalom D D, Shirokoff E, Schuster D I arXiv1808.06009 [cond-mat. mes-hall]
[89] Profeta G, Franchini C, Lathiotakis N N, Floris A, Sanna A, Marques M A L, Lüders M, Massidda S, Gross E K U, Continenza A 2006 Phys. Rev. Lett. 96 047003Google Scholar
[90] Pickard C J, Errea I, Eremets M I 2020 Ann. Rev. Condens. Matter. Phys. 11 57Google Scholar
[91] Lisenfeld J, Bilmes A, Megrant A, Barends R, Kelly J, Klimov P, Weiss G, Martinis J M, Ustinov A V 2019 NPJ Quantum Inf. 5 105Google Scholar
[92] Park J, Yan A, Tilka J A, Sampson K C, Savage D E, Prance J R, Simmons C B, Lagally M G, Coppersmith S N, Eriksson M A, Holt M V, Evans P G 2016 Appl. Phys. Lett. 4 066102
[93] Lisenfeld J, Grabovskij G J, Müller C, Cole J H, Weiss G, Ustinov A V 2015 Nat. Comm. 6 6182Google Scholar
[94] Pateras A, Park Y, Ahn Y, Tilka J A, Holt M V, Reichl C, Wegscheider W, Baart T A, Dehollain J P, Mukhopadhyay U, Vandersypen L M K, Evans P G 2018 Nano Lett. 18 2780Google Scholar
[95] Anderson A C, Smith S C 1973 J. Phys. Chem. Solids 34 111Google Scholar
[96] Wang H, Shi C, Hu J, Han S, Yu C, Wu R Q 2015 Phys. Rev. Lett. 115 077002Google Scholar
[97] Lee D, Du Bois J L, Lordi V 2014 Phys. Rev. Lett. 112 017001Google Scholar
[98] Kumar P, Sendelbach S, Beck M A, Freeland J W, Wang Z, Wang H, Yu C C, Wu R Q, Pappas D P, McDermott R 2016 Phys. Rev. Appl. 6 041001Google Scholar
[99] Choi S, Lee D H, Louie S G, Clarke J 2009 Phys. Rev. Lett. 103 197001Google Scholar
[100] Neill C, Megrant A, Barends R, Chen Y, Chiaro B, Kelly J, Mutus J Y, O’Malley P J J, Sank D, Wenner J, White T C, Yin Y, Cleland A N, Martinis J M 2013 Appl. Phys. Lett. 103 072601Google Scholar
[101] Lock E H, Xu P, Kohler T, Camacho L, Prestigiacomo J, Rosen Y J, Osborn K D 2019 IEEE Trans. Appl. Supercond. 29 1700108
[102] Woods W, Calusine G, Melville A, Sevi A, Golden E, Kim D K, Rosenberg D, Yoder J L, Oliver W D 2019 Phys. Rev. Appl. 12 014012Google Scholar
[103] Dolan G J 1977 Appl. Phys. Lett. 31 337Google Scholar
[104] Costache M V, Bridoux G, Neumann I, Valenzuela S O 2012 J. Vac. Sci. Tech. B. 30 104
[105] Kreikebaum J M, O’Brien K P, Morvan A, Siddiqi I 2020 Supercond. Sci. Tech. 33 0602Google Scholar
[106] Shapiro S 1963 Phys. Rev. Lett. 11 80Google Scholar
[107] Clarke J 1972 Phys. Rev. Lett. 28 1363Google Scholar
[108] Cai N, Zhou G, Müller K, Starr D E 2012 Appl. Phys. Lett. 101 171605Google Scholar
[109] Ambegaokar V, Baratoff A 1963 Phys. Rev. Lett. 10 486Google Scholar
[110] Steinbach A, Joyez P, Cottet A, Esteve D, Devoret M H, Huber M E, Martinis J M 2001 Phys. Rev. Lett. 87 137003Google Scholar
[111] Zhang E, Srinivasan S, Sundaresan N, et al. arXiv: 2012.08475 [quant-ph]
[112] Bilmes A, Neumann A K, Volosheniuk S, Ustinov A V, Lisenfeld J arXiv: 2101.01453 v2 [quant-ph]
[113] Osman A, Simon J, Bengtsson A, Kosen S, Krantz P, Perez D, Scigliuzzo M, Bylander J, Roudsari A F arXiv: 2011.05230 v1 [cond-mat. supr-con]
[114] Chen Z, Megrant A, Kelly J, et al. 2014 Appl. Phys. Lett. 104 052602Google Scholar
[115] Rosenberg D, Weber S J, Conway D, Jost D R W, Mallek J, Calusine G, Das R, Kim D, Schwartz M E, Woods W, Yoder J L, Oliver W D 2020 IEEE Micro. Mag. 21 72
[116] Jin Z C, Wu H T, Yu H F, Yu Y 2018 Chin. Phys. B 27 100310Google Scholar
[117] Burnett J J, Bylander J, Bengtsson A, Scigliuzzo M, Niepce D 2019 NPJ Quantum Inf. 5 1Google Scholar
[118] Schlor S, Lisenfeld J, Mueller C, Bilmes A, Schneider A, Pappas D P, Ustinov A V, Weides M 2019 Phys. Rev. Lett. 123 190502Google Scholar
[119] Nersisyan A, Poletto S, Alidoust N, Manenti R, Renzas R, Bui C V, Vu K, Whyland T, Mohan Y, Sete E A, Stanwyck S, Bestwick A, Reagor M arXiv1901.08042 [quant-ph]
[120] Oliver W D, Welander P B 2013 MRS Bulletin 38 816Google Scholar
[121] de Graaf S E, Faoro L, Burnett J, Adamyan A A, Tzalenchuk A Y, Kubatkin S E, Lindström T, Danilov A V 2018 Nat. Commun. 9 1143Google Scholar
[122] Lisenfeld J, Mueller C, Cole J H, Bushev P, Lukashenko A, Shnirman A, Ustinov A V 2010 Phys. Rev. Lett. 105 230504Google Scholar
[123] Paz A, Lebedeva I, Tokatly I, Rubio A 2014 Phys. Rev. B 90 224202Google Scholar
[124] Muller C, Cole J H, Lisenfeld J 2019 Rep. Prog. Phys. 82 124501Google Scholar
[125] Martinis J M, Cooper K B, McDermott R, Steffen M, Ansmann M, Osborn K D, Cicak K, Oh S, Pappas D P, Simmonds RW and Yu C C 2005 Phys. Rev. Lett. 95 210503Google Scholar
[126] Neeley M, Ansmann M, Bialczak R C, Hofheinz M, Katz N, Lucero E, O’Connell A, Wang H, Cleland A N and Martinis J 2008 Phys. Rev. B 77 180508Google Scholar
[127] Martinis J M 2009 Quantum Inf. Process. 8 81Google Scholar
[128] Weides M, Bialczak R C, Lenander M, Lucero E, Mariantoni M, Neeley M, O’Connell A D, Sank D, Wang H, Wenner J, Yamamoto T, Yin Y, Cleland A N and Martinis J 2011 Supercond. Sci. Technol. 24 055005Google Scholar
[129] Lecocq F, Pop I M, Peng Z H, Matei I, Crozes T, Fournier T, Naud C, Guichard W and Buisson O 2011 Nanotechnology 22 315302Google Scholar
[130] Semenov V K, Danilov G V, Averin D V 2003 IEEE Trans. Appl. Supecond. 13 938Google Scholar
[131] Semenov V K, Danilov G V, Averin D V 2007 IEEE Trans. Appl. Supecond. 17 455Google Scholar
[132] Ren J, Semenov V K, Polyakov Y A, Averin D V, Tsai J S 2009 IEEE Trans. Appl. Supecond. 19 961Google Scholar
[133] Averin D V, Xu K, Zhong Y P, Song C, Wang H, Han S 2016 Phys. Rev. Lett. 116 010501Google Scholar
[134] Han S, Lapointe J, Lukens J E 1989 Phys. Rev. Lett. 63 1712Google Scholar
[135] Li S X, Yu Y, Zhang Y, Qiu W, Han S 2002 Phys. Rev. Lett. 89 098301Google Scholar
[136] Balestro F, Claudon J, Pekola J P, Buisson O 2003 Phys. Rev. Lett. 91 158301Google Scholar
[137] Lei C U, Krayzman L, Ganjam S, Frunzio L, Schoelkopf R J 2020 Appl. Phys. Lett. 116 154002
[138] Barends R, Vercruyssen N, Endo A, de Visser P J, Zijlstra T, Klapwijk T M, Diener P, Yates S J C, Baselmans J J A 2010 Appl. Phys. Lett. 97 023508Google Scholar
[139] Leduc H G, Bumble B, Day P K, Eom B H, Gao J, Golwala S, Mazin B A, McHugh S, Merrill A, Moore D C, Noroozian O, Turner A D, Zmuidzinas J 2010 Appl. Phys. Lett. 97 102509Google Scholar
[140] Foxen B, Mutus J Y, Lucero E, et al. 2018 Quantum Sci. Technol. 3 014005Google Scholar
[141] Levenson-Falk E M, Vijay R, Siddiqi I 2011 Appl. Phys. Lett. 98 123115Google Scholar
[142] Castellanos-Beltran M A, Irwin K D, Hilton G C, Vale L R, Lehnert K W 2008 Nat. Phys. 4 929Google Scholar
[143] Siddiqi I, Vijay R, Pierre F, Wilson C M, Metcalfe M, Rigetti C, Frunzio L, Devoret M H 2004 Phys. Rev. Lett. 93 207002Google Scholar
[144] Reed M D, DiCarlo L, Johnson B R, Sun L, Schuster D I, Frunzio L, Schoelkopf R J 2010 Phys. Rev. Lett. 105 173601Google Scholar
[145] Huang K Q, Guo Q J, Song C, Zheng Y R, Deng H, Wu Y L, Jin Y R, Zhu X B, Zheng D N 2017 Chin. Phys. B 26 094203Google Scholar
[146] Yang R, DengH 2020 IEEE Trans. APP. Supercon. 30 4Google Scholar
[147] Roy T, Kundu S, Chand M, Vadiraj A M, Ranadive A, Nehra N, Patankar M P, Aumentado J, Clerk A A, Vijaz R 2015 Appl. Phy. Lett. 107 262601Google Scholar
[148] Xue H, Lin Z R, Jiang W B, Niu Z Q, Liu K, Peng W, Wang Z 2021 Chin. Phys. B 30 068503Google Scholar
[149] Lu Y P, Zuo Q, Pan J Z, Jiang J L, Wei X Y, Li Z S, Xu W Q, Zhang K X, Guo T T, Wang S, Cao C H, Xu W W, Sun G Z, Wu P H 2021 Chin. Phys. B 30 068504Google Scholar
[150] Eom B H, Day P K, LeDay H G, Zmuidzinas J 2012 Nat. Phy. 8 623Google Scholar
[151] White T C, Mutus J Y, Kelly J, Sank D, Martinis J M 2015 Appl. Phy. Lett. 106 242601Google Scholar
[152] Macklin C, O’Brien, Hover D, Schwartz M E, Bolkhovsky V, Zhang X, Oliver W D, Siddiqi I 2015 Science 350 307Google Scholar
[153] Harrow A W, Montanaro A 2017 Nature 549 203Google Scholar
[154] Kelly J, Barends R, Fowler A G, et al. 2015 Nature 519 66Google Scholar
[155] Xu H K, Song C, Liu W Y, Xue G M, Su F F, Deng H, Tian Y, Zheng D N, Han S Y, Zhong Y P, Wang H, Liu Y X, Zhao S P 2016 Nat. Comm. 7 11018Google Scholar
[156] Wu Y L, Bao W S, Cao S R, Chen F S, Chen M C, Pan J W, et al. arXiv: 2106.14734 v1 [quant-ph]
-
图 7 (a)铌基位相量子位中心区域的光学显微镜照片, 硅基片呈绿色, 而较暗和较亮的金属部分是Nb和Al薄膜; (b)位相量子比特能谱与能量弛豫时间的测量结果[38]
Fig. 7. (a) Optical microscope image of the central region of Nb-based phase qubit, the substrate appears greenish in color while the darker and brighter parts are the Nb and Al films; (b) measurement results of energy spectrum and energy relaxation time of phase qubit[38].
图 8 (a) 铌基nSQUID量子比特中心部分的假色光学照片, 衬底、Nb层、Al层和α-Si层分别呈灰色、浅黄色、白色和棕色; (b)—(e) nSQUID量子比特不同条件下的典型二维势阱[40]
Fig. 8. (a) False-colored optical photograph of the central part of Nb-based nSQUID qubit with the substrate, Nb layer, Al layers, and α-Si layer appearing in gray, light yellow, white, and brown, respectively; (b)–(e) Typical 2D potential landscapes of the nSQUID qubit [40].
图 9 (a)铌基耦合10比特器件中心区域; (b)跨过控制线的空气桥; (c)包含两个约瑟夫森结的SQUID环区域; (d)样品能量弛豫时间测量结果[39]
Fig. 9. Microscope images of (a) the central region of Nb-based coupled 10-qubit device; (b) an airbridge across the control line; (c) the SQUID loop area containing two Josephson junctions; (d) measurement results of sample energy relaxation time[39].
表 1 不同生长模式制备的铌薄膜器件性质[72]
Table 1. Properties of niobium thin film devices with different growth modes[72].
Deposition Sputtered HiPIMS opt HiPIMS norm T1/μs 56 ± 12 33 ± 2 17 ± 9 RRR 8.9 ± 0.1 5.0 ± 0.2 2.9 ± 0.1 Tc/K 9.0 ± 0.1 8.6 ± 0.1 8.1 ± 0.1 GSA/nm2 1140 ± 70 500 ± 50 180 ± 30 Nb 61 ± 3 64 ± 3 45 ± 2 NbOx 15.1 ± 0.2 16.0 ± 0.3 20.4 ± 0.8 NbO 0 ± 2 0 ± 1 5 ± 1 NbO2 3.1 ± 0.4 3.5 ± 0.2 10 ± 2 Nb2O5 20 ± 1 15.9 ± 0.8 19 ± 2 Suboxide 19 ± 2 20 ± 1 36 ± 2 表 2 不同方法生长铌薄膜以及所制备谐振腔的性质[57]
Table 2. Growth of niobium thin films by different methods and fabricated resonator properties [57].
Processa In vacuo cleaning w/μm f0/GHz Qi-H×106 Qi-L×106 (A) Sputter 100 eV Ar+ mill for 2 min 3
153.833
6.1294.30
4.500.16
0.40(B) E-beam 60 eV Ar+ mill for 2 min 3
153.810
6.0899.90
4.400.66
0.72(C) MBE None 6
154.973
6.1205.70
4.330.53
0.76(D) MBE LLb anneal 3
153.773
6.1256.58
5.380.75
0.80(E) MBE LLb and 850 ℃ anneal 3
153.876
6.12710.10
6.401.15
0.92 -
[1] Makhlin Y, Schon G, Shnirman A 2001 Rev. Mod. Phys. 73 357Google Scholar
[2] Clarke J, Wilhelm F K 2008 Nature 19 459
[3] Devoret M H, Schoelkopf R J 2013 Science 339 1169Google Scholar
[4] Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S, Oliver W D 2019 Appl. Phys. Lett. 60 21318
[5] Kjaergaard M, Schwartz M E, Braumüller J, Krantz P, Wang I J, Gustavsson S, Oliver W D 2020 Annu. Rev. 11 369
[6] Mi X, Ippoliti M, Quintana C, et al. 2021 arXiv: 2107.13571 v2 [quant-ph]
[7] Makhlin Y, Schon G, Shnirman A 2007 Physics 73 357
[8] Paik H, Schuster D I, Bishop L S, Kirchmair G, Catelani G, Sears A P, Johnson B R, Reagor M J, Frunzio L, Glazman L I, Girvin S M, Devoret M H, Schoelkopf R J 2011 Phys. Rev. Lett. 107 240501Google Scholar
[9] Nakamura Y, Pashkin Y A, Tsai J S 1999 Nature 398 786Google Scholar
[10] Swingle B 2018 Nat. Phys. 14 988Google Scholar
[11] Salathé Y, Mondal M, Oppliger M, Heinsoo J, Kurpiers P, Potocnik A, Mezzacapo A, Heras U Las, Lamata L, Solano E, Filipp S, Wallraff A 2015 Phys. Rev. X 5 021027
[12] Barends R, Lamata L, Kelly J, et al. 2015 Nat. Commun. 6 7654Google Scholar
[13] Zhong Y P, Xu D, Wang P, Song C, Guo Q J, Liu W X, Xu K, Xia B X, Lu C Y, Han S, Pan J W, Wang H 2016 Phys. Rev. Lett. 117 110501Google Scholar
[14] Flurin E, Ramasesh V V, Hacohen-Gourgy S, Martin L S, Yao N Y, Siddiqi I 2017 Phys. Rev. X 7 031023
[15] Roushan P, Neill C, Tangpanitanon J, et al. 2017 Science 358 1175Google Scholar
[16] Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W X, Guo Q J, Zhang P F, Xu D, Deng H, Huang K Q, Wang H, Zhu X B, Zheng D N, Fan H 2018 Phys. Rev. Lett. 120 050507Google Scholar
[17] Song C, Xu D, Zhang P, Wang J, Guo Q, Liu W, Xu K, Deng H, Huang K, Zheng D, Zheng S B, Wang H, Zhu X, Lu C Y, Pan J W 2018 Phys. Rev. Lett. 121 030502Google Scholar
[18] Ma R, Saxberg B, Owens C, Leung N, Lu Y, Simon J, Schuster D I 2019 Nature 566 51Google Scholar
[19] Guo X Y, Yang C, Zeng Y, Peng Y, Li H K, Deng H, Jin Y R, Chen S, Zheng D N, Fan H 2019 Phys. Rev. Appl. 11 044080Google Scholar
[20] Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Barends R, Biswas R, Boixo S, Brandao F G, Buell D A 2019 Nature 574 505Google Scholar
[21] Xu K, Sun Z H, Liu W, Zhang Y R, Li H, Dong H, Ren W, Zhang P, Nori F, Zheng D, Fan H, Wang H 2020 Sci. Adv. 6 4935Google Scholar
[22] Guo Q, Cheng C, Sun Z H, Song Z, Li H, Wang Z, Ren W, Dong H, Zheng D, Zhang Y R, Mondaini R, Fan H, Wang H 2021 Nat. Phys. 17 234Google Scholar
[23] Kandala A, Temme K, Corcoles A D, Mezzacapo A, Chow J M, Gambetta J M 2019 Nature 567 491Google Scholar
[24] KassalI, WhitfieldJD, Perdomo-OrtizA, YungMH, Aspuru-GuzikA, 2011 Ann. Rev. Phys. Chem. 62 185Google Scholar
[25] Lloyd S 1996 Science 273 1073Google Scholar
[26] O’Malley P J J, Babbush R, Kivlichan I D, et al. 2016 Phys. Rev. X. 6 031007
[27] Peruzzo A, McClean J, Shadbolt P, Yung M H, Zhou X Q, Love P J, Aspuru-Guzik A, O’Brien J L 2014 Nat. Comm. 5 4213Google Scholar
[28] Emani P S, Warrell J, Anticevic A, et al. 2021 Nat. Methods. 18 701Google Scholar
[29] Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S 2017 Nature 549 195Google Scholar
[30] Ristè D, Silva M P, Ryan C A, Cross A W, Corcoles A D, Smolin J A, Gambetta J M, Chow J M, Johnson B R 2017 NPJ Quant. Inf. 3 16Google Scholar
[31] Woerner S, Egger D J 2019 NPJ Quant. Inf. 5 15Google Scholar
[32] Chakrabarti S, Krishnakumar R, Mazzola G, Stamatopoulos N, Woerner S, Zeng W J arXiv2012: 03819 [quant-ph]
[33] Chang J B, Vissers M R, Corcoles A D, Sandberg M, Gao J S, Abraham D W, Chow J M, Gambetta J M, Rothwell M B, Keefe G A, Steffen M, Pappas D P 2013 Appl. Phys. Lett. 103 012602Google Scholar
[34] Zhang G Y, Liu Y B, James J, Andrew R, Houck A 2017 npj Quant. Info. 3 1Google Scholar
[35] Blok M S, Ramasesh V V, Schuster T, Brien K O, Kreikebaum J M, Dahlen D, Morvan A, Yoshida B, Yao N Y, Siddiqi I arXiv: 2003.03307 v1 [quant-ph]
[36] Sage J M, Bolkhovsky V, Oliver W D, Turek B, Welander P B 2011 J. Appl. Phys. 109 063915Google Scholar
[37] Stammeier M, Garcia S, Wallraff A 2018 Quantum Sci. Technol. 3 045007Google Scholar
[38] Su F F, Liu W Y, Xu H K, Deng H, Li Z Y, Tian Y, Zhu X B, Zheng D N, Lu L, Zhao S P 2017 Chin. Phys. B 26 060308Google Scholar
[39] Su F F, Yang Z H, Zhao S K, Yan H S, Wang Z T, Song X H, Tian Y, Zhao S P 2021 Chin. Phys. B 30 100304Google Scholar
[40] Liu W Y, Su F F, Xu H K, Li Z Y, Tian Y, Zhu X B, Lu Li, Han S Y, Zhao S P 2018 Supercond. Sci. Tech. 31 045003Google Scholar
[41] Su F F, Wang Z T, Xu H K, Zhao S K, Yan H S, Yang Z H, TianY, Zhao S P 2019 Chin. Phys. B 28 110303Google Scholar
[42] Wang C L, Li X, Xu H K, et al. arXiv: 2105.09890 [quant-ph]
[43] Chiorescu I, Nakamura Y, Harmans C J, Mooij J E 2003 Science 299 1869Google Scholar
[44] Simmonds R W, Lang K M, Hite D A, Nam S, Pappas D P, Martinis J M 2004 Phys. Rev. Lett. 93 077003Google Scholar
[45] Koch J, Terri M Y, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Phys. Rev. A 76 042319Google Scholar
[46] Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Nature 449 443Google Scholar
[47] Barends R, Kelly J, Megrant A, Sank D, Jeffrey E, Chen Y, Yin Y, Chiaro B, Mutus J, Neill C, O'Malley P, Roushan P, Wenner J, White T C, Cleland A N, Martinis J M 2013 Phys. Rev. Lett. 111 080502Google Scholar
[48] Manucharyan V E, Koch J, Glazman L I, DevoretM H 2009 Science 326 113Google Scholar
[49] Yan F, Gustavsson S, Kamal A, Birenbaum J, Sears A P, Hover D, Gudmundsen T J, Rosenberg D, Samach G, Weber S, Yoder J L, Orlando T P, Clarke J, Kerman A J, Oliver W D 2016 Nat. Comm. 7 12964Google Scholar
[50] Zhong Y P, Li C Y, Wang H H, Chen Y 2013 Chin. Phys. B 22 110313Google Scholar
[51] Johnson M W, Amin M H S, Gildert S, Lanting T, Hamze F, Dickson N, Harris R, Berkley A J, Johansson J, Bunyk P 2011 Nature 473 194Google Scholar
[52] Su F F, Yang Z H 2021 Physics and Engineering 31 73
[53] Houck A A, Schreier J A, Johnson B R, Chow J M, Koch J, Gambetta J M, Schuster D I, Frunzio L, Devoret M H, Girvin S M, Schoelkopf R J 2008 Phys. Rev. Lett. 101 080502Google Scholar
[54] Gambetta J M, Murrayc E, Fung YK K 2017 IEEE Transactions on Applied Superconductivity 27 1
[55] Pop I M, Geerlings K, Catelani G, Schoelkopf R J, Glazman L I, Devoret M H 2014 Nature 508 369Google Scholar
[56] Martinis J M, Megrant A arXiv: 14105793 [quant-ph]
[57] Megrant A, Neill C, Barends R, et al. 2012 Appl. Phys. Lett. 100 113510Google Scholar
[58] Quintana C M, Megrant A, Chen Z, et al. 2014 Appl. Phys. Lett. 105 062601Google Scholar
[59] Wang C, Axline C, Gao Y Y, Brecht T, Chu Y, Frunzio L, Devoret M H, Schoelkopf R J 2015 Appl. Phys. Lett. 107 162601Google Scholar
[60] Gambetta J M, Murray C E, Fung Y K K, McClure D T, Dial O, Shanks W, Sleight J, Senior, Steffen M 2017 IEEE Trans. Appl. Supercond. 27 1
[61] Leonard E, Beck M A, Nelson J, et al. 2019 Phys. Rev. Appl. 11 014009Google Scholar
[62] Bruno A, de Lange G, Asaad S, van der Enden K L, Langford N K, DiCarlo L 2015 Appl. Phys. Lett. 106 182601Google Scholar
[63] Vissers M R, Gao J, Wisbey D S, Hite D A, Tseui C C, Corcoles A D, Steffen M, Pappas D P 2010 Appl. Phys. Lett. 97 232509Google Scholar
[64] Gambetta J M, Murray C E, Fung Y K K, McClure D T, Dial O, Shanks W, Sleight J W, Steffen M 2017 IEEE Trans. Appl. Supercond. 27 1700205
[65] Wisbey D S, Gao J, Vissers M R, da Silva F C S, Kline J S, Vale L, Pappas D P 2010 J. Appl. Phys. 108 093918Google Scholar
[66] Ohya S, Chiaro B, Megrant A, et al. 2014 Supercond. Sci. Tech. 27 015009Google Scholar
[67] Melville A, Calusine G, Woods W, Serniak K, Golden E, Niedzielski B M, Kim D K, Sevi A, Yoder J L, Dauler E A, Oliver W D 2020 Appl. Phys. Lett. 117 124004Google Scholar
[68] Geerlings K, Shankar S, Edwards E, Frunzio L, Schoelkopf R J, Devoret M H 2012 Appl. Phys. Lett. 100 192601Google Scholar
[69] Dunsworth A, Megrant A, Quintana C, et al. 2017 Appl. Phys. Lett. 111 022601Google Scholar
[70] Nersisyan A, Poletto S, Alidoust N, Manenti R, Renzas R, Bui C V, Vu K, Whyland T, Mohan Y, Sete E A, Stanwyck S, Bestwick A, Reagor M arxXiv1901.08042[quant-ph]
[71] Altoé M V P, Banerjee A, Berk C, et al. arXiv2012.07604[quant-ph]
[72] Premkumar A, Weiland C, Hwang S, et al. arXiv: 2004.02908 v1[quant-ph]
[73] Kamal A, Yoder J L, Yan F, Gudmundsen T J, Hover D, Sears A P, Welander P, Orlando T P, Gustavsson S, Oliver W D arXiv1606.09262[cond-mat. mes-hall]
[74] Earnest C T, Béjanin J H, McConkey T G, Peters E A, Korinek A, Yuan H, Mariantoni M 2018 Supercond. Sci. Tech. 31 125013Google Scholar
[75] You J Q and Nori F 2011 Nature 474 589Google Scholar
[76] Kjaergaard A, Schwartz M E, Braumüller J, Krantz P, Wang J I J, Gustavsson S, Oliver W D 2020 Ann. Rev. Cond. Matter Phys. 11 369Google Scholar
[77] Kreikebaum J M, Dove A, Livingston W, Kim E, Siddiqi I 2016 Supercond. Sci. Tech. 29 104002Google Scholar
[78] Segall K, Crankshaw D, Nakada D, Orlando T P, Levitov L S, Lloyd S, Markovic N, Valenzuela S O, Tinkham M, Berggren K K 2003 Phys. Rev. B 67 220506Google Scholar
[79] Gurvitch M, Washington M A, Huggins H A 1983 Appl. Phys. Lett. 42 472Google Scholar
[80] Cava R J, Batlogg B, Krajewski J J, Poulsen H F, Gammel P, Peck W F, Rupp L W 1991 Phys. Rev. B 44 6973Google Scholar
[81] Verjauw J, Potočnik A, Mongillo M, et al. 2021 Phys. Rev. Applied 16 014018Google Scholar
[82] Place A P M, Rodgers L V H, Rodgers L V H, et al. 2021 Nat. Comm. 12 1779Google Scholar
[83] Gladczuk L, Patel A, Paur C S, Sosnowski M 2004 Thin Solid Films 467 150Google Scholar
[84] Face D W, Probe D E 1987 J. Vac. Sci. Tech. 5 3406
[85] Barends R, Baselmans J J A, Hovenier J N, Gao J R, Yates S J C, Klapwijk T M, Hoevers H F C 2007 IEEE Trans. Appl. Supercond. 17 263Google Scholar
[86] Schauer A, Roschy M 1972 Thin Solid Films 12 313Google Scholar
[87] Fàbrega L, Fernández-Martínez I, Parra-Borderías M, Gil O, Camón A, Arrabal R G, Sesé J, Santiso J, Costa-Krämer J L, Briones F 2009 IEEE Trans. Appl. Supercond. 19 3779Google Scholar
[88] Shearrow A, Koolstra G, Whiteley S J, Earnest N, Barry P S, Heremans F J, Awschalom D D, Shirokoff E, Schuster D I arXiv1808.06009 [cond-mat. mes-hall]
[89] Profeta G, Franchini C, Lathiotakis N N, Floris A, Sanna A, Marques M A L, Lüders M, Massidda S, Gross E K U, Continenza A 2006 Phys. Rev. Lett. 96 047003Google Scholar
[90] Pickard C J, Errea I, Eremets M I 2020 Ann. Rev. Condens. Matter. Phys. 11 57Google Scholar
[91] Lisenfeld J, Bilmes A, Megrant A, Barends R, Kelly J, Klimov P, Weiss G, Martinis J M, Ustinov A V 2019 NPJ Quantum Inf. 5 105Google Scholar
[92] Park J, Yan A, Tilka J A, Sampson K C, Savage D E, Prance J R, Simmons C B, Lagally M G, Coppersmith S N, Eriksson M A, Holt M V, Evans P G 2016 Appl. Phys. Lett. 4 066102
[93] Lisenfeld J, Grabovskij G J, Müller C, Cole J H, Weiss G, Ustinov A V 2015 Nat. Comm. 6 6182Google Scholar
[94] Pateras A, Park Y, Ahn Y, Tilka J A, Holt M V, Reichl C, Wegscheider W, Baart T A, Dehollain J P, Mukhopadhyay U, Vandersypen L M K, Evans P G 2018 Nano Lett. 18 2780Google Scholar
[95] Anderson A C, Smith S C 1973 J. Phys. Chem. Solids 34 111Google Scholar
[96] Wang H, Shi C, Hu J, Han S, Yu C, Wu R Q 2015 Phys. Rev. Lett. 115 077002Google Scholar
[97] Lee D, Du Bois J L, Lordi V 2014 Phys. Rev. Lett. 112 017001Google Scholar
[98] Kumar P, Sendelbach S, Beck M A, Freeland J W, Wang Z, Wang H, Yu C C, Wu R Q, Pappas D P, McDermott R 2016 Phys. Rev. Appl. 6 041001Google Scholar
[99] Choi S, Lee D H, Louie S G, Clarke J 2009 Phys. Rev. Lett. 103 197001Google Scholar
[100] Neill C, Megrant A, Barends R, Chen Y, Chiaro B, Kelly J, Mutus J Y, O’Malley P J J, Sank D, Wenner J, White T C, Yin Y, Cleland A N, Martinis J M 2013 Appl. Phys. Lett. 103 072601Google Scholar
[101] Lock E H, Xu P, Kohler T, Camacho L, Prestigiacomo J, Rosen Y J, Osborn K D 2019 IEEE Trans. Appl. Supercond. 29 1700108
[102] Woods W, Calusine G, Melville A, Sevi A, Golden E, Kim D K, Rosenberg D, Yoder J L, Oliver W D 2019 Phys. Rev. Appl. 12 014012Google Scholar
[103] Dolan G J 1977 Appl. Phys. Lett. 31 337Google Scholar
[104] Costache M V, Bridoux G, Neumann I, Valenzuela S O 2012 J. Vac. Sci. Tech. B. 30 104
[105] Kreikebaum J M, O’Brien K P, Morvan A, Siddiqi I 2020 Supercond. Sci. Tech. 33 0602Google Scholar
[106] Shapiro S 1963 Phys. Rev. Lett. 11 80Google Scholar
[107] Clarke J 1972 Phys. Rev. Lett. 28 1363Google Scholar
[108] Cai N, Zhou G, Müller K, Starr D E 2012 Appl. Phys. Lett. 101 171605Google Scholar
[109] Ambegaokar V, Baratoff A 1963 Phys. Rev. Lett. 10 486Google Scholar
[110] Steinbach A, Joyez P, Cottet A, Esteve D, Devoret M H, Huber M E, Martinis J M 2001 Phys. Rev. Lett. 87 137003Google Scholar
[111] Zhang E, Srinivasan S, Sundaresan N, et al. arXiv: 2012.08475 [quant-ph]
[112] Bilmes A, Neumann A K, Volosheniuk S, Ustinov A V, Lisenfeld J arXiv: 2101.01453 v2 [quant-ph]
[113] Osman A, Simon J, Bengtsson A, Kosen S, Krantz P, Perez D, Scigliuzzo M, Bylander J, Roudsari A F arXiv: 2011.05230 v1 [cond-mat. supr-con]
[114] Chen Z, Megrant A, Kelly J, et al. 2014 Appl. Phys. Lett. 104 052602Google Scholar
[115] Rosenberg D, Weber S J, Conway D, Jost D R W, Mallek J, Calusine G, Das R, Kim D, Schwartz M E, Woods W, Yoder J L, Oliver W D 2020 IEEE Micro. Mag. 21 72
[116] Jin Z C, Wu H T, Yu H F, Yu Y 2018 Chin. Phys. B 27 100310Google Scholar
[117] Burnett J J, Bylander J, Bengtsson A, Scigliuzzo M, Niepce D 2019 NPJ Quantum Inf. 5 1Google Scholar
[118] Schlor S, Lisenfeld J, Mueller C, Bilmes A, Schneider A, Pappas D P, Ustinov A V, Weides M 2019 Phys. Rev. Lett. 123 190502Google Scholar
[119] Nersisyan A, Poletto S, Alidoust N, Manenti R, Renzas R, Bui C V, Vu K, Whyland T, Mohan Y, Sete E A, Stanwyck S, Bestwick A, Reagor M arXiv1901.08042 [quant-ph]
[120] Oliver W D, Welander P B 2013 MRS Bulletin 38 816Google Scholar
[121] de Graaf S E, Faoro L, Burnett J, Adamyan A A, Tzalenchuk A Y, Kubatkin S E, Lindström T, Danilov A V 2018 Nat. Commun. 9 1143Google Scholar
[122] Lisenfeld J, Mueller C, Cole J H, Bushev P, Lukashenko A, Shnirman A, Ustinov A V 2010 Phys. Rev. Lett. 105 230504Google Scholar
[123] Paz A, Lebedeva I, Tokatly I, Rubio A 2014 Phys. Rev. B 90 224202Google Scholar
[124] Muller C, Cole J H, Lisenfeld J 2019 Rep. Prog. Phys. 82 124501Google Scholar
[125] Martinis J M, Cooper K B, McDermott R, Steffen M, Ansmann M, Osborn K D, Cicak K, Oh S, Pappas D P, Simmonds RW and Yu C C 2005 Phys. Rev. Lett. 95 210503Google Scholar
[126] Neeley M, Ansmann M, Bialczak R C, Hofheinz M, Katz N, Lucero E, O’Connell A, Wang H, Cleland A N and Martinis J 2008 Phys. Rev. B 77 180508Google Scholar
[127] Martinis J M 2009 Quantum Inf. Process. 8 81Google Scholar
[128] Weides M, Bialczak R C, Lenander M, Lucero E, Mariantoni M, Neeley M, O’Connell A D, Sank D, Wang H, Wenner J, Yamamoto T, Yin Y, Cleland A N and Martinis J 2011 Supercond. Sci. Technol. 24 055005Google Scholar
[129] Lecocq F, Pop I M, Peng Z H, Matei I, Crozes T, Fournier T, Naud C, Guichard W and Buisson O 2011 Nanotechnology 22 315302Google Scholar
[130] Semenov V K, Danilov G V, Averin D V 2003 IEEE Trans. Appl. Supecond. 13 938Google Scholar
[131] Semenov V K, Danilov G V, Averin D V 2007 IEEE Trans. Appl. Supecond. 17 455Google Scholar
[132] Ren J, Semenov V K, Polyakov Y A, Averin D V, Tsai J S 2009 IEEE Trans. Appl. Supecond. 19 961Google Scholar
[133] Averin D V, Xu K, Zhong Y P, Song C, Wang H, Han S 2016 Phys. Rev. Lett. 116 010501Google Scholar
[134] Han S, Lapointe J, Lukens J E 1989 Phys. Rev. Lett. 63 1712Google Scholar
[135] Li S X, Yu Y, Zhang Y, Qiu W, Han S 2002 Phys. Rev. Lett. 89 098301Google Scholar
[136] Balestro F, Claudon J, Pekola J P, Buisson O 2003 Phys. Rev. Lett. 91 158301Google Scholar
[137] Lei C U, Krayzman L, Ganjam S, Frunzio L, Schoelkopf R J 2020 Appl. Phys. Lett. 116 154002
[138] Barends R, Vercruyssen N, Endo A, de Visser P J, Zijlstra T, Klapwijk T M, Diener P, Yates S J C, Baselmans J J A 2010 Appl. Phys. Lett. 97 023508Google Scholar
[139] Leduc H G, Bumble B, Day P K, Eom B H, Gao J, Golwala S, Mazin B A, McHugh S, Merrill A, Moore D C, Noroozian O, Turner A D, Zmuidzinas J 2010 Appl. Phys. Lett. 97 102509Google Scholar
[140] Foxen B, Mutus J Y, Lucero E, et al. 2018 Quantum Sci. Technol. 3 014005Google Scholar
[141] Levenson-Falk E M, Vijay R, Siddiqi I 2011 Appl. Phys. Lett. 98 123115Google Scholar
[142] Castellanos-Beltran M A, Irwin K D, Hilton G C, Vale L R, Lehnert K W 2008 Nat. Phys. 4 929Google Scholar
[143] Siddiqi I, Vijay R, Pierre F, Wilson C M, Metcalfe M, Rigetti C, Frunzio L, Devoret M H 2004 Phys. Rev. Lett. 93 207002Google Scholar
[144] Reed M D, DiCarlo L, Johnson B R, Sun L, Schuster D I, Frunzio L, Schoelkopf R J 2010 Phys. Rev. Lett. 105 173601Google Scholar
[145] Huang K Q, Guo Q J, Song C, Zheng Y R, Deng H, Wu Y L, Jin Y R, Zhu X B, Zheng D N 2017 Chin. Phys. B 26 094203Google Scholar
[146] Yang R, DengH 2020 IEEE Trans. APP. Supercon. 30 4Google Scholar
[147] Roy T, Kundu S, Chand M, Vadiraj A M, Ranadive A, Nehra N, Patankar M P, Aumentado J, Clerk A A, Vijaz R 2015 Appl. Phy. Lett. 107 262601Google Scholar
[148] Xue H, Lin Z R, Jiang W B, Niu Z Q, Liu K, Peng W, Wang Z 2021 Chin. Phys. B 30 068503Google Scholar
[149] Lu Y P, Zuo Q, Pan J Z, Jiang J L, Wei X Y, Li Z S, Xu W Q, Zhang K X, Guo T T, Wang S, Cao C H, Xu W W, Sun G Z, Wu P H 2021 Chin. Phys. B 30 068504Google Scholar
[150] Eom B H, Day P K, LeDay H G, Zmuidzinas J 2012 Nat. Phy. 8 623Google Scholar
[151] White T C, Mutus J Y, Kelly J, Sank D, Martinis J M 2015 Appl. Phy. Lett. 106 242601Google Scholar
[152] Macklin C, O’Brien, Hover D, Schwartz M E, Bolkhovsky V, Zhang X, Oliver W D, Siddiqi I 2015 Science 350 307Google Scholar
[153] Harrow A W, Montanaro A 2017 Nature 549 203Google Scholar
[154] Kelly J, Barends R, Fowler A G, et al. 2015 Nature 519 66Google Scholar
[155] Xu H K, Song C, Liu W Y, Xue G M, Su F F, Deng H, Tian Y, Zheng D N, Han S Y, Zhong Y P, Wang H, Liu Y X, Zhao S P 2016 Nat. Comm. 7 11018Google Scholar
[156] Wu Y L, Bao W S, Cao S R, Chen F S, Chen M C, Pan J W, et al. arXiv: 2106.14734 v1 [quant-ph]
计量
- 文章访问数: 7178
- PDF下载量: 291
- 被引次数: 0